41.(a) Recall the derivative formula

$$
\frac{d^{n}}{d x^{n}}(u v)=\binom{n}{0} v \frac{d^{n} u}{d x^{n}}+\binom{n}{1} \frac{d v}{d x} \frac{d^{n-1} u}{d x^{n-1}}+\ldots+\binom{n}{n} \frac{d^{n} v}{d x^{n}} u .
$$

2. The general solution of the homogeneous equation is $y_{c}=c_{1} e^{t}+c_{2} e^{-t}+c_{3} \cos t+$ $c_{4} \sin t$. Let $g_{1}(t)=3 t$ and $g_{2}(t)=\cos t$. By inspection, we find that $Y_{1}(t)=$ $-3 t$. Since $g_{2}(t)$ is a solution of the homogeneous equation, set $Y_{2}(t)=t(A \cos t+$ $B \sin t$). Substitution into the given ODE and comparing the coefficients of similar term results in $A=0$ and $B=-1 / 4$. Hence the general solution of the nonhomogeneous problem is $y(t)=y_{c}(t)-3 t-t \sin t / 4$.
3. The characteristic equation corresponding to the homogeneous problem can be written as $(r+1)\left(r^{2}+1\right)=0$. The solution of the homogeneous equation is $y_{c}=$ $c_{1} e^{-t}+c_{2} \cos t+c_{3} \sin t$. Let $g_{1}(t)=e^{-t}$ and $g_{2}(t)=4 t$. Since $g_{1}(t)$ is a solution of the homogeneous equation, set $Y_{1}(t)=A t e^{-t}$. Substitution into the ODE results in $A=1 / 2$. Now let $Y_{2}(t)=B t+C$. We find that $B=-C=4$. Hence the general solution of the nonhomogeneous problem is $y(t)=y_{c}(t)+t e^{-t} / 2+4(t-1)$.
4. The characteristic equation corresponding to the homogeneous problem can be written as $r(r+1)(r-1)=0$. The solution of the homogeneous equation is $y_{c}=c_{1}+c_{2} e^{t}+c_{3} e^{-t}$. Since $g(t)=2 \sin t$ is not a solution of the homogeneous problem, we can set $Y(t)=A \cos t+B \sin t$. Substitution into the ODE results in $A=1$ and $B=0$. Thus the general solution is $y(t)=c_{1}+c_{2} e^{t}+c_{3} e^{-t}+\cos t$.
6. The characteristic equation corresponding to the homogeneous problem can be written as $\left(r^{2}+1\right)^{2}=0$. It follows that $y_{c}=c_{1} \cos t+c_{2} \sin t+t\left(c_{3} \cos t+\right.$ $c_{4} \sin t$). Since $g(t)$ is not a solution of the homogeneous problem, set $Y(t)=$ $A+B \cos 2 t+C \sin 2 t$. Substitution into the ODE results in $A=3, B=1 / 9$, $C=0$. Thus the general solution is $y(t)=y_{c}(t)+3+\cos 2 t / 9$.
7. The characteristic equation corresponding to the homogeneous problem can be written as $r^{3}\left(r^{3}+1\right)=0$. Thus the homogeneous solution is

$$
y_{c}=c_{1}+c_{2} t+c_{3} t^{2}+c_{4} e^{-t}+e^{t / 2}\left[c_{5} \cos (\sqrt{3} t / 2)+c_{5} \sin (\sqrt{3} t / 2)\right]
$$

Note the $g(t)=t$ is a solution of the homogenous problem. Consider a particular solution of the form $Y(t)=t^{3}(A t+B)$. Substitution into the ODE gives us that $A=1 / 24$ and $B=0$. Thus the general solution is $y(t)=y_{c}(t)+t^{4} / 24$.
8. The characteristic equation corresponding to the homogeneous problem can be written as $r^{3}(r+1)=0$. Hence the homogeneous solution is $y_{c}=c_{1}+c_{2} t+$ $c_{3} t^{2}+c_{4} e^{-t}$. Since $g(t)$ is not a solution of the homogeneous problem, set $Y(t)=$ $A \cos 2 t+B \sin 2 t$. Substitution into the ODE results in $A=1 / 40$ and $B=1 / 20$. Thus the general solution is $y(t)=y_{c}(t)+(\cos 2 t+2 \sin 2 t) / 40$.
10. From Problem 22 in Section 4.2, the homogeneous solution is $y_{c}=c_{1} \cos t+$ $c_{2} \sin t+t\left[c_{3} \cos t+c_{4} \sin t\right]$. Since $g(t)$ is not a solution of the homogeneous problem, substitute $Y(t)=A t+B$ into the ODE to obtain $A=3$ and $B=4$. Thus the general solution is $y(t)=y_{c}(t)+3 t+4$. Invoking the initial conditions, we find that $c_{1}=-4, c_{2}=-4, c_{3}=1, c_{4}=-3 / 2$. Therefore the solution of the initial value problem is $y(t)=(t-4) \cos t-(3 t / 2+4) \sin t+3 t+4$.

11. The characteristic equation can be written as $r\left(r^{2}-3 r+2\right)=0$. Hence the homogeneous solution is $y_{c}=c_{1}+c_{2} e^{t}+c_{3} e^{2 t}$. Let $g_{1}(t)=e^{t}$ and $g_{2}(t)=t$. Note that g_{1} is a solution of the homogeneous problem. Set $Y_{1}(t)=A t e^{t}$. Substitution into the ODE results in $A=-1$. Now let $Y_{2}(t)=B t^{2}+C t$. Substitution into the ODE results in $B=1 / 4$ and $C=3 / 4$. Therefore the general solution is $y(t)=$ $c_{1}+c_{2} e^{t}+c_{3} e^{2 t}-t e^{t}+\left(t^{2}+3 t\right) / 4$. Invoking the initial conditions, we find that $c_{1}=1, c_{2}=c_{3}=0$. The solution of the initial value problem is $y(t)=1-t e^{t}+$ $\left(t^{2}+3 t\right) / 4$.

12. The characteristic equation can be written as $(r-1)(r+3)\left(r^{2}+4\right)=0$. Hence the homogeneous solution is $y_{c}=c_{1} e^{t}+c_{2} e^{-3 t}+c_{3} \cos 2 t+c_{4} \sin 2 t$. None of the terms in $g(t)$ is a solution of the homogeneous problem. Therefore we can assume a form $Y(t)=A e^{-t}+B \cos t+C \sin t$. Substitution into the ODE results in the values $A=1 / 20, B=-2 / 5, C=-4 / 5$. Hence the general solution is $y(t)=c_{1} e^{t}+$ $c_{2} e^{-3 t}+c_{3} \cos 2 t+c_{4} \sin 2 t+e^{-t} / 20-(2 \cos t+4 \sin t) / 5$. Invoking the initial conditions, we find that $c_{1}=81 / 40, c_{2}=73 / 520, c_{3}=77 / 65, c_{4}=-49 / 130$.

14. From Problem 4, the homogeneous solution is $y_{c}=c_{1}+c_{2} e^{t}+c_{3} e^{-t}$. Consider the terms $g_{1}(t)=t e^{-t}$ and $g_{2}(t)=2 \cos t$. Note that since $r=-1$ is a simple root of the characteristic equation, we set $Y_{1}(t)=t(A t+B) e^{-t}$. The function $2 \cos t$ is not a solution of the homogeneous equation. We set $Y_{2}(t)=C \cos t+D \sin t$. Hence the particular solution has the form $Y(t)=t(A t+B) e^{-t}+C \cos t+D \sin t$.
15. The characteristic equation can be written as $\left(r^{2}-1\right)^{2}=0$. The roots are given as $r= \pm 1$, each with multiplicity two. Hence the solution of the homogeneous problem is $y_{c}=c_{1} e^{t}+c_{2} t e^{t}+c_{3} e^{-t}+c_{4} t e^{-t}$. Let $g_{1}(t)=e^{t}$ and $g_{2}(t)=\sin t$. The function e^{t} is a solution of the homogeneous problem. Since $r=1$ has multiplicity two, we set $Y_{1}(t)=A t^{2} e^{t}$. The function $\sin t$ is not a solution of the homogeneous equation. We can set $Y_{2}(t)=B \cos t+C \sin t$. Hence the particular solution has the form $Y(t)=A t^{2} e^{t}+B \cos t+C \sin t$.
16. The characteristic equation can be written as $r^{2}\left(r^{2}+4\right)=0$, and the roots are $r=0, \pm 2 i$. The root $r=0$ has multiplicity two, hence the homogeneous solution is $y_{c}=c_{1}+c_{2} t+c_{3} \cos 2 t+c_{4} \sin 2 t$. The functions $g_{1}(t)=\sin 2 t$ and $g_{2}(t)=4$ are solutions of the homogenous equation. The complex roots have multiplicity one, therefore we need to set $Y_{1}(t)=A t \cos 2 t+B t \sin 2 t$. Now $g_{2}(t)=4$ is associated with the double root $r=0$, so we set $Y_{2}(t)=C t^{2}$. Finally, $g_{3}(t)=t e^{t}$ (and its derivatives) is independent of the homogeneous solution. Therefore set $Y_{3}(t)=(D t+E) e^{t}$. Conclude that the particular solution has the form $Y(t)=$ $A t \cos 2 t+B t \sin 2 t+C t^{2}+(D t+E) e^{t}$.
18. The characteristic equation can be written as $r^{2}\left(r^{2}+2 r+2\right)=0$, with roots $r=0$, with multiplicity two, and $r=-1 \pm i$. This means that the homogeneous solution is $y_{c}=c_{1}+c_{2} t+c_{3} e^{-t} \cos t+c_{4} e^{-t} \sin t$. The function $g_{1}(t)=$ $3 e^{t}+2 t e^{-t}$, and all of its derivatives, is independent of the homogeneous solution. Therefore set $Y_{1}(t)=A e^{t}+(B t+C) e^{-t}$. Now $g_{2}(t)=e^{-t} \sin t$ is a solution of the homogeneous equation, associated with the complex roots. We need to set $Y_{2}(t)=t\left(D e^{-t} \cos t+E e^{-t} \sin t\right)$. It follows that the particular solution has the form $Y(t)=A e^{t}+(B t+C) e^{-t}+t\left(D e^{-t} \cos t+E e^{-t} \sin t\right)$.
19. Differentiating $y=u(t) v(t)$, successively, we have

$$
\begin{aligned}
& y^{\prime}=u^{\prime} v+u v^{\prime} \\
& y^{\prime \prime}=u^{\prime \prime} v+2 u^{\prime} v^{\prime}+u v^{\prime \prime} \\
& \vdots \\
& y^{(n)}=\sum_{j=0}^{n}\binom{n}{j} u^{(n-j)} v^{(j)}
\end{aligned}
$$

Setting $v(t)=e^{\alpha t}, v^{(j)}=\alpha^{j} e^{\alpha t}$. So for any $p=1,2, \ldots, n$,

$$
y^{(p)}=e^{\alpha t} \sum_{j=0}^{p}\binom{p}{j} \alpha^{j} u^{(p-j)} .
$$

It follows that

$$
\begin{equation*}
L\left[e^{\alpha t} u\right]=e^{\alpha t} \sum_{p=0}^{n}\left[a_{n-p} \sum_{j=0}^{p}\binom{p}{j} \alpha^{j} u^{(p-j)}\right] \tag{*}
\end{equation*}
$$

It is evident that the right hand side of Eq. $(*)$ is of the form

$$
e^{\alpha t}\left[k_{0} u^{(n)}+k_{1} u^{(n-1)}+\ldots+k_{n-1} u^{\prime}+k_{n} u\right]
$$

Hence the operator equation $L\left[e^{\alpha t} u\right]=e^{\alpha t}\left(b_{0} t^{m}+b_{1} t^{m-1}+\ldots+b_{m-1} t+b_{m}\right)$ can be written as

$$
k_{0} u^{(n)}+k_{1} u^{(n-1)}+\ldots+k_{n-1} u^{\prime}+k_{n} u=b_{0} t^{m}+b_{1} t^{m-1}+\ldots+b_{m-1} t+b_{m}
$$

The coefficients $k_{i}, i=0,1, \ldots, n$ can be determined by collecting the like terms in the double summation in Eq. $(*)$. For example, k_{0} is the coefficient of $u^{(n)}$. The only term that contains $u^{(n)}$ is when $p=n$ and $j=0$. Hence $k_{0}=a_{0}$. On the other hand, k_{n} is the coefficient of $u(t)$. The inner summation in $(*)$ contains terms with u, given by $\alpha^{p} u$ (when $j=p$), for each $p=0,1, \ldots, n$. Hence

$$
k_{n}=\sum_{p=0}^{n} a_{n-p} \alpha^{p}
$$

21.(a) Clearly, $e^{2 t}$ is a solution of $y^{\prime}-2 y=0$, and $t e^{-t}$ is a solution of the differential equation $y^{\prime \prime}+2 y^{\prime}+y=0$. The latter ODE has characteristic equation $(r+1)^{2}=0$. Hence $(D-2)\left[3 e^{2 t}\right]=3(D-2)\left[e^{2 t}\right]=0$ and $(D+1)^{2}\left[t e^{-t}\right]=0$. Furthermore, we have $(D-2)(D+1)^{2}\left[t e^{-t}\right]=(D-2)[0]=0$, and $(D-2)(D+$ $1)^{2}\left[3 e^{2 t}\right]=(D+1)^{2}(D-2)\left[3 e^{2 t}\right]=(D+1)^{2}[0]=0$.
(b) Based on part (a),

$$
(D-2)(D+1)^{2}\left[(D-2)^{3}(D+1) Y\right]=(D-2)(D+1)^{2}\left[3 e^{2 t}-t e^{-t}\right]=0
$$

since the operators are linear. The implied operations are associative and commutative. Hence $(D-2)^{4}(D+1)^{3} Y=0$. The operator equation corresponds to the solution of a linear homogeneous ODE with characteristic equation $(r-2)^{4}(r+1)^{3}=$ 0 . The roots are $r=2$, with multiplicity 4 and $r=-1$, with multiplicity 3 . It
follows that the given homogeneous solution is $Y(t)=c_{1} e^{2 t}+c_{2} t e^{2 t}+c_{3} t^{2} e^{2 t}+$ $c_{4} t^{3} e^{2 t}+c_{5} e^{-t}+c_{6} t e^{-t}+c_{7} t^{2} e^{-t}$, which is a linear combination of seven independent solutions.
22. (15) Observe that $(D-1)\left[e^{t}\right]=0$ and $\left(D^{2}+1\right)[\sin t]=0$. Hence the operator $H(D)=(D-1)\left(D^{2}+1\right)$ is an annihilator of $e^{t}+\sin t$. The operator corresponding to the left hand side of the given ODE is $\left(D^{2}-1\right)^{2}$. It follows that

$$
(D+1)^{2}(D-1)^{3}\left(D^{2}+1\right) Y=0
$$

The resulting ODE is homogeneous, with solution $Y(t)=c_{1} e^{-t}+c_{2} t e^{-t}+c_{3} e^{t}+$ $c_{4} t e^{t}+c_{5} t^{2} e^{t}+c_{6} \cos t+c_{7} \sin t$. After examining the homogeneous solution of Problem 15, and eliminating duplicate terms, we have $Y(t)=c_{5} t^{2} e^{t}+c_{6} \cos t+$ $c_{7} \sin t$.
22. (16) We find that $D[4]=0,(D-1)^{2}\left[t e^{t}\right]=0$, and $\left(D^{2}+4\right)[\sin 2 t]=0$. The operator $H(D)=D(D-1)^{2}\left(D^{2}+4\right)$ is an annihilator of $4+t e^{t}+\sin 2 t$. The operator corresponding to the left hand side of the ODE is $D^{2}\left(D^{2}+4\right)$. It follows that

$$
D^{3}(D-1)^{2}\left(D^{2}+4\right)^{2} Y=0
$$

The resulting ODE is homogeneous, with solution $Y(t)=c_{1}+c_{2} t+c_{3} t^{2}+c_{4} e^{t}+$ $c_{5} t e^{t}+c_{6} \cos 2 t+c_{7} \sin 2 t+c_{8} t \cos 2 t+c_{9} t \sin 2 t$. After examining the homogeneous solution of Problem 16, and eliminating duplicate terms, we have $Y(t)=$ $c_{3} t^{2}+c_{4} e^{t}+c_{5} t e^{t}+c_{8} t \cos 2 t+c_{9} t \sin 2 t$.
22. (18) Observe that $(D-1)\left[e^{t}\right]=0,(D+1)^{2}\left[t e^{-t}\right]=0$. The function $e^{-t} \sin t$ is a solution of a second order ODE with characteristic roots $r=-1 \pm i$. It follows that $\left(D^{2}+2 D+2\right)\left[e^{-t} \sin t\right]=0$. Therefore the operator

$$
H(D)=(D-1)(D+1)^{2}\left(D^{2}+2 D+2\right)
$$

is an annihilator of $3 e^{t}+2 t e^{-t}+e^{-t} \sin t$. The operator corresponding to the left hand side of the given ODE is $D^{2}\left(D^{2}+2 D+2\right)$. It follows that

$$
D^{2}(D-1)(D+1)^{2}\left(D^{2}+2 D+2\right)^{2} Y=0
$$

The resulting ODE is homogeneous, with solution $Y(t)=c_{1}+c_{2} t+c_{3} e^{t}+c_{4} e^{-t}+$ $c_{5} t e^{-t}+e^{-t}\left(c_{6} \cos t+c_{7} \sin t\right)+t e^{-t}\left(c_{8} \cos t+c_{9} \sin t\right)$. After examining the homogeneous solution of Problem 18, and eliminating duplicate terms, we have $Y(t)=$ $c_{3} e^{t}+c_{4} e^{-t}+c_{5} t e^{-t}+t e^{-t}\left(c_{8} \cos t+c_{9} \sin t\right)$.

