CHAPTER

 3
Second Order Linear Equations

3.1

1. Let $y=e^{r t}$, so that $y^{\prime}=r e^{r t}$ and $y^{\prime \prime}=r^{2} e^{r t}$. Direct substitution into the differential equation yields $\left(r^{2}+2 r-3\right) e^{r t}=0$. Canceling the exponential, the characteristic equation is $r^{2}+2 r-3=0$. The roots of the equation are $r=-3,1$. Hence the general solution is $y=c_{1} e^{t}+c_{2} e^{-3 t}$.
2. Let $y=e^{r t}$. Substitution of the assumed solution results in the characteristic equation $r^{2}+3 r+2=0$. The roots of the equation are $r=-2,-1$. Hence the general solution is $y=c_{1} e^{-t}+c_{2} e^{-2 t}$.
3. Substitution of the assumed solution $y=e^{r t}$ results in the characteristic equation $2 r^{2}-3 r+1=0$. The roots of the equation are $r=1 / 2,1$. Hence the general solution is $y=c_{1} e^{t / 2}+c_{2} e^{t}$.
4. The characteristic equation is $4 r^{2}-9=0$, with roots $r= \pm 3 / 2$. Therefore the general solution is $y=c_{1} e^{-3 t / 2}+c_{2} e^{3 t / 2}$.
5. The characteristic equation is $r^{2}-2 r-2=0$, with roots $r=1 \pm \sqrt{3}$. Hence the general solution is $y=c_{1} e^{(1-\sqrt{3}) t}+c_{2} e^{(1+\sqrt{3}) t}$.
6. Substitution of the assumed solution $y=e^{r t}$ results in the characteristic equation $r^{2}+r-2=0$. The roots of the equation are $r=-2,1$. Hence the general solution is $y=c_{1} e^{-2 t}+c_{2} e^{t}$. Its derivative is $y^{\prime}=-2 c_{1} e^{-2 t}+c_{2} e^{t}$. Based on the
first condition, $y(0)=1$, we require that $c_{1}+c_{2}=1$. In order to satisfy $y^{\prime}(0)=1$, we find that $-2 c_{1}+c_{2}=1$. Solving for the constants, $c_{1}=0$ and $c_{2}=1$. Hence the specific solution is $y(t)=e^{t}$. It clearly increases without bound as $t \rightarrow \infty$.

7. Substitution of the assumed solution $y=e^{r t}$ results in the characteristic equation $6 r^{2}-5 r+1=0$. The roots of the equation are $r=1 / 3,1 / 2$. Hence the general solution is $y=c_{1} e^{t / 3}+c_{2} e^{t / 2}$. Its derivative is $y^{\prime}=c_{1} e^{t / 3} / 3+c_{2} e^{t / 2} / 2$. Based on the first condition, $y(0)=1$, we require that $c_{1}+c_{2}=4$. In order to satisfy the condition $y^{\prime}(0)=1$, we find that $c_{1} / 3+c_{2} / 2=0$. Solving for the constants, $c_{1}=12$ and $c_{2}=-8$. Hence the specific solution is $y(t)=12 e^{t / 3}-8 e^{t / 2}$. It clearly decreases without bound as $t \rightarrow \infty$.

8. The characteristic equation is $r^{2}+3 r=0$, with roots $r=-3,0$. Therefore the general solution is $y=c_{1}+c_{2} e^{-3 t}$, with derivative $y^{\prime}=-3 c_{2} e^{-3 t}$. In order to satisfy the initial conditions, we find that $c_{1}+c_{2}=-2$, and $-3 c_{2}=3$. Hence the specific solution is $y(t)=-1-e^{-3 t}$. This converges to -1 as $t \rightarrow \infty$.

9. The characteristic equation is $r^{2}+5 r+3=0$, with roots $r=(-5 \pm \sqrt{13}) / 2$. The general solution is $y=c_{1} e^{(-5-\sqrt{13}) t / 2}+c_{2} e^{(-5+\sqrt{13}) t / 2}$, with derivative

$$
y^{\prime}=\frac{-5-\sqrt{13}}{2} c_{1} e^{(-5-\sqrt{13}) t / 2}+\frac{-5+\sqrt{13}}{2} c_{2} e^{(-5+\sqrt{13}) t / 2}
$$

In order to satisfy the initial conditions, we require that

$$
c_{1}+c_{2}=1 \quad \text { and } \quad \frac{-5-\sqrt{13}}{2} c_{1}+\frac{-5+\sqrt{13}}{2} c_{2}=0 .
$$

Solving for the coefficients, $c_{1}=(1-5 / \sqrt{13}) / 2$ and $c_{2}=(1+5 / \sqrt{13}) / 2$. The solution clearly converges to 0 as $t \rightarrow \infty$.

14. The characteristic equation is $2 r^{2}+r-4=0$, with roots $r=(-1 \pm \sqrt{33}) / 4$. The general solution is $y=c_{1} e^{(-1-\sqrt{33}) t / 4}+c_{2} e^{(-1+\sqrt{33}) t / 4}$, with derivative

$$
y^{\prime}=\frac{-1-\sqrt{33}}{4} c_{1} e^{(-1-\sqrt{33}) t / 4}+\frac{-1+\sqrt{33}}{4} c_{2} e^{(-1+\sqrt{33}) t / 4}
$$

In order to satisfy the initial conditions, we require that

$$
c_{1}+c_{2}=0 \quad \text { and } \quad \frac{-1-\sqrt{33}}{4} c_{1}+\frac{-1+\sqrt{33}}{4} c_{2}=1 .
$$

Solving for the coefficients, $c_{1}=-2 / \sqrt{33}$ and $c_{2}=2 / \sqrt{33}$. The specific solution is

$$
y(t)=-2\left[e^{(-1-\sqrt{33}) t / 4}-e^{(-1+\sqrt{33}) t / 4}\right] / \sqrt{33}
$$

It clearly increases without bound as $t \rightarrow \infty$.

16. The characteristic equation is $4 r^{2}-1=0$, with roots $r= \pm 1 / 2$. Therefore the general solution is $y=c_{1} e^{-t / 2}+c_{2} e^{t / 2}$. Since the initial conditions are specified at $t=-2$, is more convenient to write $y=d_{1} e^{-(t+2) / 2}+d_{2} e^{(t+2) / 2}$. The derivative is given by $y^{\prime}=-\left[d_{1} e^{-(t+2) / 2}\right] / 2+\left[d_{2} e^{(t+2) / 2}\right] / 2$. In order to satisfy the initial conditions, we find that $d_{1}+d_{2}=1$, and $-d_{1} / 2+d_{2} / 2=-1$. Solving for the coefficients, $d_{1}=3 / 2$, and $d_{2}=-1 / 2$. The specific solution is

$$
y(t)=\frac{3}{2} e^{-(t+2) / 2}-\frac{1}{2} e^{(t+2) / 2}=\frac{3}{2 e} e^{-t / 2}-\frac{e}{2} e^{t / 2} .
$$

It clearly decreases without bound as $t \rightarrow \infty$.
-
18. An algebraic equation with roots -2 and $-1 / 2$ is $2 r^{2}+5 r+2=0$. This is the characteristic equation for the differential equation $2 y^{\prime \prime}+5 y^{\prime}+2 y=0$.
20. The characteristic equation is $2 r^{2}-3 r+1=0$, with roots $r=1 / 2,1$. Therefore the general solution is $y=c_{1} e^{t / 2}+c_{2} e^{t}$, with derivative $y^{\prime}=c_{1} e^{t / 2} / 2+c_{2} e^{t}$. In order to satisfy the initial conditions, we require $c_{1}+c_{2}=2$ and $c_{1} / 2+c_{2}=1 / 2$. Solving for the coefficients, $c_{1}=3$, and $c_{2}=-1$. The specific solution is $y(t)=$ $3 e^{t / 2}-e^{t}$. To find the stationary point, set $y^{\prime}=3 e^{t / 2} / 2-e^{t}=0$. There is a unique solution, with $t_{1}=\ln (9 / 4)$. The maximum value is then $y\left(t_{1}\right)=9 / 4$. To find the x-intercept, solve the equation $3 e^{t / 2}-e^{t}=0$. The solution is readily found to be $t_{2}=\ln 9 \approx 2.1972$.
22. The characteristic equation is $4 r^{2}-1=0$, with roots $r= \pm 1 / 2$. Hence the general solution is $y=c_{1} e^{-t / 2}+c_{2} e^{t / 2}$ and $y^{\prime}=-c_{1} e^{-t / 2} / 2+c_{2} e^{t / 2} / 2$. Invoking the initial conditions, we require that $c_{1}+c_{2}=2$ and $-c_{1}+c_{2}=2 \beta$. The specific solution is $y(t)=(1-\beta) e^{-t / 2}+(1+\beta) e^{t / 2}$. Based on the form of the solution, it is evident that as $t \rightarrow \infty, y(t) \rightarrow 0$ as long as $\beta=-1$.
23. The characteristic equation is $r^{2}-(2 \alpha-1) r+\alpha(\alpha-1)=0$. Examining the coefficients, the roots are $r=\alpha, \alpha-1$. Hence the general solution of the differential equation is $y(t)=c_{1} e^{\alpha t}+c_{2} e^{(\alpha-1) t}$. Assuming $\alpha \in \mathbb{R}$, all solutions will tend to zero as long as $\alpha<0$. On the other hand, all solutions will become unbounded as long as $\alpha-1>0$, that is, $\alpha>1$.
26.(a) The characteristic roots are $r=-3,-2$. The solution of the initial value problem is $y(t)=(6+\beta) e^{-2 t}-(4+\beta) e^{-3 t}$.
(b) The maximum point has coordinates $t_{0}=\ln [(3(4+\beta)) /(2(6+\beta))], y_{0}=4(6+$ $\beta)^{3} /\left(27(4+\beta)^{2}\right)$.
(c) $y_{0}=4(6+\beta)^{3} /\left(27(4+\beta)^{2}\right) \geq 4$, as long as $\beta \geq 6+6 \sqrt{3}$.
(d) $\lim _{\beta \rightarrow \infty} t_{0}=\ln (3 / 2), \lim _{\beta \rightarrow \infty} y_{0}=\infty$.
27.(a) Assuming that y is a constant, the differential equation reduces to $c y=d$. Hence the only equilibrium solution is $y=d / c$.
(b) Setting $y=Y+d / c$, substitution into the differential equation results in the equation $a Y^{\prime \prime}+b Y^{\prime}+c(Y+d / c)=d$. The equation satisfied by Y is $a Y^{\prime \prime}+$ $b Y^{\prime}+c Y=0$.

