4.2

\qquad

1. The magnitude of $1+i$ is $R=\sqrt{2}$ and the polar angle is $\pi / 4$. Hence the polar form is given by $1+i=\sqrt{2} e^{i \pi / 4}$.
2. The magnitude of -3 is $R=3$ and the polar angle is π. Hence $-3=3 e^{i \pi}$.
3. The magnitude of $-i$ is $R=1$ and the polar angle is $3 \pi / 2$. Hence $-i=e^{3 \pi i / 2}$.
4. The magnitude of $\sqrt{3}-i$ is $R=2$ and the polar angle is $-\pi / 6=11 \pi / 6$. Hence the polar form is given by $\sqrt{3}-i=2 e^{11 \pi i / 6}$.
5. The magnitude of $-1-i$ is $R=\sqrt{2}$ and the polar angle is $5 \pi / 4$. Hence the polar form is given by $-1-i=\sqrt{2} e^{5 \pi i / 4}$.
6. Writing the complex number in polar form, $1=e^{2 m \pi i}$, where m may be any integer. Thus $1^{1 / 3}=e^{2 m \pi i / 3}$. Setting $m=0,1,2$ successively, we obtain the three roots as $1^{1 / 3}=1,1^{1 / 3}=e^{2 \pi i / 3}, 1^{1 / 3}=e^{4 \pi i / 3}$. Equivalently, the roots can also be written as $1, \cos (2 \pi / 3)+i \sin (2 \pi / 3)=(-1+i \sqrt{3}) / 2, \cos (4 \pi / 3)+i \sin (4 \pi / 3)=$ $(-1-i \sqrt{3}) / 2$.
7. Writing the complex number in polar form, $1=e^{2 m \pi i}$, where m may be any integer. Thus $1^{1 / 4}=e^{2 m \pi i / 4}$. Setting $m=0,1,2,3$ successively, we obtain the three roots as $1^{1 / 4}=1,1^{1 / 4}=e^{\pi i / 2}, 1^{1 / 4}=e^{\pi i}, 1^{1 / 4}=e^{3 \pi i / 2}$. Equivalently, the roots can also be written as $1, \cos (\pi / 2)+i \sin (\pi / 2)=i, \cos (\pi)+i \sin (\pi)=-1$, $\cos (3 \pi / 2)+i \sin (3 \pi / 2)=-i$.
8. In polar form, $2(\cos \pi / 3+i \sin \pi / 3)=2 e^{i(\pi / 3+2 m \pi)}$, in which m is any integer. Thus $[2(\cos \pi / 3+i \sin \pi / 3)]^{1 / 2}=2^{1 / 2} e^{i(\pi / 6+m \pi)}$. With $m=0$, one square root is given by $2^{1 / 2} e^{i \pi / 6}=(\sqrt{3}+i) / \sqrt{2}$. With $m=1$, the other root is given by $2^{1 / 2} e^{i 7 \pi / 6}=(-\sqrt{3}-i) / \sqrt{2}$.
9. The characteristic equation is $r^{3}-r^{2}-r+1=0$. The roots are $r=-1,1,1$. One root is repeated, hence the general solution is $y=c_{1} e^{-t}+c_{2} e^{t}+c_{3} t e^{t}$.
10. The characteristic equation is $r^{3}-2 r^{2}-r+2=0$, with roots $r=-1,1,2$. The roots are real and distinct, so the general solution is $y=c_{1} e^{-t}+c_{2} e^{t}+c_{3} e^{2 t}$.
11. The characteristic equation can be written as $r^{2}\left(r^{2}-4 r+4\right)=0$. The roots are $r=0,0,2,2$. There are two repeated roots, and hence the general solution is given by $y=c_{1}+c_{2} t+c_{3} e^{2 t}+c_{4} t e^{2 t}$.
12. The characteristic equation can be written as $\left(r^{2}-1\right)\left(r^{2}-4\right)=0$. The roots are given by $r= \pm 1, \pm 2$. The roots are real and distinct, hence the general solution is $y=c_{1} e^{-t}+c_{2} e^{t}+c_{3} e^{-2 t}+c_{4} e^{2 t}$.
13. The characteristic equation can be written as $\left(r^{2}-1\right)^{3}=0$. The roots are given by $r= \pm 1$, each with multiplicity three. Hence the general solution is $y=c_{1} e^{-t}+c_{2} t e^{-t}+c_{3} t^{2} e^{-t}+c_{4} e^{t}+c_{5} t e^{t}+c_{6} t^{2} e^{t}$.
14. The characteristic equation can be written as $r^{2}\left(r^{4}-1\right)=0$. The roots are given by $r=0,0, \pm 1, \pm i$. The general solution is $y=c_{1}+c_{2} t+c_{3} e^{-t}+c_{4} e^{t}+$ $c_{5} \cos t+c_{6} \sin t$.
15. The characteristic equation can be written as $r\left(r^{4}-3 r^{3}+3 r^{2}-3 r+2\right)=$ 0. Examining the coefficients, it follows that $r^{4}-3 r^{3}+3 r^{2}-3 r+2=(r-1)(r-$ $2)\left(r^{2}+1\right)$. Hence the roots are $r=0,1,2, \pm i$. The general solution of the ODE is given by $y=c_{1}+c_{2} e^{t}+c_{3} e^{2 t}+c_{4} \cos t+c_{5} \sin t$.
16. The characteristic equation can be written as $r\left(r^{3}-8\right)=0$, with roots $r=0$,
$2 e^{2 m \pi i / 3}, m=0,1,2$. That is, $r=0,2,-1 \pm i \sqrt{3}$. Hence the general solution is $y=c_{1}+c_{2} e^{2 t}+e^{-t}\left[c_{3} \cos \sqrt{3} t+c_{4} \sin \sqrt{3} t\right]$.
17. The characteristic equation can be written as $\left(r^{4}+4\right)^{2}=0$. The roots of the equation $r^{4}+4=0$ are $r=1 \pm i,-1 \pm i$. Each of these roots has multiplicity two. The general solution is $y=e^{t}\left[c_{1} \cos t+c_{2} \sin t\right]+t e^{t}\left[c_{3} \cos t+c_{4} \sin t\right]+$ $e^{-t}\left[c_{5} \cos t+c_{6} \sin t\right]+t e^{-t}\left[c_{7} \cos t+c_{8} \sin t\right]$.
18. The characteristic equation can be written as $\left(r^{2}+1\right)^{2}=0$. The roots are given by $r= \pm i$, each with multiplicity two. The general solution is $y=c_{1} \cos t+$ $c_{2} \sin t+t\left[c_{3} \cos t+c_{4} \sin t\right]$.
19. The characteristic equation is $r^{3}+5 r^{2}+6 r+2=0$. Examining the coefficients, we find that $r^{3}+5 r^{2}+6 r+2=(r+1)\left(r^{2}+4 r+2\right)$. Hence the roots are deduced as $r=-1,-2 \pm \sqrt{2}$. The general solution is $y=c_{1} e^{-t}+c_{2} e^{(-2+\sqrt{2}) t}+$ $c_{3} e^{(-2-\sqrt{2}) t}$.
20. The characteristic equation is $18 r^{3}+21 r^{2}+14 r+4=0$. By examining the first and last coefficients, we find that $18 r^{3}+21 r^{2}+14 r+4=(2 r+1)\left(9 r^{2}+6 r+\right.$ 4). Hence the roots are $r=-1 / 2,(-1 \pm \sqrt{3} i) / 3$. The general solution of the ODE is given by $y=c_{1} e^{-t / 2}+e^{-t / 3}\left[c_{2} \cos (t / \sqrt{3})+c_{3} \sin (t / \sqrt{3})\right]$.
21. The characteristic equation is $r^{4}-7 r^{3}+6 r^{2}+30 r-36=0$. By examining the first and last coefficients, we find that $r^{4}-7 r^{3}+6 r^{2}+30 r-36=(r-3)(r+$ $2)\left(r^{2}-6 r+6\right)$. The roots are $r=-2,3,3 \pm \sqrt{3}$. The general solution is $y=$ $c_{1} e^{-2 t}+c_{2} e^{3 t}+c_{3} e^{(3-\sqrt{3}) t}+c_{4} e^{(3+\sqrt{3}) t}$.
22. The characteristic equation is $r^{4}+6 r^{3}+17 r^{2}+22 r+14=0$. It can be shown that $r^{4}+6 r^{3}+17 r^{2}+22 r+14=\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+7\right)$. Hence the roots are $r=-1 \pm i,-2 \pm i \sqrt{3}$. The general solution of the euqation is $y=e^{-t}\left(c_{1} \cos t+\right.$ $\left.c_{2} \sin t\right)+e^{-2 t}\left(c_{3} \cos \sqrt{3} t+c_{4} \sin \sqrt{3} t\right)$.
23. The characteristic equation is $r^{3}-r^{2}+r-1=0$, with roots $r=1, \pm i$. Hence the general solution is $y(t)=c_{1} e^{t}+c_{2} \cos t+c_{3} \sin t$. Invoking the initial conditions, we obtain the system of equations $c_{1}+c_{2}=2, c_{1}+c_{3}=-1, c_{1}-c_{2}=$ -2 , with solution $c_{1}=0, c_{2}=2, c_{3}=-1$. Therefore the solution of the initial value problem is $y(t)=2 \cos t-\sin t$, which oscillates as $t \rightarrow \infty$.

24. The characteristic equation is $2 r^{4}-r^{3}-9 r^{2}+4 r+4=0$, with roots $r=$ $-1 / 2,1, \pm 2$. Hence the general solution is $y(t)=c_{1} e^{-t / 2}+c_{2} e^{t}+c_{3} e^{-2 t}+c_{4} e^{2 t}$. Applying the initial conditions, we obtain the system of equations $c_{1}+c_{2}+c_{3}+$ $c_{4}=-2,-c_{1} / 2+c_{2}-2 c_{3}+2 c_{4}=0, c_{1} / 4+c_{2}+4 c_{3}+4 c_{4}=-2,-c_{1} / 8+c_{2}-8 c_{3}+$ $8 c_{4}=0$, with solution $c_{1}=-16 / 15, c_{2}=-2 / 3, c_{3}=-1 / 6, c_{4}=-1 / 10$. Therefore the solution of the initial value problem is $y(t)=-(16 / 15) e^{-t / 2}-(2 / 3) e^{t}-$ $e^{-2 t} / 6-e^{2 t} / 10$. The solution decreases without bound.

25. The characteristic equation is $6 r^{3}+5 r^{2}+r=0$, with roots $r=0,-1 / 3,-1 / 2$. The general solution is $y(t)=c_{1}+c_{2} e^{-t / 3}+c_{3} e^{-t / 2}$. Invoking the initial conditions, we require that $c_{1}+c_{2}+c_{3}=-2,-c_{2} / 3-c_{3} / 2=2, c_{2} / 9+c_{3} / 4=0$. The solution is $c_{1}=8, c_{2}=-18, c_{3}=8$. Therefore the solution of the initial value problem is $y(t)=8-18 e^{-t / 3}+8 e^{-t / 2}$. It approaches 8 as $t \rightarrow \infty$.

26. The general solution is derived in Problem 28 as

$$
y(t)=e^{-t}\left[c_{1} \cos t+c_{2} \sin t\right]+e^{-2 t}\left[c_{3} \cos \sqrt{3} t+c_{4} \sin \sqrt{3} t\right]
$$

Invoking the initial conditions, we obtain the system of equations

$$
\begin{aligned}
c_{1}+c_{3} & =1 \\
-c_{1}+c_{2}-2 c_{3}+\sqrt{3} c_{4} & =-2 \\
-2 c_{2}+c_{3}-4 \sqrt{3} c_{4} & =0 \\
2 c_{1}+2 c_{2}+10 c_{3}+9 \sqrt{3} c_{4} & =3
\end{aligned}
$$

with solution $c_{1}=21 / 13, c_{2}=-38 / 13, c_{3}=-8 / 13, c_{4}=17 \sqrt{3} / 39$.

The solution is a rapidly decaying oscillation.
40.(a) Suppose that $c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}+\ldots+c_{n} e^{r_{n} t}=0$, and each of the r_{k} are real and different. Multiplying this equation by $e^{-r_{1} t}$, we obtain that $c_{1}+c_{2} e^{\left(r_{2}-r_{1}\right) t}+$ $\ldots+c_{n} e^{\left(r_{n}-r_{1}\right) t}=0$. Differentiation results in

$$
c_{2}\left(r_{2}-r_{1}\right) e^{\left(r_{2}-r_{1}\right) t}+\ldots+c_{n}\left(r_{n}-r_{1}\right) e^{\left(r_{n}-r_{1}\right) t}=0
$$

(b) Now multiplying the latter equation by $e^{-\left(r_{2}-r_{1}\right) t}$, and differentiating, we obtain

$$
c_{3}\left(r_{3}-r_{2}\right)\left(r_{3}-r_{1}\right) e^{\left(r_{3}-r_{2}\right) t}+\ldots+c_{n}\left(r_{n}-r_{2}\right)\left(r_{n}-r_{1}\right) e^{\left(r_{n}-r_{2}\right) t}=0
$$

(c) Following the above steps in a similar manner, it follows that

$$
c_{n}\left(r_{n}-r_{n-1}\right) \ldots\left(r_{n}-r_{1}\right) e^{\left(r_{n}-r_{n-1}\right) t}=0
$$

Since these equations hold for all t, and all the r_{k} are different, we have $c_{n}=0$. Hence $c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}+\ldots+c_{n-1} e^{r_{n-1} t}=0, \quad-\infty<t<\infty$.
(d) The same procedure can now be repeated, successively, to show that $c_{1}=c_{2}=$ $\ldots=c_{n}=0$.
41.(a) Recall the derivative formula

$$
\frac{d^{n}}{d x^{n}}(u v)=\binom{n}{0} v \frac{d^{n} u}{d x^{n}}+\binom{n}{1} \frac{d v}{d x} \frac{d^{n-1} u}{d x^{n-1}}+\ldots+\binom{n}{n} \frac{d^{n} v}{d x^{n}} u
$$

Let $u=\left(r-r_{1}\right)^{s}$ and $v=q(r)$. Note that

$$
\frac{d^{n}}{d r^{n}}\left[\left(r-r_{1}\right)^{s}\right]=s \cdot(s-1) \ldots(s-n+1)\left(r-r_{1}\right)^{s-n}
$$

and

$$
\frac{d^{s}}{d r^{s}}\left[\left(r-r_{1}\right)^{s}\right]=s!
$$

Therefore

$$
\left.\frac{d^{n}}{d r^{n}}\left[\left(r-r_{1}\right)^{s} q(r)\right]\right|_{r=r_{1}}=0
$$

only if $n<s$, since it is assumed that $q\left(r_{1}\right) \neq 0$.
(b) Differential operators commute, so that

$$
\frac{\partial}{\partial r}\left(\frac{d^{k}}{d t^{k}} e^{r t}\right)=\frac{d^{k}}{d t^{k}}\left(\frac{\partial e^{r t}}{\partial r}\right)=\frac{d^{k}}{d t^{k}}\left(t e^{r t}\right)
$$

Likewise,

$$
\frac{\partial^{j}}{\partial r^{j}}\left(\frac{d^{k}}{d t^{k}} e^{r t}\right)=\frac{d^{k}}{d t^{k}}\left(\frac{\partial^{j} e^{r t}}{\partial r^{j}}\right)=\frac{d^{k}}{d t^{k}}\left(t^{j} e^{r t}\right)
$$

It follows that

$$
\frac{\partial^{j}}{\partial r^{j}} L\left[e^{r t}\right]=L\left[\begin{array}{ll}
t^{j} & e^{r t}
\end{array}\right]
$$

(c) From Eq. (i), we have

$$
\frac{\partial^{j}}{\partial r^{j}}\left[e^{r t} \mathrm{Z}(r)\right]=L\left[t^{j} e^{r t}\right]
$$

Based on the product formula in part (a),

$$
\left.\frac{\partial^{j}}{\partial r^{j}}\left[e^{r t} \mathrm{Z}(r)\right]\right|_{r=r_{1}}=0
$$

