2. We have $\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta$. Subtracting the two identities, we obtain $\sin (\alpha+\beta)-\sin (\alpha-\beta)=2 \cos \alpha \sin \beta$. Setting $\alpha+\beta=7 t$ and $\alpha-$ $\beta=6 t$, we get that $\alpha=6.5 t$ and $\beta=0.5 t$. This implies that $\sin 7 t-\sin 6 t=$ $2 \sin (t / 2) \cos (13 t / 2)$.
3. Consider the trigonometric identities $\cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta$. Adding the two identities, we get $\cos (\alpha-\beta)+\cos (\alpha+\beta)=2 \cos \alpha \cos \beta$. Comparing the expressions, set $\alpha+\beta=2 \pi t$ and $\alpha-\beta=\pi t$. This means $\alpha=3 \pi t / 2$ and $\beta=\pi t / 2$. Upon substitution, we have $\cos (\pi t)+\cos (2 \pi t)=2 \cos (3 \pi t / 2) \cos (\pi t / 2)$.
4. Adding the two identities $\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta$, it follows that $\sin (\alpha-\beta)+\sin (\alpha+\beta)=2 \sin \alpha \cos \beta$. Setting $\alpha+\beta=4 t$ and $\alpha-\beta=3 t$, we have $\alpha=7 t / 2$ and $\beta=t / 2$. Hence $\sin 3 t+\sin 4 t=2 \sin (7 t / 2) \cos (t / 2)$.
5. Using MKS units, the spring constant is $k=5(9.8) / 0.1=490 \mathrm{~N} / \mathrm{m}$, and the damping coefficient is $\gamma=2 / 0.04=50 \mathrm{~N}-\mathrm{s} / \mathrm{m}$. The equation of motion is

$$
5 u^{\prime \prime}+50 u^{\prime}+490 u=10 \sin (t / 2) .
$$

The initial conditions are $u(0)=0 \mathrm{~m}$ and $u^{\prime}(0)=0.03 \mathrm{~m} / \mathrm{s}$.
8. (a) The homogeneous solution is $u_{c}(t)=A e^{-5 t} \cos \sqrt{73} t+B e^{-5 t} \sin \sqrt{73} t$. Based on the method of undetermined coefficients, the particular solution is

$$
U(t)=\frac{1}{153281}[-160 \cos (t / 2)+3128 \sin (t / 2)]
$$

Hence the general solution of the ODE is $u(t)=u_{c}(t)+U(t)$. Invoking the initial conditions, we find that

$$
A=160 / 153281 \text { and } B=383443 \sqrt{73} / 1118951300
$$

Hence the response is

$$
u(t)=\frac{1}{153281}\left[160 e^{-5 t} \cos \sqrt{73} t+\frac{383443 \sqrt{73}}{7300} e^{-5 t} \sin \sqrt{73} t\right]+U(t)
$$

(b) $u_{c}(t)$ is the transient part and $U(t)$ is the steady state part of the response.
(c)

(d) The amplitude of the forced response is given by $R=2 / \Delta$, in which

$$
\Delta=\sqrt{25\left(98-\omega^{2}\right)^{2}+2500 \omega^{2}}
$$

The maximum amplitude is attained when Δ is a minimum. Hence the amplitude is maximum at $\omega=4 \sqrt{3} \mathrm{rad} / \mathrm{s}$.
9. The spring constant is $k=12 \mathrm{lb} / \mathrm{ft}$ and hence the equation of motion is

$$
\frac{6}{32} u^{\prime \prime}+12 u=4 \cos 7 t
$$

that is, $u^{\prime \prime}+64 u=(64 / 3) \cos 7 t$. The initial conditions are $u(0)=0 \mathrm{ft}, u^{\prime}(0)=$ $0 \mathrm{ft} / \mathrm{s}$. The general solution is $u(t)=A \cos 8 t+B \sin 8 t+(64 / 45) \cos 7 t$. Invoking the initial conditions, we have $u(t)=-(64 / 45) \cos 8 t+(64 / 45) \cos 7 t=$ $(128 / 45) \sin (t / 2) \sin (15 t / 2)$.

12. The equation of motion is $2 u^{\prime \prime}+u^{\prime}+3 u=3 \cos 3 t-2 \sin 3 t$. Since the system is damped, the steady state response is equal to the particular solution. Using the method of undetermined coefficients, we obtain $u_{s s}(t)=(\sin 3 t-\cos 3 t) / 6$. Further, we find that $R=\sqrt{2} / 6$ and $\delta=\arctan (-1)=3 \pi / 4$. Hence we can write $u_{\text {ss }}(t)=(\sqrt{2} / 6) \cos (3 t-3 \pi / 4)$.
13. (a,b) Plug in $u(t)=R \cos (\omega t-\delta)$ into the equation $m u^{\prime \prime}+\gamma u^{\prime}+k u=F_{0} \cos \omega t$, then use trigonometric identities and compare the coefficients of $\cos \omega t$ and $\sin \omega t$. The result follows.
(c) The amplitude of the steady-state response is given by

$$
R=\frac{F_{0}}{\sqrt{m^{2}\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}}}
$$

Since F_{0} is constant, the amplitude is maximum when the denominator of R is minimum. Let $z=\omega^{2}$, and consider the function $f(z)=m^{2}\left(\omega_{0}^{2}-z\right)^{2}+\gamma^{2} z$. Note that $f(z)$ is a quadratic, with minimum at $z=\omega_{0}^{2}-\gamma^{2} / 2 m^{2}$. Hence the amplitude R attains a maximum at $\omega_{\max }^{2}=\omega_{0}^{2}-\gamma^{2} / 2 m^{2}$. Furthermore, since $\omega_{0}^{2}=k / m$,

$$
\omega_{\max }^{2}=\omega_{0}^{2}\left[1-\frac{\gamma^{2}}{2 k m}\right]
$$

Substituting $\omega^{2}=\omega_{\max }^{2}$ into the expression for the amplitude,
$R=\frac{F_{0}}{\sqrt{\gamma^{4} / 4 m^{2}+\gamma^{2}\left(\omega_{0}^{2}-\gamma^{2} / 2 m^{2}\right)}}=\frac{F_{0}}{\sqrt{\omega_{0}^{2} \gamma^{2}-\gamma^{4} / 4 m^{2}}}=\frac{F_{0}}{\gamma \omega_{0} \sqrt{1-\gamma^{2} / 4 m k}}$.
17.(a) The steady state part of the solution $U(t)=A \cos \omega t+B \sin \omega t$ may be found by substituting this expression into the differential equation and solving for A and B. We find that

$$
A=\frac{32\left(2-\omega^{2}\right)}{64-63 \omega^{2}+16 \omega^{4}}, \quad B=\frac{8 \omega}{64-63 \omega^{2}+16 \omega^{4}}
$$

(b) The amplitude is

$$
A=\frac{8}{\sqrt{64-63 \omega^{2}+16 \omega^{4}}} .
$$

(c)

(d) See Problem 13. The amplitude is maximum when the denominator of A is minimum. That is, when $\omega=\omega_{\max }=3 \sqrt{14} / 8 \approx 1.4031$. Hence $A=64 / \sqrt{127}$.
18. (a) The homogeneous solution is $u_{c}(t)=A \cos t+B \sin t$. Based on the method of undetermined coefficients, the particular solution is

$$
U(t)=\frac{3}{1-\omega^{2}} \cos \omega t
$$

Hence the general solution of the ODE is $u(t)=u_{c}(t)+U(t)$. Invoking the initial conditions, we find that $A=3 /\left(\omega^{2}-1\right)$ and $B=0$. Hence the response is

$$
u(t)=\frac{3}{1-\omega^{2}}[\cos \omega t-\cos t]
$$

(b)

Note that

$$
u(t)=\frac{6}{1-\omega^{2}} \sin \left[\frac{(1-\omega) t}{2}\right] \sin \left[\frac{(\omega+1) t}{2}\right]
$$

19.(a) The homogeneous solution is $u_{c}(t)=A \cos t+B \sin t$. Based on the method of undetermined coefficients, the particular solution is

$$
U(t)=\frac{3}{1-\omega^{2}} \cos \omega t
$$

Hence the general solution is $u(t)=u_{c}(t)+U(t)$. Invoking the initial conditions, we find that $A=\left(\omega^{2}+2\right) /\left(\omega^{2}-1\right)$ and $B=1$. Hence the response is

$$
u(t)=\frac{1}{1-\omega^{2}}\left[3 \cos \omega t-\left(\omega^{2}+2\right) \cos t\right]+\sin t
$$

(b)

Note that

$$
u(t)=\frac{6}{1-\omega^{2}} \sin \left[\frac{(1-\omega) t}{2}\right] \sin \left[\frac{(\omega+1) t}{2}\right]+\cos t+\sin t
$$

