

3.3

2. $e^{2-3 i}=e^{2} e^{-3 i}=e^{2}(\cos 3-i \sin 3)$.
3. $e^{i \pi}=\cos \pi+i \sin \pi=-1$.
4. $e^{2-(\pi / 2) i}=e^{2}(\cos (\pi / 2)-i \sin (\pi / 2))=-e^{2} i$.
5. $\pi^{-1+2 i}=e^{(-1+2 i) \ln \pi}=e^{-\ln \pi} e^{2 \ln \pi i}=(\cos (2 \ln \pi)+i \sin (2 \ln \pi)) / \pi$.
6. The characteristic equation is $r^{2}-2 r+6=0$, with roots $r=1 \pm i \sqrt{5}$. Hence the general solution is $y=c_{1} e^{t} \cos \sqrt{5} t+c_{2} e^{t} \sin \sqrt{5} t$.
7. The characteristic equation is $r^{2}+2 r-8=0$, with roots $r=-4,2$. The roots are real and different, hence the general solution is $y=c_{1} e^{-4 t}+c_{2} e^{2 t}$.
8. The characteristic equation is $r^{2}+2 r+2=0$, with roots $r=-1 \pm i$. Hence the general solution is $y=c_{1} e^{-t} \cos t+c_{2} e^{-t} \sin t$.
9. The characteristic equation is $4 r^{2}+9=0$, with roots $r= \pm(3 / 2) i$. Hence the general solution is $y=c_{1} \cos (3 t / 2)+c_{2} \sin (3 t / 2)$.
10. The characteristic equation is $r^{2}+2 r+1.25=0$, with roots $r=-1 \pm i / 2$. Hence the general solution is $y=c_{1} e^{-t} \cos (t / 2)+c_{2} e^{-t} \sin (t / 2)$.
11. The characteristic equation is $r^{2}+r+1.25=0$, with roots $r=-(1 / 2) \pm i$. Hence the general solution is $y=c_{1} e^{-t / 2} \cos t+c_{2} e^{-t / 2} \sin t$.
12. The characteristic equation is $r^{2}+4 r+6.25=0$, with roots $r=-2 \pm(3 / 2) i$. Hence the general solution is $y=c_{1} e^{-2 t} \cos (3 t / 2)+c_{2} e^{-2 t} \sin (3 t / 2)$.
13. The characteristic equation is $r^{2}+4=0$, with roots $r= \pm 2 i$. Hence the general solution is $y=c_{1} \cos 2 t+c_{2} \sin 2 t$. Now $y^{\prime}=-2 c_{1} \sin 2 t+2 c_{2} \cos 2 t$. Based on the first condition, $y(0)=0$, we require that $c_{1}=0$. In order to satisfy the condition $y^{\prime}(0)=1$, we find that $2 c_{2}=1$. The constants are $c_{1}=0$ and $c_{2}=1 / 2$. Hence the specific solution is $y(t)=\sin 2 t / 2$. The solution is periodic.

14. The characteristic equation is $r^{2}-2 r+5=0$, with roots $r=1 \pm 2 i$. Hence the general solution is $y=c_{1} e^{t} \cos 2 t+c_{2} e^{t} \sin 2 t$. Based on the initial condition $y(\pi / 2)=0$, we require that $c_{1}=0$. It follows that $y=c_{2} e^{t} \sin 2 t$, and so the first derivative is $y^{\prime}=c_{2} e^{t} \sin 2 t+2 c_{2} e^{t} \cos 2 t$. In order to satisfy the condition $y^{\prime}(\pi / 2)=2$, we find that $-2 e^{\pi / 2} c_{2}=2$. Hence we have $c_{2}=-e^{-\pi / 2}$. Therefore the specific solution is $y(t)=-e^{t-\pi / 2} \sin 2 t$. The solution oscillates with an exponentially growing amplitude.

15. The characteristic equation is $r^{2}+1=0$, with roots $r= \pm i$. Hence the general solution is $y=c_{1} \cos t+c_{2} \sin t$. Its derivative is $y^{\prime}=-c_{1} \sin t+c_{2} \cos t$. Based on the first condition, $y(\pi / 3)=2$, we require that $c_{1}+\sqrt{3} c_{2}=4$. In order to satisfy the condition $y^{\prime}(\pi / 3)=-4$, we find that $-\sqrt{3} c_{1}+c_{2}=-8$. Solving these for the constants, $c_{1}=1+2 \sqrt{3}$ and $c_{2}=\sqrt{3}-2$. Hence the specific solution is a steady oscillation, given by $y(t)=(1+2 \sqrt{3}) \cos t+(\sqrt{3}-2) \sin t$.

16. From Problem 15, the general solution is $y=c_{1} e^{-t / 2} \cos t+c_{2} e^{-t / 2} \sin t$. Invoking the first initial condition, $y(0)=3$, which implies that $c_{1}=3$. Substituting, it follows that $y=3 e^{-t / 2} \cos t+c_{2} e^{-t / 2} \sin t$, and so the first derivative is

$$
y^{\prime}=-\frac{3}{2} e^{-t / 2} \cos t-3 e^{-t / 2} \sin t+c_{2} e^{-t / 2} \cos t-\frac{c_{2}}{2} e^{-t / 2} \sin t
$$

Invoking the initial condition, $y^{\prime}(0)=1$, we find that $-3 / 2+c_{2}=1$, and so $c_{2}=$ $5 / 2$. Hence the specific solution is $y(t)=3 e^{-t / 2} \cos t+(5 / 2) e^{-t / 2} \sin t$. It oscillates with an exponentially decreasing amplitude.

24. (a) The characteristic equation is $5 r^{2}+2 r+7=0$, with roots $r=-(1 \pm i \sqrt{34}) / 5$. The solution is $u=c_{1} e^{-t / 5} \cos \sqrt{34} t / 5+c_{2} e^{-t / 5} \sin \sqrt{34} t / 5$. Invoking the given initial conditions, we obtain the equations for the coefficients : $c_{1}=2,-2+\sqrt{34} c_{2}=$ 5. That is, $c_{1}=2, c_{2}=7 / \sqrt{34}$. Hence the specific solution is

$$
u(t)=2 e^{-t / 5} \cos \frac{\sqrt{34}}{5} t+\frac{7}{\sqrt{34}} e^{-t / 5} \sin \frac{\sqrt{34}}{5} t
$$

(b) Based on the graph of $u(t), T$ is in the interval $14<t<16$. A numerical solution on that interval yields $T \approx 14.5115$.
26.(a) The characteristic equation is $r^{2}+2 a r+\left(a^{2}+1\right)=0$, with roots $r=-a \pm$ i. Hence the general solution is $y(t)=c_{1} e^{-a t} \cos t+c_{2} e^{-a t} \sin t$. Based on the initial conditions, we find that $c_{1}=1$ and $c_{2}=a$. Therefore the specific solution is given by $y(t)=e^{-a t} \cos t+a e^{-a t} \sin t=\sqrt{1+a^{2}} e^{-a t} \cos (t-\phi)$, in which $\phi=$ $\arctan (a)$.
(b) For estimation, note that $|y(t)| \leq \sqrt{1+a^{2}} e^{-a t}$. Now consider the inequality $\sqrt{1+a^{2}} e^{-a t} \leq 1 / 10$. The inequality holds for $t \geq(1 / a) \ln \left(10 \sqrt{1+a^{2}}\right)$. Therefore $T \leq(1 / a) \ln \left(10 \sqrt{1+a^{2}}\right)$. Setting $a=1$, the numerical value is $T \approx 1.8763$.
(c) Similarly, $T_{1 / 4} \approx 7.4284, T_{1 / 2} \approx 4.3003, T_{2} \approx 1.5116$.
(d)

Note that the estimates T_{a} approach the graph of $(1 / a) \ln \left(10 \sqrt{1+a^{2}}\right)$ as a gets large.
27. Direct calculation gives the result. On the other hand, it was shown in Problem 3.2.37 that $W(f g, f h)=f^{2} W(g, h)$. Hence $W\left(e^{\lambda t} \cos \mu t, e^{\lambda t} \sin \mu t\right)=$ $e^{2 \lambda t} W(\cos \mu t, \sin \mu t)=e^{2 \lambda t}\left[\cos \mu t(\sin \mu t)^{\prime}-(\cos \mu t)^{\prime} \sin \mu t\right]=\mu e^{2 \lambda t}$.
28.(a) Clearly, y_{1} and y_{2} are solutions. Also, $W(\cos t, \sin t)=\cos ^{2} t+\sin ^{2} t=1$.
(b) $y^{\prime}=i e^{i t}, y^{\prime \prime}=i^{2} e^{i t}=-e^{i t}$. Evidently, y is a solution and so $y=c_{1} y_{1}+c_{2} y_{2}$.
(c) Setting $t=0,1=c_{1} \cos 0+c_{2} \sin 0$, and $c_{1}=1$.
(d) Differentiating, $i e^{i t}=c_{2} \cos t$. Setting $t=0, i=c_{2} \cos 0$ and hence $c_{2}=i$. Therefore $e^{i t}=\cos t+i \sin t$.
29. Euler's formula is $e^{i t}=\cos t+i \sin t$. It follows that $e^{-i t}=\cos t-i \sin t$. Adding these equation, $e^{i t}+e^{-i t}=2 \cos t$. Subtracting the two equations results in $e^{i t}-e^{-i t}=2 i \sin t$.
30. Let $r_{1}=\lambda_{1}+i \mu_{1}$, and $r_{2}=\lambda_{2}+i \mu_{2}$. Then

$$
\begin{aligned}
e^{\left(r_{1}+r_{2}\right) t} & =e^{\left(\lambda_{1}+\lambda_{2}\right) t+i\left(\mu_{1}+\mu_{2}\right) t}=e^{\left(\lambda_{1}+\lambda_{2}\right) t}\left[\cos \left(\mu_{1}+\mu_{2}\right) t+i \sin \left(\mu_{1}+\mu_{2}\right) t\right]= \\
& =e^{\left(\lambda_{1}+\lambda_{2}\right) t}\left[\left(\cos \mu_{1} t+i \sin \mu_{1} t\right)\left(\cos \mu_{2} t+i \sin \mu_{2} t\right)\right]= \\
& =e^{\lambda_{1} t}\left(\cos \mu_{1} t+i \sin \mu_{1} t\right) \cdot e^{\lambda_{2} t}\left(\cos \mu_{1} t+i \sin \mu_{1} t\right)=e^{r_{1} t} e^{r_{2} t}
\end{aligned}
$$

Hence $e^{\left(r_{1}+r_{2}\right) t}=e^{r_{1} t} e^{r_{2} t}$.
32. Clearly, $u^{\prime}=\lambda e^{\lambda t} \cos \mu t-\mu e^{\lambda t} \sin \mu t=e^{\lambda t}(\lambda \cos \mu t-\mu \sin \mu t)$ and then $u^{\prime \prime}=$ $\lambda e^{\lambda t}(\lambda \cos \mu t-\mu \sin \mu t)+e^{\lambda t}\left(-\lambda \mu \sin \mu t-\mu^{2} \cos \mu t\right)$. Plugging these into the differential equation, dividing by $e^{\lambda t} \neq 0$ and arranging the sine and cosine terms we obtain that the identity to prove is

$$
\left(a\left(\lambda^{2}-\mu^{2}\right)+b \lambda+c\right) \cos \mu t+(-2 \lambda \mu a-b \mu) \sin \mu t=0
$$

We know that $\lambda \pm i \mu$ solves the characteristic equation $a r^{2}+b r+c=0$, so $a(\lambda-$ $i \mu)^{2}+b(\lambda-i \mu)+c=a\left(\lambda^{2}-\mu^{2}\right)+b \lambda+c+i(-2 \lambda \mu a-\mu b)=0$. If this complex number is zero, then both the real and imaginary parts of it are zero, but those are the coefficients of $\cos \mu t$ and $\sin \mu t$ in the above identity, which proves that $a u^{\prime \prime}+b u^{\prime}+c u=0$. The solution for v is analogous.
35. The equation transforms into $y^{\prime \prime}+y=0$. The characteristic roots are $r= \pm i$. The solution is $y=c_{1} \cos (x)+c_{2} \sin (x)=c_{1} \cos (\ln t)+c_{2} \sin (\ln t)$.
37. The equation transforms into $y^{\prime \prime}+2 y^{\prime}+1.25 y=0$. The characteristic roots are $r=-1 \pm i / 2$. The solution is

$$
y=c_{1} e^{-x} \cos (x / 2)+c_{2} e^{-x} \sin (x / 2)=c_{1} \frac{\cos \left(\frac{1}{2} \ln t\right)}{t}+c_{2} \frac{\sin \left(\frac{1}{2} \ln t\right)}{t}
$$

38. The equation transforms into $y^{\prime \prime}-5 y^{\prime}-6 y=0$. The characteristic roots are $r=-1,6$. The solution is $y=c_{1} e^{-x}+c_{2} e^{6 x}=c_{1} e^{-\ln t}+c_{2} e^{6 \ln t}=c_{1} / t+c_{2} t^{6}$.
39. The equation transforms into $y^{\prime \prime}-5 y^{\prime}+6 y=0$. The characteristic roots are $r=2,3$. The solution is $y=c_{1} e^{2 x}+c_{2} e^{3 x}=c_{1} e^{2 \ln t}+c_{2} e^{3 \ln t}=c_{1} t^{2}+c_{2} t^{3}$.
40. The equation transforms into $y^{\prime \prime}+2 y^{\prime}-3 y=0$. The characteristic roots are $r=1,-3$. The solution is $y=c_{1} e^{x}+c_{2} e^{-3 x}=c_{1} e^{\ln t}+c_{2} e^{-3 \ln t}=c_{1} t+c_{2} / t^{3}$.
41. The equation transforms into $y^{\prime \prime}+6 y^{\prime}+10 y=0$. The characteristic roots are $r=-3 \pm i$. The solution is

$$
y=c_{1} e^{-3 x} \cos (x)+c_{2} e^{-3 x} \sin (x)=c_{1} \frac{1}{t^{3}} \cos (\ln t)+c_{2} \frac{1}{t^{3}} \sin (\ln t)
$$

43.(a) By the chain rule, $y^{\prime}(x)=(d y / d x) x^{\prime}$. In general, $d z / d t=(d z / d x)(d x / d t)$. Setting $z=(d y / d t)$, we have

$$
\frac{d^{2} y}{d t^{2}}=\frac{d z}{d x} \frac{d x}{d t}=\frac{d}{d x}\left[\frac{d y}{d x} \frac{d x}{d t}\right] \frac{d x}{d t}=\left[\frac{d^{2} y}{d x^{2}} \frac{d x}{d t}\right] \frac{d x}{d t}+\frac{d y}{d x} \frac{d}{d x}\left[\frac{d x}{d t}\right] \frac{d x}{d t} .
$$

However,

$$
\frac{d}{d x}\left[\frac{d x}{d t}\right] \frac{d x}{d t}=\left[\frac{d^{2} x}{d t^{2}}\right] \frac{d t}{d x} \cdot \frac{d x}{d t}=\frac{d^{2} x}{d t^{2}}
$$

Hence

$$
\frac{d^{2} y}{d t^{2}}=\frac{d^{2} y}{d x^{2}}\left[\frac{d x}{d t}\right]^{2}+\frac{d y}{d x} \frac{d^{2} x}{d t^{2}}
$$

(b) Substituting the results in part (a) into the general differential equation, $y^{\prime \prime}+$ $p(t) y^{\prime}+q(t) y=0$, we find that

$$
\frac{d^{2} y}{d x^{2}}\left[\frac{d x}{d t}\right]^{2}+\frac{d y}{d x} \frac{d^{2} x}{d t^{2}}+p(t) \frac{d y}{d x} \frac{d x}{d t}+q(t) y=0
$$

Collecting the terms,

$$
\left[\frac{d x}{d t}\right]^{2} \frac{d^{2} y}{d x^{2}}+\left[\frac{d^{2} x}{d t^{2}}+p(t) \frac{d x}{d t}\right] \frac{d y}{d x}+q(t) y=0
$$

(c) Assuming $(d x / d t)^{2}=k q(t)$, and $q(t)>0$, we find that $d x / d t=\sqrt{k q(t)}$, which can be integrated. That is, $x=u(t)=\int \sqrt{k q(t)} d t=\int \sqrt{q(t)} d t$, since $k=1$.
(d) Let $k=1$. It follows that $d^{2} x / d t^{2}+p(t) d x / d t=d u / d t+p(t) u(t)=q^{\prime} / 2 \sqrt{q}+$ $p \sqrt{q}$. Hence

$$
\left[\frac{d^{2} x}{d t^{2}}+p(t) \frac{d x}{d t}\right] /\left[\frac{d x}{d t}\right]^{2}=\frac{q^{\prime}(t)+2 p(t) q(t)}{2[q(t)]^{3 / 2}}
$$

As long as $d x / d t \neq 0$, the differential equation can be expressed as

$$
\frac{d^{2} y}{d x^{2}}+\left[\frac{q^{\prime}(t)+2 p(t) q(t)}{2[q(t)]^{3 / 2}}\right] \frac{d y}{d x}+y=0
$$

For the case $q(t)<0$, write $q(t)=-[-q(t)]$, and set $(d x / d t)^{2}=-q(t)$.
45. $p(t)=3 t$ and $q(t)=t^{2}$. We have $x=\int t d t=t^{2} / 2$. Furthermore,

$$
\frac{q^{\prime}(t)+2 p(t) q(t)}{2[q(t)]^{3 / 2}}=\frac{1+3 t^{2}}{t^{2}}
$$

The ratio is not constant, and therefore the equation cannot be transformed.
46. $p(t)=t-1 / t$ and $q(t)=t^{2}$. We have $x=\int t d t=t^{2} / 2$. Furthermore,

$$
\frac{q^{\prime}(t)+2 p(t) q(t)}{2[q(t)]^{3 / 2}}=1
$$

The ratio is constant, and therefore the equation can be transformed. From Problem 43 , the transformed equation is

$$
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+y=0
$$

Based on the methods in this section, the characteristic equation is $r^{2}+r+1=0$, with roots $r=(-1 \pm i \sqrt{3}) / 2$. The general solution is $y(x)=c_{1} e^{-x / 2} \cos \sqrt{3} x / 2+$ $c_{2} e^{-x / 2} \sin \sqrt{3} x / 2$. Since $x=t^{2} / 2$, the solution in the original variable t is

$$
y(t)=e^{-t^{2} / 4}\left[c_{1} \cos \left(\sqrt{3} t^{2} / 4\right)+c_{2} \sin \left(\sqrt{3} t^{2} / 4\right)\right] .
$$

