

4.2

1. The magnitude of 1+i is $R=\sqrt{2}$ and the polar angle is $\pi/4$. Hence the polar form is given by $1+i=\sqrt{2}\;e^{i\pi/4}$.

3. The magnitude of -3 is R = 3 and the polar angle is π . Hence $-3 = 3e^{i\pi}$.

4. The magnitude of -i is R = 1 and the polar angle is $3\pi/2$. Hence $-i = e^{3\pi i/2}$.

5. The magnitude of $\sqrt{3} - i$ is R = 2 and the polar angle is $-\pi/6 = 11\pi/6$. Hence the polar form is given by $\sqrt{3} - i = 2e^{11\pi i/6}$.

4.2

6. The magnitude of -1 - i is $R = \sqrt{2}$ and the polar angle is $5\pi/4$. Hence the polar form is given by $-1 - i = \sqrt{2} e^{5\pi i/4}$.

7. Writing the complex number in polar form, $1 = e^{2m\pi i}$, where *m* may be any integer. Thus $1^{1/3} = e^{2m\pi i/3}$. Setting m = 0, 1, 2 successively, we obtain the three roots as $1^{1/3} = 1$, $1^{1/3} = e^{2\pi i/3}$, $1^{1/3} = e^{4\pi i/3}$. Equivalently, the roots can also be written as 1, $\cos(2\pi/3) + i \sin(2\pi/3) = (-1 + i\sqrt{3})/2$, $\cos(4\pi/3) + i \sin(4\pi/3) = (-1 - i\sqrt{3})/2$.

9. Writing the complex number in polar form, $1 = e^{2m\pi i}$, where *m* may be any integer. Thus $1^{1/4} = e^{2m\pi i/4}$. Setting m = 0, 1, 2, 3 successively, we obtain the three roots as $1^{1/4} = 1$, $1^{1/4} = e^{\pi i/2}$, $1^{1/4} = e^{\pi i}$, $1^{1/4} = e^{3\pi i/2}$. Equivalently, the roots can also be written as 1, $\cos(\pi/2) + i \sin(\pi/2) = i$, $\cos(\pi) + i \sin(\pi) = -1$, $\cos(3\pi/2) + i \sin(3\pi/2) = -i$.

10. In polar form, $2(\cos \pi/3 + i \sin \pi/3) = 2e^{i(\pi/3+2m\pi)}$, in which *m* is any integer. Thus $[2(\cos \pi/3 + i \sin \pi/3)]^{1/2} = 2^{1/2}e^{i(\pi/6+m\pi)}$. With m = 0, one square root is given by $2^{1/2}e^{i\pi/6} = (\sqrt{3} + i)/\sqrt{2}$. With m = 1, the other root is given by $2^{1/2}e^{i7\pi/6} = (-\sqrt{3} - i)/\sqrt{2}$.

11. The characteristic equation is $r^3 - r^2 - r + 1 = 0$. The roots are r = -1, 1, 1. One root is repeated, hence the general solution is $y = c_1 e^{-t} + c_2 e^t + c_3 t e^t$.

13. The characteristic equation is $r^3 - 2r^2 - r + 2 = 0$, with roots r = -1, 1, 2. The roots are real and distinct, so the general solution is $y = c_1 e^{-t} + c_2 e^t + c_3 e^{2t}$.

14. The characteristic equation can be written as $r^2(r^2 - 4r + 4) = 0$. The roots are r = 0, 0, 2, 2. There are two repeated roots, and hence the general solution is given by $y = c_1 + c_2t + c_3e^{2t} + c_4te^{2t}$.

16. The characteristic equation can be written as $(r^2 - 1)(r^2 - 4) = 0$. The roots are given by $r = \pm 1, \pm 2$. The roots are real and distinct, hence the general solution is $y = c_1 e^{-t} + c_2 e^t + c_3 e^{-2t} + c_4 e^{2t}$.

17. The characteristic equation can be written as $(r^2 - 1)^3 = 0$. The roots are given by $r = \pm 1$, each with multiplicity three. Hence the general solution is $y = c_1 e^{-t} + c_2 t e^{-t} + c_3 t^2 e^{-t} + c_4 e^t + c_5 t e^t + c_6 t^2 e^t$.

18. The characteristic equation can be written as $r^2(r^4 - 1) = 0$. The roots are given by $r = 0, 0, \pm 1, \pm i$. The general solution is $y = c_1 + c_2t + c_3e^{-t} + c_4e^t + c_5\cos t + c_6\sin t$.

19. The characteristic equation can be written as $r(r^4 - 3r^3 + 3r^2 - 3r + 2) = 0$. Examining the coefficients, it follows that $r^4 - 3r^3 + 3r^2 - 3r + 2 = (r - 1)(r - 2)(r^2 + 1)$. Hence the roots are $r = 0, 1, 2, \pm i$. The general solution of the ODE is given by $y = c_1 + c_2e^t + c_3e^{2t} + c_4 \cos t + c_5 \sin t$.

20. The characteristic equation can be written as $r(r^3 - 8) = 0$, with roots r = 0,

 $2 e^{2m\pi i/3}$, m = 0, 1, 2. That is, $r = 0, 2, -1 \pm i\sqrt{3}$. Hence the general solution is $y = c_1 + c_2 e^{2t} + e^{-t} [c_3 \cos \sqrt{3} t + c_4 \sin \sqrt{3} t]$.

21. The characteristic equation can be written as $(r^4 + 4)^2 = 0$. The roots of the equation $r^4 + 4 = 0$ are $r = 1 \pm i$, $-1 \pm i$. Each of these roots has multiplicity two. The general solution is $y = e^t [c_1 \cos t + c_2 \sin t] + te^t [c_3 \cos t + c_4 \sin t] + e^{-t} [c_5 \cos t + c_6 \sin t] + te^{-t} [c_7 \cos t + c_8 \sin t]$.

22. The characteristic equation can be written as $(r^2 + 1)^2 = 0$. The roots are given by $r = \pm i$, each with multiplicity two. The general solution is $y = c_1 \cos t + c_2 \sin t + t [c_3 \cos t + c_4 \sin t]$.

24. The characteristic equation is $r^3 + 5r^2 + 6r + 2 = 0$. Examining the coefficients, we find that $r^3 + 5r^2 + 6r + 2 = (r+1)(r^2 + 4r + 2)$. Hence the roots are deduced as r = -1, $-2 \pm \sqrt{2}$. The general solution is $y = c_1 e^{-t} + c_2 e^{(-2+\sqrt{2})t} + c_3 e^{(-2-\sqrt{2})t}$.

25. The characteristic equation is $18r^3 + 21r^2 + 14r + 4 = 0$. By examining the first and last coefficients, we find that $18r^3 + 21r^2 + 14r + 4 = (2r+1)(9r^2 + 6r + 4)$. Hence the roots are r = -1/2, $(-1 \pm \sqrt{3}i)/3$. The general solution of the ODE is given by $y = c_1 e^{-t/2} + e^{-t/3} [c_2 \cos(t/\sqrt{3}) + c_3 \sin(t/\sqrt{3})]$.

26. The characteristic equation is $r^4 - 7r^3 + 6r^2 + 30r - 36 = 0$. By examining the first and last coefficients, we find that $r^4 - 7r^3 + 6r^2 + 30r - 36 = (r - 3)(r + 2)(r^2 - 6r + 6)$. The roots are $r = -2, 3, 3 \pm \sqrt{3}$. The general solution is $y = c_1 e^{-2t} + c_2 e^{3t} + c_3 e^{(3-\sqrt{3})t} + c_4 e^{(3+\sqrt{3})t}$.

28. The characteristic equation is $r^4 + 6r^3 + 17r^2 + 22r + 14 = 0$. It can be shown that $r^4 + 6r^3 + 17r^2 + 22r + 14 = (r^2 + 2r + 2)(r^2 + 4r + 7)$. Hence the roots are $r = -1 \pm i$, $-2 \pm i\sqrt{3}$. The general solution of the equation is $y = e^{-t}(c_1 \cos t + c_2 \sin t) + e^{-2t}(c_3 \cos \sqrt{3}t + c_4 \sin \sqrt{3}t)$.

32. The characteristic equation is $r^3 - r^2 + r - 1 = 0$, with roots $r = 1, \pm i$. Hence the general solution is $y(t) = c_1 e^t + c_2 \cos t + c_3 \sin t$. Invoking the initial conditions, we obtain the system of equations $c_1 + c_2 = 2, c_1 + c_3 = -1, c_1 - c_2 = -2$, with solution $c_1 = 0, c_2 = 2, c_3 = -1$. Therefore the solution of the initial value problem is $y(t) = 2 \cos t - \sin t$, which oscillates as $t \to \infty$.

10

12

33. The characteristic equation is $2r^4 - r^3 - 9r^2 + 4r + 4 = 0$, with roots r = -1/2, 1, ± 2 . Hence the general solution is $y(t) = c_1 e^{-t/2} + c_2 e^t + c_3 e^{-2t} + c_4 e^{2t}$. Applying the initial conditions, we obtain the system of equations $c_1 + c_2 + c_3 + c_4 = -2, -c_1/2 + c_2 - 2c_3 + 2c_4 = 0, c_1/4 + c_2 + 4c_3 + 4c_4 = -2, -c_1/8 + c_2 - 8c_3 + 8c_4 = 0$, with solution $c_1 = -16/15$, $c_2 = -2/3$, $c_3 = -1/6$, $c_4 = -1/10$. Therefore the solution of the initial value problem is $y(t) = -(16/15)e^{-t/2} - (2/3)e^t - e^{-2t}/6 - e^{2t}/10$. The solution decreases without bound.

6

0

- 1

-2

35. The characteristic equation is $6r^3 + 5r^2 + r = 0$, with roots r = 0, -1/3, -1/2. The general solution is $y(t) = c_1 + c_2e^{-t/3} + c_3e^{-t/2}$. Invoking the initial conditions, we require that $c_1 + c_2 + c_3 = -2, -c_2/3 - c_3/2 = 2, c_2/9 + c_3/4 = 0$. The solution is $c_1 = 8, c_2 = -18, c_3 = 8$. Therefore the solution of the initial value problem is $y(t) = 8 - 18e^{-t/3} + 8e^{-t/2}$. It approaches 8 as $t \to \infty$.

36. The general solution is derived in Problem 28 as

$$y(t) = e^{-t} \left[c_1 \cos t + c_2 \sin t \right] + e^{-2t} \left[c_3 \cos \sqrt{3}t + c_4 \sin \sqrt{3}t \right].$$

Invoking the initial conditions, we obtain the system of equations

$$c_1 + c_3 = 1$$

-c_1 + c_2 - 2c_3 + $\sqrt{3} c_4 = -2$
-2c_2 + c_3 - 4 $\sqrt{3} c_4 = 0$
2c_1 + 2c_2 + 10c_3 + 9 $\sqrt{3} c_4 = 3$

with solution $c_1 = 21/13$, $c_2 = -38/13$, $c_3 = -8/13$, $c_4 = 17\sqrt{3}/39$.

The solution is a rapidly decaying oscillation.

40.(a) Suppose that $c_1e^{r_1t} + c_2e^{r_2t} + \ldots + c_ne^{r_nt} = 0$, and each of the r_k are real and different. Multiplying this equation by e^{-r_1t} , we obtain that $c_1 + c_2e^{(r_2-r_1)t} + \ldots + c_ne^{(r_n-r_1)t} = 0$. Differentiation results in

$$c_2(r_2-r_1)e^{(r_2-r_1)t}+\ldots+c_n(r_n-r_1)e^{(r_n-r_1)t}=0.$$

(b) Now multiplying the latter equation by $e^{-(r_2-r_1)t}$, and differentiating, we obtain

$$c_3(r_3-r_2)(r_3-r_1)e^{(r_3-r_2)t}+\ldots+c_n(r_n-r_2)(r_n-r_1)e^{(r_n-r_2)t}=0.$$

(c) Following the above steps in a similar manner, it follows that

$$c_n(r_n - r_{n-1}) \dots (r_n - r_1)e^{(r_n - r_{n-1})t} = 0.$$

Since these equations hold for all t, and all the r_k are different, we have $c_n = 0$. Hence $c_1 e^{r_1 t} + c_2 e^{r_2 t} + \ldots + c_{n-1} e^{r_{n-1} t} = 0$, $-\infty < t < \infty$.

(d) The same procedure can now be repeated, successively, to show that $c_1 = c_2 = \ldots = c_n = 0$.

41.(a) Recall the derivative formula

$$\frac{d^n}{dx^n}(uv) = \binom{n}{0}v\frac{d^nu}{dx^n} + \binom{n}{1}\frac{dv}{dx}\frac{d^{n-1}u}{dx^{n-1}} + \ldots + \binom{n}{n}\frac{d^nv}{dx^n}u.$$

Let $u = (r - r_1)^s$ and v = q(r). Note that d^n

$$\frac{d^n}{dr^n} \left[(r - r_1)^s \right] = s \cdot (s - 1) \dots (s - n + 1)(r - r_1)^{s - n}$$

and

$$\frac{d^s}{dr^s}\left[(r-r_1)^s\right] = s ! .$$

Therefore

$$\frac{d^n}{dr^n} \left[(r-r_1)^s q(r) \right] \Big|_{r=r_1} = 0$$

only if n < s, since it is assumed that $q(r_1) \neq 0$.

(b) Differential operators commute, so that

$$\frac{\partial}{\partial r}(\frac{d^k}{dt^k}\,e^{rt}) = \frac{d^k}{dt^k}(\frac{\partial\,e^{rt}}{\partial r}) = \frac{d^k}{dt^k}(t\,e^{rt}).$$

Likewise,

$$\frac{\partial^{j}}{\partial r^{j}}(\frac{d^{k}}{dt^{k}} e^{rt}) = \frac{d^{k}}{dt^{k}}(\frac{\partial^{j} e^{rt}}{\partial r^{j}}) = \frac{d^{k}}{dt^{k}}(t^{j} e^{rt})$$

It follows that

$$\frac{\partial^{j}}{\partial r^{j}}L\left[e^{rt}\right] = L\left[t^{j} \ e^{rt}\right].$$

(c) From Eq. (i), we have

$$\frac{\partial^j}{\partial r^j} \left[e^{rt} \mathbf{Z}(r) \right] = L \left[t^j \ e^{rt} \right].$$

Based on the product formula in part (a),

$$\frac{\partial^j}{\partial r^j} \left[e^{rt} \mathbf{Z}(r) \right] \Big|_{r=r_1} = 0$$

 $\text{if } j < s \,. \ \text{Therefore } L\left[t^j \ e^{r_1 t}\right] = 0 \ \text{if } j < s \,.$