3.3

2. €273 = 273" = ¢2(cos 3 — i sin 3).

3. e =cosm+isinT=—1.
4. 27200 = ¢2(cos(m/2) — i sin(1/2)) = —€2i.
6. 7T—1+2i — 6(—1—&-21’) Inm _ e—ln 7r€2 Inmi _ (COS (2 In 7T) + (2 In 77))/71'

8. The characteristic equation is 72 — 2r +6 = 0, with roots » =1 + iv/5 . Hence
the general solution is y = cief cos V5t 4+ coetsin VBt

9. The characteristic equation is 72 4+ 2r — 8 = 0, with roots » = —4,2. The roots
are real and different, hence the general solution is y = cie™* + ¢y P2t

10. The characteristic equation is 7% + 2r +2 = 0, with roots 7 = —1 £ 4. Hence
the general solution is y = cie "t cos t + co e tsin t.
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12. The characteristic equation is 472 +9 = 0, with roots 7 = 4(3/2)i. Hence
the general solution is y = ¢1 cos(3t/2) + ¢g sin(3t/2).

13. The characteristic equation is 72 + 2r + 1.25 = 0, with roots r = —1 4 i/2.
Hence the general solution is y = cief cos(t/2) + co e sin(t/2).

15. The characteristic equation is 72 + 7+ 1.25 = 0, with roots r = —(1/2) £ 4.
Hence the general solution is y = cie~ /2 cos t + coe /?sin t.

16. The characteristic equation is % + 4r + 6.25 = 0, with roots r = —2 + (3/2) 1.
Hence the general solution is y = c¢je =2 cos(3t/2) + co e 2! sin(3t/2).

17. The characteristic equation is 72 +4 = 0, with roots r = +2i. Hence the
general solution is y = ¢j cos 2t + ¢ sin 2t. Now y’ = —2¢y sin 2t + 2¢5 cos 2t .
Based on the first condition, y(0) = 0, we require that ¢; = 0. In order to satisfy
the condition y’(0) =1, we find that 2co =1. The constants are ¢; =0 and
¢a = 1/2. Hence the specific solution is y(¢) = sin 2¢ /2. The solution is periodic.

0.6 A

0.4 4
»
. A A
o T T T T 1
2 4 6 10
b 7
-0.2 1
—0.44

~0.6 -

19. The characteristic equation is r? —2r +5 = 0, with roots r = 1+ 2i. Hence
the general solution is y = cie! cos 2t + cp €' sin 2¢. Based on the initial condition
y(m/2) =0, we require that ¢; =0. It follows that y = coe’sin 2¢, and so the
first derivative is y’ = ¢y el sin 2t + 2c9 ef cos 2¢. In order to satisfy the condition
y'(n/2) =2, we find that —2e™/2cy =2. Hence we have ¢y = —e~™/2. There-
fore the specific solution is y(t) = —e'~™/2 sin 2¢. The solution oscillates with an
exponentially growing amplitude.

60 7
50+

40 o

20 1
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20. The characteristic equation is 72 4+ 1 = 0, with roots 7 = 4. Hence the gen-
eral solution is y = ¢j cos ¢t + ¢ sin t. Its derivative is y’ = —cysin t + ¢o cos t.
Based on the first condition, y(7/3) = 2, we require that ¢; + 3¢y =4. In or-
der to satisfy the condition y'(7/3) = —4, we find that —v/3¢; + c3 = —8. Solving
these for the constants, ¢c; = 1 + 2v/3 and Ccy = /3 — 2. Hence the specific solution
is a steady oscillation, given by y(t) = (1 +2v/3)cos t + (v/3 — 2)sin t.

21. From Problem 15, the general solution is y = cie~ /2 cos t + co e */?sin t. In-

voking the first initial condition, y(0) = 3, which implies that ¢; = 3. Substituting,
it follows that y = 3e~*/2cos t + co e */?sin ¢, and so the first derivative is

/ 2

3
y' = —Se?cost— 3¢ ?sint +coe % cos t — %e*t/ sin t.
Invoking the initial condition, y’(0) = 1, we find that —3/2 4+ c; =1, and so ¢z =
5/2. Hence the specific solution is y(t) = 3e~/2cos t + (5/2) e"*/%sin t. Tt oscil-
lates with an exponentially decreasing amplitude.

24.(a) The characteristic equation is 572 + 2r 4+ 7 = 0, with roots r = —(1 & iv/34)/5.
The solution is u = cie~t/5 cos v/34t/5 + coe~t/®sin /34t /5. Invoking the given
initial conditions, we obtain the equations for the coefficients: ¢; = 2, —2 + /34 ¢y =
5. That is, ¢; = 2, co = 7/v/34 . Hence the specific solution is

V34 T s V34
—€ Sl ——

u(t) = 275 cos —t+ t.
(t) z n z
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(b) Based on the graph of w(t), T is in the interval 14 <t < 16. A numerical
solution on that interval yields T ~ 14.5115 .

26.(a) The characteristic equation is r? + 2ar + (a® + 1) = 0, with roots r = —a +
i. Hence the general solution is y(t) = cie™% cos t + cae " sin t. Based on the
initial conditions, we find that ¢; =1 and ¢y = a. Therefore the specific solution
is given by y(t) = e “cos t + ae *sin t = V1 + a? e cos (t — ¢), in which ¢ =
arctan(a).

(b) For estimation, note that |y(t)| < v1+ a? e”*. Now consider the inequality
V1+a? e < 1/10. The inequality holds for ¢ > (1/a)In(10v/1 + a2 ). Therefore
T < (1/a)In(10v1+ a?). Setting a = 1, the numerical value is T ~ 1.8763.

(c) Similarly, Ty /4 ~ 7.4284, Ty )5 ~ 4.3003, Ty ~ 1.5116.

(d)

T T
0.5 1 1.5 2 2.5 3
a

Note that the estimates T, approach the graph of (1/a)In(10v1+ a?) as a gets
large.

27. Direct calculation gives the result. On the other hand, it was shown in
Problem 3.2.37 that W (fg,fh) = f>W(g,h). Hence W (e  cos ut,e* sin ut) =
e2 MW (cos pt ,sin put) = €M [cos pt(sin ut)’ — (cos ut) sin ut] = pe?M.

28.(a) Clearly, y; and y» are solutions. Also, W (cos t,sin t) = cos?t +sin®t = 1.
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(b) y' =ieit, y” =i2el = —¢'. Evidently, y is a solution and so y = ¢1y1 + ca¥a.
(c) Setting t =0, 1 =¢ycos 0+ ¢ sin 0, and ¢; = 1.

(d) Differentiating, i e = ¢y cos t. Setting t =0, i = c cos 0 and hence ¢y = i.
Therefore e = cos t + i sin ¢.

29. Euler’s formula is e* = cos t + i sin t. It follows that e~* = cost —i sin t.
Adding these equation, e + e~% = 2 cos t. Subtracting the two equations results
in e —e ™ =2isint.

30. Let ry = A1 + i1, and ro = A9 + iz . Then

e(rtr2)t — g(atAa)ttipatiua)t — g(ArtA2)t [cos(p1 + p2)t + @ sin(pg + p2)t] =
= P22 [(cos gt + isin pyt)(cos pat + isin pgt)] =

rit _rot

Alt( e

= eMP(cos pit + isin pit) - 2t (cos pit + isin pit) = e

Hence e(rtm2)t — grit grat,

32. Clearly, u' = \e cos ut — pe sin ut = eM (X cos ut — psin ut) and then u”’ =
e M (X cos put — psin put) + eM(—Ausin ut — p? cos pt). Plugging these into the dif-
ferential equation, dividing by e* # 0 and arranging the sine and cosine terms we
obtain that the identity to prove is

(a(A? — p?) 4+ bA + ¢) cos put + (—2Apa — by) sin put = 0.

We know that \ % iy solves the characteristic equation ar? + br + ¢ = 0, so a(\ —
i)? + b\ —ip) + ¢ = a(A\? — p?) + bA + ¢+ i(—2Apa — pb) = 0. If this complex
number is zero, then both the real and imaginary parts of it are zero, but those
are the coefficients of cosput and sin pt in the above identity, which proves that
au' 4+ bu’ 4+ cu = 0. The solution for v is analogous.

35. The equation transforms into 3" +y = 0. The characteristic roots are r = =+i.
The solution is y = ¢1 cos(z) + ¢ sin(x) = ¢ cos(Int) + ¢o sin(lnt).

37. The equation transforms into y” + 2y’ + 1.25y = 0. The characteristic roots
are r = —1 +4/2. The solution is
cos(1Int) sin(3 Int)

y =cie Fcos(x/2) + cae” T sin(x/2) = 1 " + ¢ "

38. The equation transforms into y” — 5y’ — 6y = 0. The characteristic roots are
r = —1, 6. The solution is y = c1e™® + 257 = c1e™ "t 4 c2e®mt = ¢ /t + cotS.

39. The equation transforms into y” — 5y’ + 6y = 0. The characteristic roots are
r =2, 3. The solution is y = c1€%® + c2e3® = 121"t 4 231t = 112 + cot3.

41. The equation transforms into y” + 2y’ — 3y = 0. The characteristic roots are
r =1, —3. The solution is y = c1e” + c2e™3% = 1™ + coe ™31 = ¢t + o /3.
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42. The equation transforms into y” + 6y’ + 10y = 0. The characteristic roots are
r = —3 £ 4. The solution is

3 3

1 1
y =cre P cos(z) + cae” > sin(x) = C1ig cos(Int) + c233 sin(Int).

43.(a) By the chain rule, y'(z) = (dy/dz)x’. In general, dz/dt = (dz/dx)(dx/dt).
Setting z = (dy/dt), we have

fy_dede A [dyde)do_[dyde)de dy d ] d

dt?  dedt  dx |dedt| dt |da?dt| dt ' dodr |dt| dt
However,
o ] de_[Ea]dt do_ oy
de | dt | dt dt? | dz dt ~ di?
Hence

dy _ dy [da)® dy dx
dt2  da? | dt dz de?’

(b) Substituting the results in part (a) into the general differential equation, y” +
p(t)y’ + q(t)y = 0, we find that

d?y [dx 2 dy d*x dy dx
a2 th] t i az TP g Ty =0
Collecting the terms,
dz]? d?y d’z dx | dy
[dt] pe) |:dt2 p(t)dt] %JFQ(t)y*O-

(c) Assuming (dz/dt)? = kq(t) , and q(t) > 0, we find that dz/dt = \/k q(t) , which
can be integrated. That is, x = u(t) = [ \/kq(t) dt = [ \/q(t) dt, since k = 1.

(d) Let k =1. It follows that d*z/dt* + p(t)dz/dt = du/dt + p(t)u(t) = ¢'/2\/q +
p+/q - Hence

d*x dz dz]? o q'(t) 4 2p(t)q(t)
][] =

As long as dx/dt # 0, the differential equation can be expressed as

d?y | |d'() +2p(t)a(t) | dy Y =0
da 2[q)* ] de |
For the case q(t) < 0, write q(t) = — [—q(t)], and set (dz/dt)? = —q(t).

45. p(t) = 3t and q(t) = t*. We have x = [tdt = ¢?/2. Furthermore,

q'(t) +2p(t)q(t) _ 1+3¢°
2[q(t))** 2

The ratio is not constant, and therefore the equation cannot be transformed.
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46. p(t) =t — 1/t and q(t) = t*. We have = = [tdt = t?/2. Furthermore,

¢'(t) + 2(t)q(t) _
2 [q(1)*

The ratio is constant, and therefore the equation can be transformed. From Problem
43, the transformed equation is

Py | dy

@—&-%—&-yzo.

Based on the methods in this section, the characteristic equation is 72 +7+1 =0,
with roots r = (—1 = 1/3)/2. The general solution is y(x) = c;e™%/% cos V3 2/2 +
co e~ ®/?sin \/32/2. Since x = t2/2, the solution in the original variable ¢ is

y(t) = et/ [cl cos (V3 t2/4) + ¢y sin (\/§t2/4)} .
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