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C H A P T E R

9

Nonlinear Differential Equations and

Stability

9.1

For Problems 1 through 16, once the eigenvalues have been found, Table 9.1.1 will,
for the most part, quickly yield the type of critical point and the stability. In all
cases it can be easily verified that A is nonsingular.

1.(a) Solution of the ODE requires analysis of the algebraic equations(
3− r −2

2 −2− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we must have det(A− r I) = r2 − r − 2 = 0 . The roots
of the characteristic equation are r1 = −1 and r2 = 2. For r = −1, the system of
equations reduces to 4ξ1 = 2ξ2 . The corresponding eigenvector is ξ(1) = (1 , 2)T .
Substitution of r = 2 results in the single equation ξ1 = 2ξ2. A corresponding eigen-
vector is ξ(2) = (2 , 1)T .

(b) The eigenvalues are real, with r1 r2 < 0 . Hence the critical point is an unstable
saddle point.
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(c,d)

4.(a) Solution of the ODEs is based on the analysis of the algebraic equations(
1− r −4

4 −7− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we require that det(A− r I) = r2 + 6r + 9 = 0. The single
root of the characteristic equation is r = −3 . Setting r = −3 , the components
of the solution vector must satisfy ξ1 = ξ2. A corresponding eigenvector is ξ =
(1 , 1)T .

(b) Since there is only one linearly independent eigenvector, the critical point is
an asymptotically stable improper node. If we had found that there were two
independent eigenvectors, then (0, 0) would have been a proper node, as indicated
in Case 3a.

(c,d)

7.(a) Setting x= ξ ert results in the algebraic equations(
3− r −2

4 −1− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we require that det(A− r I) = r2 − 2r + 5 = 0. The roots
of the characteristic equation are r = 1 ± 2i . Substituting r = 1 − 2i , the two
equations reduce to (1 + i)ξ1 − ξ2 = 0 . The two eigenvectors are ξ(1) = (1 , 1 + i)T

and ξ(2) = (1 , 1− i)T .
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(b) The eigenvalues are complex conjugates, with positive real part. Hence the
origin is an unstable spiral.

(c,d)

10.(a) The characteristic equation is given by∣∣∣∣1− r 2
−5 −1− r

∣∣∣∣ = r2 + 9 = 0 .

The equation has complex roots r1,2 = ± 3i. For r = −3i, the components of the
solution vector must satisfy 5 ξ1 + (1− 3i)ξ2 = 0 . Thus the corresponding eigenvec-

tor is ξ(1) = (1− 3i ,−5)T . Substitution of r = 3i results in 5 ξ1 + (1 + 3i)ξ2 = 0 .

A corresponding eigenvector is ξ(2) = (1 + 3i ,−5)T . (These eigenvectors are com-
plex constant multiples of the ones given in the text.)

(b) The eigenvalues are purely imaginary, hence the critical point is a center, which
is stable.

(c,d)

13. If we let x = x0 + u, then x′ = u′ and thus the system becomes

u′ =

(
1 1
1 −1

)
x0 +

(
1 1
1 −1

)
u−

(
2
0

)
,

which will be in the form of Eq.(2) if(
1 1
1 −1

)
x0 =

(
2

0

)
.
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Using row operations, we find x0 = (1, 1)T . With the change of dependent variable,
x = x0 + u, the differential equation can be written as

du

dt
=

(
1 1
1 −1

)
u.

The critical point for the transformed equation is the origin. Setting u= ξ ert results
in the algebraic equations(

1− r 1
1 −1− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we require that det(A− r I) = r2 − 2 = 0. The roots of the
characteristic equation are r = ±

√
2. Hence the critical point is an unstable saddle

point.

17.The equivalent system is dx/dt = y, dy/dt = −(k/m)x− (c/m)y, which is writ-
ten in the form of Eq.(2) as

dx

dt
=

(
0 1

−k/m −c/m

)
x.

The point (0, 0) is clearly a critical point, and since A is nonsingular, it is the
only one. The characteristic equation is r2 + (c/m)r + k/m = 0, with roots r1,2 =
(−c±

√
c2 − 4km)/2m. In the underdamped case c2 − 4km < 0, the characteristic

roots are complex with negative real parts (since c > 0), and thus the critical point
is an asymptotically stable spiral point. In the overdamped case c2 − 4km > 0,
the characteristic roots are real, unequal, and negative and hence the critical point
is an asymptotically stable node. In the critically damped case c2 − 4km = 0,
the characteristic roots are equal and negative. As indicated in the solution of
Problem 4, to determine whether this is an improper or proper node we must
determine whether there are one or two linearly independent eigenvectors. We find
only one eigenvector in this case, so the critical point (0, 0) is an asymptotically
stable improper node.

18.(a) If A has one zero eigenvalue, then for r = 0 we get det(A− rI) = det(A) = 0.

(b) Clearly, x = 0 is a critical point. Also, part (a) shows A is singular which means
Ax = 0 has infinitely many solutions and consequently there are infinitely many
critical points. Since A is a 2× 2 matrix, the homogeneous equation Ax = 0 will
yield the solution x2 = cx1, which indicates that the critical points lie on a straight
line through the origin.

(c) From Chapter 7, the solution is x(t) = c1ξ
(1) + c2ξ

(2)er2t. Now if c2 = 0, then

x(t) = c1ξ
(1) is a constant solution, so the critical points lie on the line with

direction vector ξ(1), just as the figure indicates. When c2 = 6= 0, then x(t) =

c1ξ
(1) + c2ξ

(2)er2t, which gives the parametric equation of a half-line with direc-
tion vector ξ(2), going through the critical point c1ξ

(1). Thus we established that
the trajectories follow the behavior indicated on the figure. When r2 < 0, solu-
tions converge toward the critical point as t→∞, when r2 > 0, solutions diverge
as t→∞.



9.1 223

19.(a) In this case, det(A− rI) = r2 − (a11 + a22)r + a11a22 − a21a12 = 0. Thus
the roots are

r1,2 =
a11 + a22 ±

√
(a11 + a22)2 − 4(a11a22 − a21a12)

2
.

To obtain purely imaginary roots, we clearly need that a11 + a22 = 0, and then of
course r2 = −(a11a22 − a21a12) < 0 if and only if a11a22 − a21a12 > 0.

(b) Eq.(i) can be written as dx/dt = a11x+ a12y and dy/dt = a21x+ a22y, which
gives Eq.(iii). Eq.(iii) can be rewritten as (a21x+ a22y)dx− (a11x+ a12y)dy = 0,
which is exact since a22 = −a11 from Eq.(ii).

(c) Integrating φx = a21x+ a22y, we get φ = a21x
2/2 + a22xy + g(y) and thus φy =

a22x+ g′ = −a11x− a12y, so g′(y) = −a12y using Eq.(ii). Hence φ(x, y) = a21x
2/2 +

a22xy − a12y2/2 = k/2 is the solution to Eq.(iii). The quadratic equation Ax2 +
Bxy + Cy2 = D is an ellipse provided B2 − 4AC < 0. Hence for our problem if
a222 + a21a12 < 0 then Eq.(iv) is an ellipse. From a11 + a22 = 0 we have a222 =
−a11a22 and hence the condition becomes −a11a22 + a21a12 < 0 which is true by
Eq.(ii). Thus Eq.(iv) is an ellipse under the conditions of Eq.(ii).

20. The system of ODEs can be written as

dx

dt
=

(
a11 a12
a21 a22

)
x.

The characteristic equation is r2 − p r + q = 0. The roots are given by

r1,2 =
p ±

√
p2 − 4q

2
=
p ±

√
∆

2
.

The results can be verified using Table 9.1.1.

22.(a) det(A− r I) = r2 − r + 5/2 = 0. The roots of the characteristic equation are
r = 1/2 ± 3i/2 .

(b) Substituting r = 1/2 + 3i/2 , the equations reduce to (3− 3i)ξ1 − 5 ξ2 = 0 .

Therefore a corresponding eigenvector is ξ(1) = (5 , 3− 3i)T .

(c) We compute, using x′ = Ax, and y = P−1x:

y′ = P−1x′ = P−1Ax = P−1APy = (P−1AP)y.

(d) We know that

P =

(
5 0
3 −3

)
, so P−1 =

1

15

(
3 0
3 −5

)
.

Thus

P−1AP =
1

15

(
3 0
3 −5

)(
2 −5/2

9/5 −1

)(
5 0
3 −3

)
=
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=
1

15

(
6 −15/2
−3 −5/2

)(
5 0
3 −3

)
=

1

15

(
15/2 45/2
−45/2 15/2

)
=

(
1/2 3/2
−3/2 1/2

)
,

as claimed.

9.2

1. The differential equations can be combined to obtain a related ODE

dy

dx
=

2y

x
.

The equation is separable, with

dy

y
=

2 dx

x
.

The solution is given by y = C x2. Note that the system is uncoupled, and hence
we also have x = x0e

−t and y = y0e
−2t. Matching the initial conditions, we obtain

x(t) = 4e−t and y(t) = 2e−2t.

In order to determine the direction of motion along the trajectory, observe that for
positive initial conditions, both x and y will decrease.

3. The trajectories of the system satisfy the ODE

dy

dx
= −x

y
.

The equation is separable, with y dy = −x dx. Hence the trajectories are given
by x2 + y2 = C2, in which C is arbitrary. Evidently, the trajectories are circles.
Invoking the initial conditions, we find that C2 = 16 for both pairs. The system
of ODEs can also be written as

dx

dt
=

(
0 −1
1 0

)
x.

Using the methods in Chapter 7, it is easy to show that the eigenvalues are ±i, and
we obtain the two real solutions

u(t) =

(
cos t
sin t

)
and v(t) =

(
sin t
− cos t

)
.
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The first set of initial conditions then yields x = 4 cos t, y = 4 sin t, while the second
set gives x = −4 sin t, y = 4 cos t.

The direction of motion is counterclockwise for both trajectories.

5.(a) The critical points are given by the solution set of the equations x(1− y) = 0
and y(1 + 2x) = 0. Clearly, (0 , 0) is a solution. If x 6= 0 , then y = 1 and x = −1/2 .
Hence the critical points are (0 , 0) and (−1/2 , 1).

(b)

(c) Based on the phase portrait, all trajectories starting near the origin diverge.
Hence the critical point (0 , 0) is unstable. Examining the phase curves near the
critical point (−1/2 , 1), the equilibrium point has the properties of a saddle, and
hence it is unstable.

(d) There is no basin of attraction since all critical points are unstable.

12.(a) The critical points are given by the solution set of the equations y = 0 and
x− x3/6− y/5 = 0. The first equation gives y = 0, and then x(1− x2/6) = 0 gives
the critical points (0 , 0), (

√
6 , 0), and (−

√
6 , 0).
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(b)

(c) We can see that (
√

6 , 0) and (−
√

6 , 0) are spiral points which are asymptotically
stable. (0, 0) is a saddle point, hence unstable.

(d) The basin of attraction is defined by the trajectory starting at (0, 0), encircling
each of the critical points (

√
6 , 0) and (−

√
6 , 0), and ending up at (0, 0) again.

17. (a) The trajectories are solutions of the differential equation

dy

dx
=

4x

y
,

which can also be written as 4x dx− y dy = 0 . Integrating, we obtain

4x2 − y2 = C.

Hence the trajectories are hyperbolas (for C 6= 0) and the straight lines y = ±2x
(for C = 0).

(b)

Based on the differential equations, in the first quadrant both x and y are increasing,
in the second quadrant x is increasing and y is decreasing, in the third quadrant
both x and y are decreasing, and in the fourth quadrant x is decreasing and y is
increasing.
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21.(a) The trajectories are solutions of the differential equation

dy

dx
=

y − 2xy

−x+ y + x2
,

which can also be written as (y − 2xy)dx+ (x− y − x2)dy = 0. The resulting ODE
is exact, with Hx = y − 2xy and Hy = x− y − x2. Integrating the first equation, we
find that H(x , y) = xy − x2y + f(y). It follows that Hy = x− x2 + f ′(y). Com-
paring the two partial derivatives, we obtain f(y) = −y2/2 + c . Hence H(x , y) =
xy − x2y − y2/2.

(b) The associated direction field shows the direction of motion along the trajecto-
ries.

23.(a) The trajectories are solutions of the differential equation

dy

dx
=
− sinx

y
,

so y dy + sinx dx = 0 and thus H(x, y) = y2/2− cosx.

(b) The associated direction field shows the direction of motion along the trajecto-
ries.

25.
dΦ

dt
(t) =

dφ

dt
(t− s) = F (φ(t− s), ψ(t− s)) = F (Φ(t),Ψ(t))

and
dΨ

dt
(t) =

dψ

dt
(t− s) = G(φ(t− s), ψ(t− s)) = G(Φ(t),Ψ(t)).
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Therefore, Φ(t),Ψ(t) is a solution for α+ s < t < β + s.

26. Let C0 be the trajectory generated by the solution x = φ0(t), y = ψ0(t) with
φ0(t0) = x0, ψ0(t0) = y0 and let C1 be the trajectory generated by the solution
x = φ1(t), y = ψ1(t) with φ1(t1) = x0, ψ1(t1) = y0. From Problem 25, we know that
Φ1(t) = φ1(t− (t0 − t1)), Ψ1(t) = ψ1(t− (t0 − t1)) is a solution. Further, Φ1(t0) =
φ1(t1) = x0 and Ψ1(t0) = y0. Then, by uniqueness, φ0(t) = Φ1(t) and ψ0(t) =
Φ1(t). Therefore, the trajectories are the same.

27. From the existence and uniqueness theorem we know that if the two solutions
x = φ(t), y = ψ(t) and x = x0, y = y0 satisfy φ(a) = x0, ψ(a) = y0 and x = x0,
y = y0 at t = a, then these solutions are identical. Hence φ(t) = x0 and ψ(t) = y0
for all t contradicting the fact that the trajectory generated by φ(t) and ψ(t) started
at a noncritical point.

28. Since the trajectory is closed, there is at least one point (x0, y0) such that
φ(t0) = x0, ψ(t0) = y0 and a number T > 0 such that φ(t0 + T ) = x0, ψ(t0 + T ) =
y0. From Problem 25, we know that Φ(t) = ψ(t+ T ), Ψ(t) = ψ(t+ T ) will also be a
solution. But, then by uniqueness Φ(t) = φ(t) and Ψ(t) = ψ(t) for all t. Therefore,
φ(t+ T ) = φ(t) and ψ(t+ T ) = ψ(t) for all t. Therefore, the solution is periodic
with period T .

9.3

In Problems 1 through 4, write the system in the form of Eq.(4). Then if g(0) = 0
we may conclude that (0, 0) is a critical point. In addition, if g satisfies Eq.(5) or
Eq.(6), then the system is locally linear. In this case the linear system, Eq.(1), will
determine, in most cases, the type and stability of the critical point (0, 0) of the
locally linear system. These results are summarized in Table 9.3.1.

3. In this case the system can be written as

d

dt

(
x
y

)
=

(
0 0
−1 0

)(
x
y

)
+

(
(1 + x) sin y

1− cos y

)
.

However, the coefficient matrix is singular and g1(x, y) = (1 + x) sin y does not
satisfy Eq.(6). However, we can see that (0, 0) is a critical point. Consider now the
Taylor series sin y = y − y3/3! + . . . and cos y = 1− y2/2! + . . .. The system can be
written as

d

dt

(
x

y

)
=

(
0 1
−1 0

)(
x

y

)
+

(
xy − y3/3 + . . .

y2/2! + . . .

)
.

In this form, g satisfies Eq.(6). This means that considering the original system in
the form

d

dt

(
x

y

)
=

(
0 1
−1 0

)(
x

y

)
+

(
(1 + x) sin y − y

1− cos y

)
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the linear part is nonsingular and g satisfies Eq.(6). The linear system has eigen-
values ±i and thus the origin is a center which is stable and the nonlinear system
has either center or a spiral point at the origin and the stability is indeterminate,
from Table 9.3.1.

4. The system can be written as

d

dt

(
x

y

)
=

(
1 0
1 1

)(
x

y

)
+

(
y2

0

)
,

so

A =

(
1 0
1 1

)
and g =

(
y2

0

)
.

Since g(0) = (0, 0)T , we conclude that (0, 0) is a critical point. Following the
procedure of Example 1, we let x = r cos θ and y = r sin θ and thus g1(x, y)/r =
r2 sin2 θ/r → 0 as r → 0 and thus the system is locally linear. The character-
istic equation of the associated linear system is (r − 1)2 = 0 , with equal roots
r1 = r2 = 1. Since the roots are equal, we determine that there is only one corre-
sponding eigenvector and thus the critical point for the linear system is an unstable
improper node. From Table 9.3.1 we then conclude that the given system, which is
locally linear, has a critical point near (0, 0) which is either a node or a spiral point
(depending on how the roots bifurcate) which is unstable.

6.(a) The critical points consist of the solution set of the equations x(1− x− y) = 0,
y(3− x− 2y) = 0. Solutions are x = 0, y = 0; x = 0, 3− 2y = 0 i.e. y = 3/2; y = 0,
1− x = 0 i.e. x = 1; and 1− x− y = 0, 3− x− 2y = 0 which give x = −1, y = 2.
Thus we found the four critical points (0, 0), (0, 3/2), (1, 0), (−1, 2).

(b) Here, we have F (x, y) = x− x2 − xy and G(x, y) = 3y − xy − 2y2. Therefore,
the Jacobian matrix for this system is(

Fx Fy
Gx Gy

)
=

(
1− 2x− y −x
−y 3− x− 4y

)
.

Therefore, near the critical point (0, 0), the Jacobian matrix is(
1 0
0 3

)
and the corresponding linear system near (0, 0) is

d

dt

(
x
y

)
=

(
1 0
0 3

)(
x
y

)
.

Near the critical point (0, 3/2), the Jacobian matrix is(
−1/2 0
−3/2 −3

)
and the corresponding linear system near (0, 3/2) is

d

dt

(
u
v

)
=

(
−1/2 0
−3/2 −3

)(
u
v

)
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where u = x and v = y − 3/2. Near the critical point (1, 0), the Jacobian matrix is(
−1 −1
0 2

)
and the corresponding linear system near (1, 0) is

d

dt

(
u
v

)
=

(
−1 −1
0 2

)(
u
v

)
where u = x− 1 and v = y. Near the critical point (−1, 2), the Jacobian matrix is(

1 1
−2 −4

)
and the corresponding linear system near (−1, 2) is

d

dt

(
u
v

)
=

(
1 1
−2 −4

)(
u
v

)
where u = x+ 1 and v = y − 2.

(c) The eigenvalues of the linear system near (0, 0) are λ = 1, 3. From this, we can
conclude that (0, 0) is an unstable node for the nonlinear system. The eigenvalues of
the linear system near (0, 3/2) are λ = −1/2,−3. From this, we can conclude that
(0, 3/2) is an asymptotically stable node for the nonlinear system. The eigenvalues
of the linear system near (1, 0) are λ = −1, 2. From this, we can conclude that (1, 0)
is a saddle point for the nonlinear system. The eigenvalues of the linear system
near (−1, 2) are λ = (−3±

√
17)/2. From this, we can conclude that (−1, 2) is an

unstable saddle point for the nonlinear system.

(d)

10.(a) To find the critical points, we need to solve the equations x+ x2 + y2 = 0
and y − xy = y(1− x) = 0. Solving these equations, we find that the critical points
are (0, 0) and (−1, 0).
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(b) Here, we have F (x, y) = x+ x2 + y2 and G(x, y) = y − xy. Therefore, the Ja-
cobian matrix for this system is(

Fx Fy
Gx Gy

)
=

(
1 + 2x 2y
−y 1− x

)
.

Therefore, near the critical point (0, 0), the Jacobian matrix is(
1 0
0 1

)
.

Near the critical point (−1, 0), the Jacobian matrix is(
−1 0
0 2

)
.

(c) The eigenvalues of the linear system near (0, 0) are λ = 1. From this, we can
conclude that (0, 0) is an unstable node or spiral point for the nonlinear system,
depending on how the roots bifurcate. The eigenvalues of the linear system near
(−1, 0) are λ = −1, 2. From this, we can conclude that (−1, 0) is an unstable saddle
point for the nonlinear system.

(d)

18.(a) The critical points occur when either y = 1 or y = 2x and either x = −2
or x = 2y. Therefore, we see that the critical points are (0, 0), (2, 1), (−2, 1) and
(−2,−4).

(b) Here, we have F (x, y) = (1− y)(2x− y) and G(x, y) = (2 + x)(x− 2y). There-
fore, the Jacobian matrix for this system is(

Fx Fy
Gx Gy

)
=

(
2− 2y −2x− 1 + 2y

2 + 2x− 2y −4− 2x

)
.

Therefore, near the critical point (0, 0), the Jacobian matrix is(
Fx(0, 0) Fy(0, 0)
Gx(0, 0) Gy(0, 0)

)
=

(
2 −1
2 −4

)
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and the corresponding linear system near (0, 0) is

d

dt

(
x
y

)
=

(
2 −1
2 −4

)(
x
y

)
.

Near the critical point (2, 1), the Jacobian matrix is(
Fx(2, 1) Fy(2, 1)
Gx(2, 1) Gy(2, 1)

)
=

(
0 −3
4 −8

)
and the corresponding linear system near (2, 1) is

d

dt

(
u
v

)
=

(
0 −3
4 −8

)(
u
v

)
where u = x− 2 and v = y − 1. Near the critical point (−2, 1), the Jacobian matrix
is (

Fx(−2, 1) Fy(−2, 1)
Gx(−2, 1) Gy(−2, 1)

)
=

(
0 5
−4 0

)
and the corresponding linear system near (−2, 1) is

d

dt

(
u
v

)
=

(
0 5
−4 0

)(
u
v

)
where u = x+ 2 and v = y − 1. Near the critical point (−2,−4), the Jacobian
matrix is (

Fx(−2,−4) Fy(−2,−4)
Gx(−2,−4) Gy(−2,−4)

)
=

(
10 −5
6 0

)
and the corresponding linear system near (−2,−4) is

d

dt

(
u
v

)
=

(
10 −5
6 0

)(
u
v

)
where u = x+ 2 and v = y + 4.

(c) The eigenvalues of the linear system near (0, 0) are λ = −1±
√

7. From this,
we can conclude that (0, 0) is an unstable saddle point for the nonlinear system.
The eigenvalues of the linear system near (2, 1) are λ = −2,−6. From this, we can
conclude that (2, 1) is an asymptotically stable node for the nonlinear system. The
eigenvalues of the linear system near (−2, 1) are λ = ±2

√
5i. From this, we can only

conclude that (−2, 1) is a either a center or a spiral point, and we cannot determine
its stability. The eigenvalues of the linear system near (−2,−4) are λ = 5±

√
5i.

From this, we can conclude that (−2,−4) is an unstable spiral point.
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(d)

20.(a) The critical points occur when x = 0 and −2y + x3 = 0. Plugging the first
equation into the second, we see that the only critical point is (0, 0). The Jacobian
matrix is given by (

Fx Fy
Gx Gy

)
=

(
1 0

3x2 −2

)
.

Therefore, the coefficient matrix of the linearized system near (0, 0) is(
1 0
0 −2

)
.

The eigenvalues are 1 and −2 and thus the origin is an unstable saddle point.

(b) The linear system is

dx

dt
= x

dy

dt
= −2y.

Thus, x(t) = c1e
t and y(t) = c2e

−2t. To sketch these, solve the first equation for et

and substitute into the second to obtain y = c21c2/x
2, c1 6= 0. Several trajectories

are shown in the figure. Since x(t) = c1e
t, we must pick c1 = 0 for x→ 0 as t→∞.

Thus x = 0, y = c2e
−2t (the vertical axis) is the only trajectory for which x→ 0,

y → 0 as t→∞.
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(c) For the nonlinear system, dy/dx is given by dy/dx = (−2y + x3)/x. This equa-
tion can be rewritten as (2y − x3)dx+ xdy = 0. Multiplying this equation by x, we
can rewrite the equation as (2xy − x4)dx+ x2dy = 0. We notice that this equation
is exact. Integrating 2xy − x4 with respect to x, we have H(x, y) = x2y − x5/5 +
h(y). Then differentiating with respect to y, we have Hy = x2 + h′(y) = x2. There-
fore, the trajectories are level curves of H(x, y) = x2y − x5/5. We can see that the
level curve H = 0 gives us x = 0 and y = x3/5, which verifies the problem’s state-
ment. The trajectories are shown below:

24.(a)

The graph for v = 5 indicates the initial velocity causes the pendulum to rotate
beyond the upper critical point. Since there is no damping, the x value continues
to increase indefinitely.
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(b) From the graphs in part (a), we see that vc is between v = 2 and v = 5. Using
several values of v, we estimate vc ≈ 4.00. (See the phase plane figure above.)

25.(a)

For v = 2, the motion is damped oscillatory about x = 0. For v = 5 the pendulum
swings all the way around once and then is a damped oscillation about x = 2π
(after one full rotation).

(b) From the graphs in part (a), we see that vc is between v = 2 and v = 5. Using
several values of v, we estimate vc ≈ 4.52. (See the phase plane figure above.)

29.(a) Setting c = 0 in Eq.(10) of Section 9.2 we obtain

mL2 d
2θ

dt2
+mgL sin θ = 0.

Considering dθ/dt as a function of θ and using the chain rule we have

d

dt

(
dθ

dt

)
=

d

dθ

(
dθ

dt

)
dθ

dt
=

1

2

d

dθ

(
dθ

dt

)2

.

Thus

1

2
mL2 d

dθ

(
dθ

dt

)2

= −mgL sin θ.
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Now integrate both sides from α to θ where dθ/dt = 0 at θ = α:

1

2
mL2

(
dθ

dt

)2

= mgL(cos θ − cosα).

Thus (dθ/dt)2 = (2g/L)(cos θ − cosα). Since we are releasing the pendulum with
zero velocity from a positive angle α, the angle θ will initially be decreasing so
dθ/dt < 0. If we restrict our attention to the range of θ from θ = α to θ = 0, we
can assert dθ/dt = −

√
2g/L

√
cos θ − cosα. Solving for dt gives

dt = −

√
L

2g

dθ√
cos θ − cosα

.

(b) Since there is no damping, the pendulum will swing from its initial angle α to
0 to −α, then back through 0 again to the angle α in one period. It follows that
θ(T/4) = 0. Integrating the last equation and noting that as t goes from 0 to T/4,
θ goes from α to 0 yields

T

4
= −

√
L

2g

∫ 0

α

dθ√
cos θ − cosα

.

(c) Using the suggested substitutions and (1/2) cos(θ/2)dθ = (1/2)
√

1− k2 sin2 φdθ =
sin(α/2) cosφdφ, we obtain

T

4
= −

√
L

2g

∫ 0

α

dθ√
cos θ − cosα

= −

√
L

2g

∫ 0

α

dθ√
2 sin2(α/2)− 2 sin2(θ/2)

=

= −

√
L

2g

∫ 0

π/2

2 sin(α/2) cosφdφ√
1− k2 sin2 φ

√
2 sin2(α/2)− 2 sin2(α/2) sin2 φ

,

which gives

T = 4

√
L

g

∫ π/2

0

dφ√
1− k2 sin2 φ

.

(d) Set k = sin(α/2) = sin(A/2) and g/L = 4 .

30.(a) If dx/dt = y, then d2x/dt2 = dy/dt = −g(x)− c(x)y.

(b) Under the given assumptions we have g(x) = g(0) + g′(0)x+ g′′(ξ1)x2/2 and
c(x) = c(0) + c′(ξ2)x, where 0 < ξ1, ξ2 < x and g(0) = 0. Hence dy/dt = −g′(0)x−
c(0)y − (g′′(ξ1)x2/2− c′(ξ2)xy) and thus the system can be written as

d

dt

(
x

y

)
=

(
0 1

−g′(0) −c(0)

)(
x

y

)
−
(

0

−g′′(ξ1)x2/2− c′(ξ2)xy

)
,

from which the results follow.
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(c) In the first case, the trace is negative and the determinant is positive, so we
have an asymptotically stable equilibrium at the origin. In the second case, the
determinant is negative, so we have a saddle point at the origin, which is unstable.

9.4

For Problems 1 through 6, when the Jacobian is evaluated at a critical point, the
corresponding linear systems are of the form u′ = Ju. Their character is analyzed
similarly to Example 1.

3. (a)

(b) The critical points are solutions of the system

x(1.5− 0.5x− y) = 0

y(2− y − 1.125x) = 0.

The four critical points are (0, 0), (0, 2), (3, 0) and (4/5, 11/10).

(c) The Jacobian matrix is

J =

(
3/2− x− y −x
−1.125y 2− 2y − 1.125x

)
.

At (0, 0),

J(0, 0) =

(
3/2 0
0 2

)
.

The associated eigenvalues and eigenvectors are r1 = 3/2, ξ1 = (1, 0)T and r2 = 2,
ξ2 = (0, 1)T . The eigenvalues are positive. Therefore, the origin is an unstable
node.
At (0, 2),

J(0, 2) =

(
−1/2 0
−9/4 −2

)
.
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The associated eigenvalues and eigenvectors are r1 = −1/2, ξ1 = (1,−3/2)T and
r2 = −2, ξ2 = (0, 1)T . The eigenvalues are both negative. Therefore, (0, 2) is a a
stable node, which is asymptotically stable.
At (3, 0),

J(3, 0) =

(
−3/2 −3

0 −11/8

)
.

The associated eigenvalues and eigenvectors are r1 = −3/2, ξ1 = (1, 0)T and r2 =
−11/8, ξ2 = (−24, 1)T . The eigenvalues are both negative. Therefore, this critical
point is a stable node, which is asymptotically stable.
At (4/5, 11/10),

J(4/5, 11/10) =

(
−2/5 −4/5
−99/80 −11/10

)
.

The associated eigenvalues and eigenvectors are r1 = −3/4 +
√

445/20, ξ1 = (1, (7−√
445)/16)T and r2 = −3/4−

√
445/20, ξ2 = (0, (7 +

√
445)/16)T . The eigenvalues

are of opposite sign. Therefore, (4/5, 11/10) is a saddle, which is unstable.

(d,e)

(f) As in Example 2, one species will die out, depending on the initial conditions.
For an initial condition lying below the separatrix, the species denoted by x will
survive, while if the initial condition is above the separatrix the species denoted by
y will survive.

5.(a)
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(b) The critical points are solutions of the system

x(1− x− y) = 0

y(1.5− y − x) = 0.

The three critical points are (0, 0), (0, 3/2) and (1, 0).

(c) The Jacobian matrix is

J =

(
1− 2x− y −x
−y 1.5− 2y − x

)
.

At (0, 0),

J(0, 0) =

(
1 0
0 1.5

)
.

The associated eigenvalues and eigenvectors are r1 = 1, ξ1 = (1, 0)T and r2 = 1.5,
ξ2 = (0, 1)T . The eigenvalues are positive. Therefore, the origin is an unstable
node.
At (0, 3/2),

J(0, 3/2) =

(
−1/2 0
−3/2 −3/2

)
.

The associated eigenvalues and eigenvectors are r1 = −1/2, ξ1 = (1,−3/2)T and
r2 = −3/2, ξ2 = (0, 1)T . The eigenvalues are both negative. Therefore, (0, 3/2) is
a stable node, which is asymptotically stable.
At (1, 0),

J(1, 0) =

(
−1 −1
0 1/2

)
.

The associated eigenvalues and eigenvectors are r1 = −1, ξ1 = (1, 0)T and r2 = 1/2,
ξ2 = (1,−3/2)T . The eigenvalues are of opposite sign. Therefore, this critical point
is a saddle, which is unstable.

(d,e)

(f) All trajectories converge to the stable node (0, 1.5), thus only one species sur-
vives.



240 Chapter 9. Nonlinear Differential Equations and Stability

6.(a)

(b) The critical points are solutions of the system

x(1− x+ 0.5y) = 0

y(2.5− 1.5y + 0.25x) = 0.

The four critical points are (0, 0), (0, 5/3), (1, 0) and (2, 2).

(c) The Jacobian matrix is

J =

(
1− 2x+ 0.5y 0.5x

0.25y 2.5− 3y + 0.25x

)
.

At (0, 0),

J(0, 0) =

(
1 0
0 2.5

)
.

The associated eigenvalues and eigenvectors are r1 = 1, ξ1 = (1, 0)T and r2 = 2.5,
ξ2 = (0, 1)T . The eigenvalues are positive. Therefore, the origin is an unstable
node.
At (0, 5/3),

J(0, 5/3) =

(
11/6 0
5/12 −5/2

)
.

The associated eigenvalues and eigenvectors are r1 = 11/6, ξ1 = (52/5, 1)T and
r2 = −5/2, ξ2 = (0, 1)T . The eigenvalues are of opposite sign. Therefore, (0, 5/3)
is a saddle, which is unstable.
At (1, 0),

J(1, 0) =

(
−1 1/2
0 11/4

)
.

The associated eigenvalues and eigenvectors are r1 = −1, ξ1 = (1, 0)T and r2 =
11/4, ξ2 = (1, 15/2)T . The eigenvalues are of opposite sign. Therefore, this critical
point is a saddle, which is unstable.
At (2, 2),

J(2, 2) =

(
−2 1
1/2 −3

)
.
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The associated eigenvalues and eigenvectors are r1 = (−5 +
√

3)/2, ξ1 = (1, (−1 +√
3)/2)T and r2 = −(5 +

√
3)/2, ξ2 = (1,−(1 +

√
3)/2)T . The eigenvalues are both

negative. Therefore, this critical point is a stable node, which is asymptotically
stable.

(d,e)

(f) Nonzero solutions converge toward the equilibrium point (2, 2).

8.(a) The critical points are solutions of

x(ε1 − σ1x− α1y) = 0

y(ε2 − σ2y − α2x) = 0.

If x = 0, then either y = 0 or y = ε2/σ2. If y = 0, then either x = 0 or x = ε1/σ1.
The fourth critical point is given by

(
ε1σ2 − ε2α1

σ1σ2 − α1α2
,
ε2σ1 − ε1α2

σ1σ2 − α1α2
).

If ε2/α2 > ε1/σ1 and ε2/σ2 > ε1/α1, then ε2σ1 − ε1α2 > 0 and ε1σ2 − ε2α1 < 0,
thus either the x or the y coordinate of the last critical point is negative so both
species cannot survive. The Jacobian matrix is

J =

(
ε1 − 2σ1x− α1y −α1x

−α2y ε2 − 2σ2y − α2x

)
.

At (0, 0),

J(0, 0) =

(
ε1 0
0 ε2

)
.

The associated eigenvalues are r = ε1, ε2. Since both eigenvalues are positive, the
origin is an unstable node. At (0, ε2/σ2),

J(0, ε2/σ2) =

(
ε1 − α1ε2/σ2 0
−ε2α2/σ2 −ε2

)
.

The associated eigenvalues are r = ε1 − α1ε2/σ2,−ε2. Here α1ε2 − ε1σ2 > 0, so
both eigenvalues are negative, and the point (0, ε2/σ2) is a stable node, which is
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asymptotically stable. At (ε1/σ1, 0),

J(ε1/σ1, 0) =

(
−ε1 −ε1α1/σ1

0 (σ1ε2 − ε1α2)/σ1

)
.

The associated eigenvalues are r = (σ1ε2 − ε1α2)/σ1, −ε1. Here σ1ε2 − ε1α2 > 0,
so the eigenvalues are of opposite sign, and the point (ε1/σ1, 0) is a saddle, which
is unstable. Thus the fish represented by y (redear) survive.

(b) The analysis here is similar to part (a); again, one of the coordinates of the
fourth equilibrium point is negative, and hence a mixed state is not possible. The
stability analysis shows that the bluegill (represented by x) survive in this case.

9.(a) We compute:

x′ = ε1x(1− σ1
ε1
x− α1

ε1
y) = ε1x(1− 1

B
x− γ1

B
y)

and

y′ = ε2y(1− σ2
ε2
y − α2

ε2
x) = ε2y(1− 1

R
y − γ2

R
x).

The coexistence equilibrium point is given by x+ γ1y = B and γ2x+ y = R. Solv-
ing these yields X = (B − γ1R)/(1− γ1γ2) and Y = (R− γ2B)/(1− γ1γ2).

(b) If B is reduced, it is clear from the answer to part (a) that X is reduced and
Y is increased. To determine whether the bluegill will die out, we give an intuitive
argument which can be confirmed by doing the analysis. Note that B/γ1 = ε1/α1 >
ε2/σ2 = R and R/γ2 = ε2/α2 > ε1/σ1 = B so that the graph of the lines 1− x/B −
γ1y/B = 0 and 1− y/R− γ2x/R = 0 must intersect in the first quadrant. As B is
decreased, X decreases, Y increases and the point of intersection moves closer to
(0, R). If B/γ1 < R, coexistence is not possible, and the only critical points are
(0, 0), (0, R) and (B, 0). It can be shown that (0, 0) and (B, 0) are unstable and
(R, 0) is asymptotically stable. Hence we conclude, when coexistence is no longer
possible, that x→ 0 and y → R and thus the bluegill population will die out.
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13.(a) Nullclines:

(a) α = 3 (b) α = 8/3 (c) α = 2

(b) The critical points are solutions of

− 4x+ y + x2 = 0

3

2
α− y = 0.

The solutions of these equations are(
2±

√
4− 3

2
α,

3

2
α

)
and exist for α ≤ 8/3.

(c) For α = 2, the critical points are (1, 3) and (3, 3). The Jacobian matrix is

J =

(
−4 + 2x 1

0 −1

)
.

At (1, 3),

J(1, 3) =

(
−2 1
0 −1

)
.

The eigenvalues are r = −2,−1. Since they are both negative, (1, 3) is a stable
node, which is asymptotically stable.
At (3, 3),

J(3, 3) =

(
2 1
0 −1

)
.

The eigenvalues are r = 2,−1. Since they are of opposite sign (3, 3) is a saddle,
which is unstable.
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(d) From part (a), the bifurcation value is α0 = 8/3. At this value α0, the critical
point is (2, 4). The Jacobian matrix is

J(2, 4) =

(
0 1
0 −1

)
.

The eigenvalues are r = 0,−1.

(f) Below we show the phase portrait for α = 3, which has no critical points.
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17.(a) Nullclines:

(a) α = 1/3 (b) α = 1/2 (c) α = 3/4

(d) α = 1 (e) α = 3/2

(b) The equilibrium points are P1(0, 0), P2(1, 0), P3(0, α) and P4(2− 2α, 2α− 1).
The fourth equilibrium point is in the first quadrant as long as 1/2 ≤ α ≤ 1.

(c) When α = 0, P3 coincides with P1, when α = 0.5, P4 coincides with P2, and
when α = 1, P4 coincides with P3. These are the bifurcation points, since in each
case two of the four points have the same coordinates.

(d,e) The Jacobian is

J =

(
1− 2x− y −x
−y/2 α− 2y − x/2

)
.

This means that at the origin

J(0, 0) =

(
1 0
0 α

)
,

so the origin is an unstable node when α > 0. (The eigenvalues are 1 and α.)
At the critical point (1, 0) the Jacobian is

J(1, 0) =

(
−1 −1
0 α− 1/2

)
,

which means that this equilibrium is a saddle when α > 1/2 and an asymptotically
stable node when 0 < α < 1/2.
At the critical point (0, α) the Jacobian is

J(0, α) =

(
1− α 0
−α/2 −α

)
,



246 Chapter 9. Nonlinear Differential Equations and Stability

which implies that this equilibrium is a saddle when 0 < α < 1 and an asymptoti-
cally stable node when α > 1.
At the critical point (2(1− α), 2α− 1) the Jacobian is given by

J(2(1− α), 2α− 1) =

(
2(α− 1) 2(α− 1)
1/2− α 1− 2α

)
.

It can be shown that this is an asymptotically stable node when 1/2 < α < 1.
At the bifurcation value α = 0, the origin changes from a saddle point to an un-
stable node, while (0, α) changes from an unstable node to a saddle point. At
α = 0.5, (1, 0) changes from an asymptotically stable node to a saddle point, while
P4 changes from a saddle point to an asymptotically stable node. At α = 1, (0, α)
changes from a saddle point to an asymptotically stable node, while P4 changes
from an asymptotically stable node to a saddle point.

(f) Phase portraits:

(a) α = 1/3 (b) α = 1/2 (c) α = 3/4

(d) α = 1 (e) α = 3/2
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9.5

3.(a)

(b) The critical points are solutions of the system

x(1− 0.5x− 0.5y) = 0

y(−0.25 + 0.5x) = 0.

The three critical points are (0, 0), (2, 0) and (1/2, 3/2).

(c) The Jacobian matrix is

J =

(
1− x− y/2 −x/2

y/2 −1/4 + x/2

)
.

At (0, 0),

J(0, 0) =

(
1 0
0 −1/4

)
.

The eigenvalues and eigenvectors are r1 = 1, ξ1 = (1, 0)T and r2 = −1/4, ξ2 =
(0, 1)T . The eigenvalues are of opposite sign. Therefore, (0, 0) is a saddle point,
which is unstable.
At (2, 0),

J(2, 0) =

(
−1 −1
0 3/4

)
.

The eigenvalues and eigenvectors are r1 = −1, ξ1 = (1, 0)T and r2 = 3/4, ξ2 =
(1,−7/4)T . The eigenvalues have opposite sign. Therefore, (2, 0) is a saddle point,
which is unstable.
At (1/2, 3/2),

J(1/2, 3/2) =

(
−1/4 −1/4
3/4 0

)
.

The eigenvalues and eigenvectors are r1 = (−1 + i
√

11)/8, ξ1 = ((−1 + i
√

11)/6, 1)T

and r2 = (−1− i
√

11)/8, ξ2 = ((−1− i
√

11)/6, 1)T . The eigenvalues have negative
real part. Therefore, (1/2, 3/2) is a stable spiral, which is asymptotically stable.
(As in Section 9.4, the Jacobian, evaluated at each of the critical points, can be
easily used to find the associated linear system at each critical point.)
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(d,e)

(f) Except for solutions along the coordinate axes, the other trajectories spiral
towards the critical point (1/2, 3/2).

7.(a) Looking at the coefficient of the trigonometric functions in equations (24), we
see that the ratio will be given by

(cK/γ)

(a/α)
√
c/aK

=
α
√
c

γ
√
a
.

(b) For system (2), a = 1, α = 0.5, c = 0.75 and γ = 0.25. Therefore, the ratio is
0.5
√

0.75/0.25 =
√

3.

(c) The amplitude for the prey function in Figure 9.5.3 is approximately 2.5 and the
amplitude for the predator function in Figure 9.5.3 is approximately 1.45. Using
these approximations, we say that the ratio is approximately 1.72 which is close to√

3. In this case the linear approximation is a good predictor.

11.(a) Looking at the equation for x′ = 0, we need x = 0 or σx+ 0.5y = 1. Looking
at the equation for y′ = 0, we need y = 0 or x = 3. Therefore, the critical points are
given by (0, 0), (1/σ, 0) and (3, 2− 6σ). As σ increases from zero, the critical point
(1/σ, 0) approaches the origin, and the critical point (3, 2− 6σ) will eventually leave
the first quadrant and enter the fourth quadrant. At σ = 1/3 they will coincide.

(b) Here, we have F (x, y) = x(1− σx− 0.5y) andG(x, y) = y(−0.75 + 0.25x). There-
fore, the Jacobian matrix for this system is(

Fx Fy
Gx Gy

)
=

(
1− 2σx− 0.5y −0.5x

0.25y −0.75 + 0.25x

)
.

We will look at the linear systems near the critical points above. At the critical
point (0, 0), the Jacobian matrix is(

Fx(0, 0) Fy(0, 0)
Gx(0, 0) Gy(0, 0)

)
=

(
1 0
0 −3/4

)
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and the corresponding linear system near (0, 0) is

d

dt

(
u
v

)
=

(
1 0
0 −3/4

)(
u
v

)
.

Near the critical point (1/σ, 0), the Jacobian matrix is(
Fx(1/σ, 0) Fy(1/σ, 0)
Gx(1/σ, 0) Gy(1/σ, 0)

)
=

(
−1 −1/2σ
0 −3/4 + 1/4σ

)
and the corresponding linear system near (1/σ, 0) is

d

dt

(
u
v

)
=

(
−1 −1/2σ
0 −3/4 + 1/4σ

)(
u
v

)
where u = x− 1/σ and v = y. Near the critical point (3, 2− 6σ), the Jacobian
matrix is (

Fx(3, 2− 6σ) Fy(3, 2− 6σ)
Gx(3, 2− 6σ) Gy(3, 2− 6σ)

)
=

(
−3σ −3/2

1/2− 3σ/2 0

)
and the corresponding linear system near (3, 2− 6σ) is

d

dt

(
u
v

)
=

(
−3σ −3/2

1/2− 3σ/2 0

)(
u
v

)
where u = x− 3 and v = y − 2 + 6σ.

The eigenvalues for the linearized system near (0, 0) are given by r = 1,−3/4.
Therefore, (0, 0) is a saddle point. The eigenvalues for the linearized system near
(1/σ, 0) are given by r = −1, (1− 3σ)/(4σ). For σ < 1/3, there will be one posi-
tive eigenvalue and one negative eigenvalue. In this case, (1/σ, 0) will be a sad-
dle point. For σ > 1/3, both eigenvalues will be negative, in which case (1/σ, 0)
will be an asymptotically stable node. The eigenvalues for the linearized sys-
tem near (3, 2− 6σ) are r = (−3σ ±

√
9σ2 + 9σ − 3)/2. Solving the polynomial

equation 9σ2 + 9σ − 3 = 0, we see that the eigenvalues will have non-zero imagi-
nary part if 0 < σ < (

√
21− 3)/6. In this case, since the real part, −3σ will be

negative, the point (3, 2− 6σ) will be an asymptotically stable spiral point. If
σ > (

√
21− 3)/6, then the eigenvalues will both be real. We just need to deter-

mine whether they will have the same sign or opposite signs. Solving the equation
−3σ +

√
9σ2 + 9σ − 3 = 0, we see that the cut-off is σ = 1/3. In particular, we

conclude that if (
√

21− 3)/6 < σ < 1/3, then this critical point will have two real-
valued eigenvalues which are negative, in which case this critical point will be an
asymptotically stable node. If σ > 1/3, however, the eigenvalues will be real-valued,
but with opposite signs, in which case (3, 2− 6σ) will be a saddle point.

We see that the critical point (3, 2− 6σ) is the critical point in the first quadrant
if 0 < σ < 1/3. From the analysis above, we see that the nature of the critical point
changes at σ1 = (

√
21− 3)/6. In particular, at this value of σ, the critical point

switches from an asymptotically stable spiral point to an asymptotically stable
node.

(c) The two phase portraits below are shown σ = 0.2 and σ = 0.3, respectively.
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(d) As σ increases, the spiral behavior disappears. For smaller values of σ, the
number of prey will decrease, causing a decrease in the number of predators, but
then triggering an increase in the number of prey and eventually an increase in the
number of predators. This cycle will continue to repeat as the system approaches
the equilibrium point. As the value for σ increases, the cycling behavior between
the predators and prey goes away.

14.(a) If the prey are harvested, then there will be less prey available for the preda-
tors, thus causing a decrease in the number of predators and allowing more of the
prey that are not harvested to survive. (As we will see below, the number of prey
will not change.) If the predators are harvested, then there will be less predators to
eat the prey, thus, allowing the number of prey to increase. As a result, with more
prey available, a larger percentage of the predators which are not harvested will be
able to survive. (As we will see below the total number of predators will remain
the same.) If they are both harvested, then initially there will be less prey available
for the predators, causing a decrease in the number of predators, thus leading to
an increase in the number of prey which survive.

(b) The equilibrium solution will occur when x′ = 0, y′ = 0. Solving these equa-
tions, we see that the equilibrium solution (with non-zero amounts of predators and
prey) is given by ((c+ E2)/γ, (a− E1)/α). Therefore, if E1 > 0 and E2 = 0, then
the number of prey stay the same, but the number of predators decreases.

(c) Using the equilibrium solution from part (b), we see that if E1 = 0, E2 > 0,
then the number of prey increases, while the number of predators stays the same.

(d) If both E1 > 0 and E2 > 0, then the number of prey increases and the number
of predators decreases.

9.6

1. We consider the function V (x, y) = a x2 + c y2 . The rate of change of V along
any trajectory is

V̇ = Vx
dx

dt
+ Vy

dy

dt
= 2ax(−x3 + xy2) + 2cy(−2x2y − y3) =
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= −(2ax4 + 2(2c− a)x2y2 + 2cy4).

If we choose a and c be any positive real numbers with 2c ≥ a, then V̇ (x, y) is
negative definite. By definition V is positive definite. It follows from Theorem
9.6.1 that the origin is an asymptotically stable critical point.

3. We consider the function V (x, y) = a x2 + c y2 . The rate of change of V along
any trajectory is

V̇ = Vx
dx

dt
+ Vy

dy

dt
= 2ax(−x3 + 2y3) + 2cy(−2xy2) = −2ax4 + 4(a− c)xy3.

If we choose a and c to be any positive real numbers with a = c, then V̇ (x, y) =
−2ax4 ≤ 0 in any neighborhood containing the origin and thus V̇ is negative semidef-
inite. By definition V is positive definite. It follows from Theorem 9.6.1 that the
origin is a stable critical point. However, the origin may still be asymptotically
stable although the V (x, y) used here is not sufficient to prove that.

6.(a) The system is dx/dt = y and dy/dt = −g(x). Since g(0) = 0, we conclude that
(0, 0) is a critical point.

(b) From the given conditions, the graph of g must be positive for 0 < x < k and
negative for −k < x < 0. Thus if 0 < x < k, then

∫ x
0
g(s) ds > 0, and if −k < x <

0, then
∫ x
0
g(s) ds = −

∫ 0

x
g(s) ds > 0. Since V (0, 0) = 0 it follows that V (x, y) =

y2/2 +
∫ x
0
g(s) ds is positive definite for −k < x < k, −∞ < y <∞. Next, we have

V̇ (x, y) = Vx(dx/dt) + Vy(dy/dt) = g(x)y + y(−g(x)) = 0. Theorem 9.6.1 shows that
the origin is at least a stable equilibrium point.

7.(a) The right side of both equations is zero at the origin, so it is a critical point.

(b) V is positive definite by Theorem 9.6.4. Since Vx = 2x and Vy = 2y, we get

V̇ (x, y) = Vx(dx/dt) + Vy(dy/dt) = 2xy − 2y2 − 2y sinx = 2y(−y + x− sinx). Since

x− sinx < 0 for x < 0 we have V̇ (x, y) < 0 for all y > 0. If x > 0, choose y so that
0 < y < x− sinx. Then V̇ (x, y) > 0. Hence V is not a Liapunov function.

(c) Since V (0, 0) = 0, 1− cosx > 0 for 0 < |x| < 2π and y2 > 0 for y 6= 0, it follows
that V (x, y) is positive definite in a neighborhood of the origin. Next Vx(x, y) =
sinx, Vy(x, y) = y, so V̇ (x, y) = Vx(dx/dt) + Vy(dy/dt) = (sinx)y + y(−y − sinx) =

−y2. Hence V̇ is negative semidefinite and (0, 0) is a stable critical point by Theo-
rem 9.6.1.

(d) V (x, y) = (x+ y)2/2 + x2 + y2/2 = 3x2/2 + xy + y2 is positive definite by The-
orem 9.6.4. Next Vx = 3x+ y and Vy = x+ 2y, so

V̇ (x, y) = (3x+ y)y − (x+ 2y)(y + sinx) = 2xy − y2 − (x+ 2y) sinx =

= 2xy − y2 − (x+ 2y)(x− αx3/6) [from the hint]

= −x2 − y2 + α(x+ 2y)x3/6 = −r2 + αr4(cos θ + 2 sin θ) cos3 θ/6 <

< −r2 + r4/2 = −r2(1− r2/2).
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Thus V̇ is negative definite for r <
√

2 and from Theorem 9.6.1 it follows that the
origin is an asymptotically stable critical point.

8. Let x = u and y = du/dt to obtain the system dx/dt = y and dy/dt = −c(x)y −
g(x). Now consider V (x, y) = y2/2 +

∫ x
0
g(s) ds, which yields V̇ = g(x)y + y(−c(x)y −

g(x)) = −y2c(x), which is negative semidefinite and we obtain that the origin is sta-
ble by Theorem 9.6.1.

10.(a) For asymptotic stability we need that the real parts of all the eigenvalues of
the coefficient matrix are negative. Looking at all the possible cases (see Problem
21 in Section 9.1) we obtain that this happens if an only if a11 + a22 < 0 and
a11a22 − a12a21 > 0.

(b) Since Vx = 2Ax+By, vy = Bx+ 2Cy, we have

V̇ = (2Ax+By)(a11x+ a12y) + (Bx+ 2Cy)(a21x+ a22y) =

= (2Aa11 +Ba21)x2 + (2(Aa12 + Ca21) +B(a11 + a22))xy + (2Ca22 +Ba12)y2.

We choose A, B and C so that 2Aa11 +Ba21 = −1, 2(Aa12 + Ca21) +B(a11 +
a22) = 0 and 2Ca22 +Ba12 = −1. The first and third equations give us A and C
in terms of B, respectively. We substitute in the second equation to find B and
then calculate A and C. The result is given in the text.

(c) Since a11a22 − a12a21 > 0 and a11 + a22 < 0, we see that ∆ < 0 and so A > 0.
Using the expression for A, B, and C found in part (b) we obtain

(4AC −B2)∆ = (a221 + a222 + (a11a22 − a12a21))(a211 + a212 + (a11a22 − a12a21))

−(a12a22 + a11a21)2 = (a211 + a212 + a221 + a222)(a11a22 − a12a21)+

(a211 + a212)(a221 + a222) + (a11a22 − a12a21)2 − (a12a22 + a11a21)2 =

(a211 + a212 + a221 + a222)(a11a22 − a12a21) + 2(a11a22 − a12a21)2.

Since a11a22 − a12a21 > 0 it follows that 4AC −B2 > 0.

11.(a) For V (x, y) = Ax2 +Bxy + Cy2 we have

V̇ = (2Ax+By)(a11x+ a12y + F1(x, y)) + (Bx+ 2Cy)(a21x+ a22y +G1(x, y)) =

(2Ax+By)(a11x+ a12y) + (Bx+ 2Cy)(a21x+ a22y) + (2Ax+By)F1(x, y)+

+(Bx+ 2Cy)G1(x, y) = −x2 − y2 + (2Ax+By)F1(x, y) + (Bx+ 2Cy)G1(x, y),

if A, B, and C are chosen as in Problem 10.

(b) Substituting x = r cos θ, y = r sin θ we find that

V̇ = −r2 + r(2A cos θ +B sin θ)F1(r cos θ, r sin θ)+

+r(B cos θ + 2C sin θ)G1(r cos θ, r sin θ).

Now we make use of the facts that there exists an M such that |2A| ≤M , |B| ≤M ,
and |2C| ≤M and that given any ε > 0 there exists a circle with radius R such that
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|F1(x, y)| < εr and |G1(x, y)| < εr for 0 < r < R. We have |2A cos θ +B sin θ| ≤
2M and |B cos θ + 2C sin θ| ≤ 2M . Thus V̇ ≤ −r2 + 2Mr(εr) + 2Mr(εr) = −r2(1−
4Mε). If we choose ε = M/8 we obtain V̇ ≤ −r2/2 for 0 ≤ r < R. Hence V̇ is neg-
ative definite in 0 ≤ r < R and from Problem 10(c) V is positive definite and thus
V is a Liapunov function for the almost linear system.

9.7

1. Note that r = 1, θ = t+ t0 satisfy the two equations for all t and is thus a
periodic solution. We notice that for 0 < r < 1, dr/dt > 0, while for r > 1, dr/dt <
0. Therefore, r = 0 is an unstable critical point, while r = 1 is an asymptotically
stable critical point (for the dr/dt equation). Thus a limit cycle is given by r = 1,
θ = t+ t0, which is asymptotically stable.

2. r = 1, θ = −t+ t0 is a periodic solution. We notice that for 0 < r < 1, dr/dt > 0,
while for r > 1, dr/dt > 0, as well. Therefore, r = 0 is an unstable critical point,
while r = 1 is a semistable critical point (for the dr/dt equation). Thus a limit
cycle is given by r = 1, θ = −t+ t0, which is semistable.

4. r = 1, θ = −t+ t0 and r = 2, θ = −t+ t0 are periodic solutions. We notice
that dr/dt < 0 for 0 < r < 1 and r > 2, while dr/dt > 0 for 1 < r < 2. Therefore,
r = 0 is a stable critical point, r = 1 is an unstable critical point, and r = 2 is an
asymptotically stable critical point (for the dr/dt equation). Thus a limit cycle
is given by r = 1, θ = −t+ t0, which is unstable. Another limit cycle is given by
r = 2, θ = −t+ t0, which is asymptotically stable.

7. We compute:

y
dx

dt
− xdy

dt
= r sin θ

[
dr

dt
cos θ − r sin θ

dθ

dt

]
− r cos θ

[
dr

dt
sin θ + r cos θ

dθ

dt

]
=

= −r2 sin2 θ
dθ

dt
− r2 cos2 θ

dθ

dt
= −r2 dθ

dt
.

8.(a) Since r2 = x2 + y2, we have

r
dr

dt
= x

dx

dt
+ y

dy

dt
.

Thus

r
dr

dt
=
x2f(r)

r
+
y2f(r)

r
=
r2f(r)

r
= rf(r).

Therefore, rdr/dt = rf(r), which implies dr/dt = f(r). Therefore, we have periodic
solutions corresponding to the zeros of f(r). To find the direction of motion on the
closed trajectories, we use the result from Problem 7:

−r2 dθ
dt

= y
dx

dt
− xdy

dt
.
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Therefore, for this system, we have

−r2 dθ
dt

= −y2 +
xyf(r)

r
− x2 − xyf(r)

r
= −x2 − y2 = −r2.

Therefore, dθ/dt = 1, which implies θ = t+ t0. Therefore, the closed trajectories
will move in the counter-clockwise direction.

(b) By part (a), we know the periodic solutions will be given by the zeros of f . The
zeros are r = 0, 1, 2, 3. Using the fact that dr/dt = f(r), we see that dr/dt > 0 if
0 < r < 1 and r > 3 and dr/dt < 0 if 1 < r < 2 and 2 < r < 3. Therefore, r = 0 is
unstable, r = 1 is asymptotically stable, r = 2 is semistable, and r = 3 is unstable.
We conclude that there is an asymptotically stable limit cycle at r = 1 with θ =
t+ t0, a semistable limit cycle at r = 2 with θ = t+ t0 and an unstable periodic
solution at r = 3 with θ = t+ t0.

9. Using the fact that

r
dr

dt
= x

dx

dt
+ y

dy

dt
,

we have

r
dr

dt
= xy +

x2√
x2 + y2

(x2 + y2 − 2)− xy +
y2√
x2 + y2

(x2 + y2 − 2) = r(r2 − 2).

Therefore, dr/dt = r2 − 2. Therefore, we have one critical point at r =
√

2. We see
that dr/dt > 0 if r >

√
2 and dr/dt < 0 if r <

√
2. Therefore, r =

√
2 is an unstable

periodic solution. To find the direction of motion on the closed trajectories, we use
the fact that

−r2 dθ
dt

= y
dx

dt
− xdy

dt
.

Therefore, here we have

−r2 dθ
dt

= y2 + x2 = r2.

Therefore, dθ/dt = −1, which implies θ = −t+ t0.

11. Given that F (x, y) = x+ y + x3 − y2 and G(x, y) = −x+ 2y + x2y + y3/3,

Fx +Gy = 3 + 4x2 + y2

is positive for all (x, y). Therefore, by Theorem 9.7.2, the system cannot have a
non-constant periodic solution.

13. We parametrize the curve C by t. Therefore, we can rewrite the line integral
as ∫

C

[F (x, y) dy −G(x, y) dx] =

∫ t+T

t

[F (φ(t), ψ(t))ψ′(t)−G(φ(t), ψ(t))φ′(t)] dt

=

∫ t+T

t

[φ′(t)ψ′(t)− ψ′(t)φ′(t)] dt = 0.
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Then, using Green’s Theorem, we must have∫∫
R

[Fx(x, y) +Gy(x, y)] dA = 0.

If Fx +Gy has the same sign throughout D, then the double integral cannot be
zero. Thus either the solution of Eqs.(15) is not periodic or if it is, it cannot lie
entirely in D.

18.(a) The critical points must satisfy x = 0 or 0.2x+ 2y/(x+ 6) = 2.4 and y = 0
or x/(x+ 6) = 0.25. Solving these equations, we see that the critical points are
(0, 0), (12, 0) and (2, 8).

(b) To determine the type and stability of each critical point, we need to look at
the Jacobian matrix(

Fx Fy
Gx Gy

)
=

2.4− 0.4x− 12y

(x+ 6)2
− 2x

x+ 6
6y

(x+ 6)2
−0.25 +

x

x+ 6

 .

Therefore, the Jacobian near (0, 0) is(
2.4 0
0 −0.25

)
.

The Jacobian matrix near (12, 0) is(
−12/5 −4/3

0 5/12

)
.

The Jacobian matrix near (2, 8) is(
1/10 −1/2
3/4 0

)
.

The eigenvalues for (0, 0) are r = 2.4,−0.25. Therefore, (0, 0) is a saddle point.
The eigenvalues for (12, 0) are r = −12/5, 5/12. Therefore, (12, 0) is a saddle point.
The eigenvalues for (2, 8) are r = .05± 0.61i. Therefore, (2, 8) is an unstable spiral
point.

(c)
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21.(a) The critical points are solutions of

3

(
x+ y − 1

3
x3 − k

)
= 0

− 1

3
(x+ 0.8y − 0.7) = 0.

Setting x′ = 0 and solving for y yields y = x3/3− x+ k. Substituting this into
y′ = 0 givesW (x) = x+ 0.8(x3/3− x+ k)− 0.7 = 0.8x3/3 + 0.2x+ (0.8k − 0.7) =
0. Since W ′(x) = 0.8x2 + 0.2 is never zero, we conclude that W always has a
positive slope and thus the cubic equation crosses the x axis only once for all values
of k. For that value of x, we can calculate y and will find one critical point.

(b) Using the equation in part (a) for x and setting k = 0, we see that the x
coordinate of the critical point is x = 1.19941. Substituting that value for x into
the second equation, we conclude that y = −0.62426. The Jacobian matrix is given
by

J =

(
3− 3x2 3
−1/3 −4/15

)
.

Therefore, at (1.19941,−0.62426),

J(1.19941,−0.62426) =

(
−1.316 3
−1/3 −4/15

)
.

The eigenvalues of this matrix are r = −0.791± 0.851i. Therefore, the critical point
(1.19941,−0.62426) is an asymptotically stable spiral point.
Now using the equation in part (a) and setting k = 0.5, we see that the x−coordinate
of the critical point is x = 0.80485. Substituting that value for x into the second
equation, we conclude that y = −0.13106. Therefore, at (0.80485,−0.13106),

J(0.80485,−0.13106) =

(
1.05665 3
−1/3 −4/15

)
.

The eigenvalues of this matrix are r = 0.395± 0.7498i. Therefore, the critical point
(0.80485,−0.13106) is an unstable spiral point.

(c) Letting k = 0.1, 0.2, 0.3, 0.4 in the cubic equation of part (a) and finding the
corresponding eigenvalues from the matrix in part (b), we find that the real part
of the eigenvalues changes sign between k = 0.3 and k = 0.4. Continuing in this
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fashion, we find that k0 ≈ 0.3465. For this value of k0, we calculate the critical point
as in part (b). In particular, we find that the critical point is (0.9545,−0.31813).

(d) In what follows, we consider initial conditions x(0) = 0.5, y(0) = 0.5.

For k = 0.4, T ≈ 11.23.

For k = 0.5, T ≈ 10.37.
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For k = 0.6, T ≈ 9.93.

(e) Again, iterating as in part (c), we find for k = 1.403 that x0 = −0.9541 and for
k = 1.404 that x0 = −0.9549. Substituting these values into the coefficient matrix of
part (b) and finding the eigenvalues we find that the real part changes sign between
k = 1.403 and k = 1.404. Thus the critical point again becomes asymptotically
stable.

9.8

1.(a) Since the eigenvalues must be solutions of −(8/3 + λ)(λ2 + 11λ− 10(r − 1)) =
0, we see that the eigenvalues are given by λ = −8/3 and the roots of λ2 + 11λ−
10(r − 1) = 0. The roots of the quadratic equation are λ = (−11±

√
81 + 40r)/2.

Therefore, the eigenvalues are as stated in Eq.(10).

(b) The corresponding eigenvectors are given by ξ1 = (0, 0, 1)T for λ1 = −8/3,
ξ2 = ((−9 +

√
81 + 40r)/2r, 1, 0)T for λ2 = (−11 +

√
81 + 40r)/2 and ξ3 = ((−9−√

81 + 40r)/2r, 1, 0)T for λ3 = (−11−
√

81 + 40r)/2

(c) For r = 28, using the formulas for the eigenvalues and eigenvectors from part (b),
we see that λ1 = −8/3 with eigenvector ξ1 = (0, 0, 1)T , λ2 ≈ 11.828 with eigenvec-
tor ξ2 ≈ (20, 43.655, 0)T , and λ3 ≈ −22.828 with eigenvector ξ3 ≈ (20,−25.655, 0)T .

2.(a) Using the values σ = 10 and b = 8/3, the Jacobian matrix associated with our
nonlinear system is

J =

−10 10 0
r − z −1 −x
y x −8/3

 .

Therefore, at the critical point P2 = (
√

8(r − 1)/3,
√

8(r − 1)/3, r − 1),

J(P2) =

 −10 10 0

1 −1 −
√

8(r − 1)/3√
8(r − 1)/3

√
8(r − 1)/3 −8/3

 ,

as stated in Eq.(11).
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(b) The eigenvalues of the system must satisfy det(A− λI) = 0 where A = J(P2).
We see that

A− λI =

 −10− λ 10 0

1 −1− λ −
√

8(r − 1)/3√
8(r − 1)/3

√
8(r − 1)/3 −8/3− λ

 .

The determinant is

(−10− λ)[(1 + λ)(8/3 + λ) + (8(r − 1)/3)]− 10[(−8/3− λ) + 8(r − 1)/3] =

= (−10− λ)[λ2 + 11λ/3 + 8/3 + 8(r − 1)/3] + 10(8/3 + λ)− 80(r − 1)/3 =

= −10λ2 − 110λ/3− 80/3− 80(r − 1)/3− λ3 − 11λ2/3− 8λ/3− 8(r − 1)λ/3+

+80/3 + 10λ− 80(r − 1)/3 = −λ3 − 41λ2/3− 8(r + 10)λ/3− 160(r − 1)/3.

Setting this equation equal to zero and multiplying by −3, we arrive at Eq.(12).

(c) For r = 28, Eq.(12) becomes 3λ3 + 41λ2 + 304λ+ 4320 = 0. The solutions of
this equation are λ = −13.8546, and 0.093956± 10.1945i.

3.(a) For r = 28, in Problem 2, we saw that the real part of the complex roots
was positive. By numerical investigation, we see that the real part changes sign at
r ≈ 24.737.

(b) Suppose a cubic polynomial x3 +Ax2 +Bx+ C has one real zero and two pure
imaginary zeros. Then the polynomial can be factored as (x− λ1)(x2 + λ2) where
λ2 > 0. Therefore,

x3 +Ax2 +Bx+ C = (x− λ1)(x2 + λ2) = x3 − λ1x2 + λ2x− λ1λ2,

which implies that A = −λ1, B = λ2, and C = −λ1λ2 = AB. Therefore, if AB 6=
C, the cubic polynomial will not have the specified type of roots.

(c) First, we rewrite the equation as

λ3 +
41

3
λ2 +

8(r + 10)

3
λ+

160(r − 1)

3
= 0.

Using the result from part (b), we need to find when AB = C, where A = 41/3,
B = 8(r + 10)/3 and C = 160(r − 1)/3. Setting AB = C, we have the equation
328(r + 10)/9 = 160(r − 1)/3. Solving this equation, we see that the real part of
the complex roots changes sign when r = 470/19.

4. We have

V̇ = 2x(σ(−x+ y)) + 2σy(rx− y − xz) + 2σz(−bz + xy) =

−2σx2 + 2σxy + 2σrxy − 2σy2 − 2σbz2 = −2σ((x2 − (r + 1)xy + y2) + bz2).

For r < 1, the term inside the parentheses remains positive for all values of x and
y (by Theorem 9.6.4), and thus V̇ is negative definite. Thus, by the extension of
Theorem 9.6.1 to three equations, we conclude that the origin is an asymptotically
stable critical point.
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5.(a) We compute:

dV

dt
=
∂V

∂x

dx

dt
+
∂V

∂y

dy

dt
+
∂V

∂z

dz

dt
= 2rx

dx

dt
+ 2σy

dy

dt
+ 2σ(z − 2r)

dz

dt
=

= 2σrx(−x+ y) + 2σy(rx− y − xz) + 2σ(z − 2r)(−bz + xy) =

= −2σrx2 − 2σy2 − 2σbz2 + 4σrbz = −2σ[rx2 + y2 + bz2 − 2rbz] =

= −2σ[rx2 + y2 + b(z − r)2 − br2].

(b) From the proof of Theorem 9.6.1, we find that we need to show that V̇ , as
found in part (a), is always negative as it crosses V (x, y, z) = c. (Actually, we
need to use the extension of Theorem 9.6.1 to three equations, but the proof
is very similar using the vector calculus approach.) From part (a) we see that
V̇ < 0 whenever rx2 + y2 + b(z − r)2 > br2, which holds if (x, y, z) lies outside the
ellipsoid x2/(br) + y2/(br2) + (z − r)2/r2 = 1, Eq.(i). Thus we need to choose
c such that V = c lies outside Eq.(i). Writing V = c in the form of Eq.(i) we
obtain the ellipsoid x2/(c/r) + y2/(c/σ) + (z − 2r)2/(c/σ) = 1, Eq.(ii). Now let
M = max(

√
br, r
√
b, r), then the ellipsoid (i) is contained inside the sphere S1:

x2/M2 + y2/M2 + (z − r)2/M2 = 1. Let S2 be a sphere centered at (0, 0, 2r) with
radius M + r: x2/(M + r)2 + y2/(M + r)2 + (z − 2r)2/(M + r)2 = 1, then S1 is
contained in S2. Thus, if we choose c, in Eq.(ii), such that c/r > (M + r)2 and
c/σ > (M + r)2, then V̇ < 0 as the trajectory crosses V (x, y, z) = c. Note that this
is a sufficient condition and there may be many other better choices using different
techniques.

(c) With the given values we obtain c ≈ 33, 450.7.

8.(a) r = 21, with initial point (3 , 8 , 0):
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r = 21, with initial point (5, 5 , 5):

r = 21, with initial point (5, 5 , 10):

(b) r = 22, with initial points (3 , 8 , 0), (5, 5 , 5), (5, 5 , 10):

r = 23, with initial points (3 , 8 , 0), (5, 5 , 5), (5, 5 , 10):
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r = 24, with initial points (3 , 8 , 0), (5, 5 , 5), (5, 5 , 10):

11.(a) Let a = 1/4 and b = 1/2 in Eq.(i) to get x′ = −y − z, y′ = x+ y/4 and z′ =
1/2 + z(x− c). Setting these equal to zero yields x = z/4 and y = −z from the
first two equations. Substitution into the third gives z2/4− cz + 1/2 = 0, and thus
z = 2(c±

√
c2 − 1/2), which gives the desired results.

(b) If we let F = −y − z, G = x+ ay and H = b+ z(x− c), then by Eq.(3) the
Jacobian matrix is given by

J =

0 −1 −1
1 a 0
z 0 x− c

 .

If we set a = 1/4, b = 1/2, c =
√

1/2, then x =
√

2/4, y = −
√

2, and z =
√

2. The
eigenvalues for the Jacobian at this critical point are given by

det(J− rI) =

∣∣∣∣∣∣
−r −1 −1
1 1/4− r 0√
2 0 −

√
2/4− r

∣∣∣∣∣∣ =

−r(r2 + r(
1

2
√

2
− 1

4
) + (1 +

15

8
√

2
)) = 0.

One eigenvalue is 0, the other two can be found by solving the quadratic equation
inside the parentheses above. We obtain a complex conjugate pair with negative real
part. If a = 1/4, b = 1/2, c = 1, then we get two critical points: x = (2−

√
2)/4,

y = −2 +
√

2, and z = 2−
√

2 and x = (2 +
√

2)/4, y = −2−
√

2, and z = 2 +
√

2.
The eigenvalues can be found again by finding the roots of det(J− rI) = 0; in the
first case we get one negative real and a complex conjugate pair with negative real
part, in the second case we get a positive real and a complex conjugate pair with
negative real part.
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(c) With initial point (0 , 0 , 0):

(d) With initial point (1, 1 , 1):
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