1. Rewriting the equation as

- Int 2t
L -
and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
0<t<d.

2. Rewriting the equation as

/
~0
Y i —a?

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
0<t<4

3. By Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
/2 <t <3m/2.

4. Rewriting the equation as
2t 3t
EEL
and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
—00 <t < —2.

y +

5. Rewriting the equation as
2t 3t

-’ Ty
and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
—2<t<2

y +

6. Rewriting the equation as
, I cott
T
and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
1<t <m.
7. Using the fact that

t—vy 3t — 10y
= :> = —
/ 2t + 5y Iy (2t + 5y)?’

we see that the hypothesis of Theorem 2.4.2 are satisfied as long as 2t + 5y # 0.
8. Using the fact that

Y
(1—t2 —y2)1/2’

f:(l_t2_y2)1/2:>fy:_
we see that the hypothesis of Theorem 2.4.2 are satisfied as long as t? + y? < 1.
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9. Using the fact that

Inty|
1 —t2 492

1=+ — 2y In |ty

[ = = fy= y(1— 12 1+ 42)2 ’

we see that the hypothesis of Theorem 2.4.2 are satisfied as long as y,t # 0 and 1—t2+y? # 0.
10. Using the fact that

f _ (t2 + y2)3/2 — fy _ 3y(t2 + y2>1/2,
we see that the hypothesis of Theorem 2.4.2 are satisfied for all ¢t € R.
11. Using the fact that

1+ ¢ 14+ t2)(3 -2y
D R (B TGRS
3y —y 3y —y?)
we see that the hypothesis of Theorem 2.4.2 are satisfied as long as y # 0, 3.
12. Using the fact that

S

cot t)y 1
(cot £) S S
1+y (1+y)

we see that the hypothesis of Theorem 2.4.2 are satisfied as long as y # —1,t # nn for
n=0,1,2...

13. The equation is separable, ydy = —4tdt. Integrating both sides, we conclude that
y?/2 = —2t* + y2/2 for yo # 0. The solution is defined for y3 — 4t* > 0.

14. The equation is separable and can be written as dy/y? = 2tdt. Integrating both sides,
we arrive at the solution y = yo/(1 — yot?). For yo > 0, solutions exist as long as t* < 1/y.
For yo < 0, solutions exist for all t.

f=

15. The equation is separable and can be written as dy/y®> = —dt. Integrating both sides,
we arrive at the solution y = yo/(1/2ty2 + 1). Solutions exist as long as 2y2t + 1 > 0.

16. The equation is separable and can be written as ydy = t*dt/(1 + t3). Integrating both
sides, we arrive at the solution y = +(2In |1+ t3| + y3)"/2. The sign of the solution depends
on the sign of the initial data yy. Solutions exist as long as %111 |1+ 3| + y2 > 0; that is, as
long as y2 > —21In|1 + ¢*|. We can rewrite this inequality as [1 + ¢*| > ¢34/, In order for
the solution to exist, we need ¢ > —1 (since the term ¢?/(1 + 3) has a singularity at t = —1.
Therefore, we can conclude that our solution will exist for [e=3%/2 — 1]'/3 < t < 0.

17.
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0, then y = 0. If yp < 0, then y — —o0.

23

, then y — 0.

If yo > 0, then y — 0. If yo < 0, then y —

If yo > 0, then y — 3. If yo
19.

18.

If yo > 9, then y — oo. If yp <9

20.



If yo < y. = —0.019, then y — —oo. Otherwise, y is asymptotic to v/t — 1.

21.
(a)

23.

We know that the family of solutions given by equation (19) are solutions of this initial-
value problem. We want to determine if one of these passes through the point (1,1).
That is, we want to find o > 0 such that if y = [2(¢ — #0)]*/?, then (t,y) = (1,1). That
is, we need to find ¢y > 0 such that 1 = %(1 — to). But, the solution of this equation is
to=—1/2.

From the analysis in part (a), we find a solution passing through (2, 1) by setting to = 1/2.

Since we need yy = i[%@ — to)]?’/Q, we must have |y,| < [%]3/2-

First, it is clear that y;(2) = —1 = y2(2). Further,

, —t+[(t =277 —t+ (P +4(1—1)?
yl = —1 = 2 = 2

and t o —t4 (12— t2)2
I 7
Yo = 5 9 .
The function ¥, is a solution for ¢ > 2. The function ¥, is a solution for all ¢.

Theorem 2.4.2 requires that f and 0f/0y be continuous in a rectangle about the point
(to,y0) = (2,—1). Since f is not continuous if ¢ < 2 and y < —1, the hypothesis of
Theorem 2.4.2 are not satisfied.

If y = ct + ¢, then

, —t 4+ [(t+20)Y2  —t 4 (12 + det + 42)V?
2 2

Therefore, y satisfies the equation for t > —2c.

54



(a) ¢(t) = e = ¢ = 2e?. Therefore, ¢’ — 2¢ = 0. Since (cp) = c¢’, we see that
(cp)' — 2cp = 0. Therefore, c¢ is also a solution.

(b) ¢(t) = 1/t = ¢ = —1/t*. Therefore, ¢ + ¢* = 0. If y = ¢/t, then y = —c/t%
Therefore, 3 +y*> = —c/t*> + ¢?/t> = 0 if and only if ¢* — ¢ = 0; that is, if c = 0 or ¢ = 1.

24. If y = ¢ satisfies ¢’ + p(t)p = 0, then y = co satisfies ' + p(t)y = c¢’ + cp(t)p =
(& + p(t)) = 0.
25. Let y = y1 + yo, then

Y +pt)y =y +yy + pt) (Y1 + v2) = y1 + p(t)y1 + v + p(t)y2 = 0.
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