
(d) From part (c), we see that y/x = (1− cos θ)/(θ− sin θ). If x = 1 and y = 2, the solution
of the equation is θ ≈ 1.401. Substituting that value of θ into either of the equations in
part (c), we conclude that k ≈ 2.193.

Section 2.4

1. Rewriting the equation as

y′ +
ln t

t− 3
y =

2t

t− 3

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
0 < t < 3.

2. Rewriting the equation as

y′ +
1

t(t− 4)
y = 0

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
0 < t < 4.

3. By Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
π/2 < t < 3π/2.

4. Rewriting the equation as

y′ +
2t

4− t2
y =

3t2

4− t2

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
−∞ < t < −2.

5. Rewriting the equation as

y′ +
2t

4− t2
y =

3t2

4− t2

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
−2 < t < 2.

6. Rewriting the equation as

y′ +
1

lnt
y =

cot t

lnt

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
1 < t < π.

7. Using the fact that

f =
t− y

2t + 5y
=⇒ fy =

3t− 10y

(2t + 5y)2
,

we see that the hypothesis of Theorem 2.4.2 are satisfied as long as 2t + 5y 6= 0.

8. Using the fact that

f = (1− t2 − y2)1/2 =⇒ fy = − y

(1− t2 − y2)1/2
,

we see that the hypothesis of Theorem 2.4.2 are satisfied as long as t2 + y2 < 1.
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9. Using the fact that

f =
ln|ty|

1− t2 + y2
=⇒ fy =

1− t2 + y2 − 2y2 ln |ty|
y(1− t2 + y2)2

,

we see that the hypothesis of Theorem 2.4.2 are satisfied as long as y, t 6= 0 and 1−t2+y2 6= 0.

10. Using the fact that

f = (t2 + y2)3/2 =⇒ fy = 3y(t2 + y2)1/2,

we see that the hypothesis of Theorem 2.4.2 are satisfied for all t ∈ R.

11. Using the fact that

f =
1 + t2

3y − y2
=⇒ fy = −(1 + t2)(3− 2y)

(3y − y2)2
,

we see that the hypothesis of Theorem 2.4.2 are satisfied as long as y 6= 0, 3.

12. Using the fact that

f =
(cot t)y

1 + y
=⇒ fy =

1

(1 + y)2
,

we see that the hypothesis of Theorem 2.4.2 are satisfied as long as y 6= −1, t 6= nπ for
n = 0, 1, 2 . . ..

13. The equation is separable, ydy = −4tdt. Integrating both sides, we conclude that
y2/2 = −2t2 + y2

0/2 for y0 6= 0. The solution is defined for y2
0 − 4t2 ≥ 0.

14. The equation is separable and can be written as dy/y2 = 2tdt. Integrating both sides,
we arrive at the solution y = y0/(1− y0t

2). For y0 > 0, solutions exist as long as t2 < 1/y0.
For y0 ≤ 0, solutions exist for all t.

15. The equation is separable and can be written as dy/y3 = −dt. Integrating both sides,
we arrive at the solution y = y0/(

√
2ty2

0 + 1). Solutions exist as long as 2y2
0t + 1 > 0.

16. The equation is separable and can be written as ydy = t2dt/(1 + t3). Integrating both
sides, we arrive at the solution y = ±(2

3
ln |1 + t3|+ y2

0)
1/2. The sign of the solution depends

on the sign of the initial data y0. Solutions exist as long as 2
3
ln |1 + t3|+ y2

0 ≥ 0; that is, as

long as y2
0 ≥ −2

3
ln |1 + t3|. We can rewrite this inequality as |1 + t3| ≥ e−3y2

0/2. In order for
the solution to exist, we need t > −1 (since the term t2/(1 + t3) has a singularity at t = −1.
Therefore, we can conclude that our solution will exist for [e−3y2

0/2 − 1]1/3 < t < ∞.

17.
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–4

–2

0

2

4

y(t)

–2 –1 1 2
t

If y0 > 0, then y → 3. If y0 = 0, then y = 0. If y0 < 0, then y → −∞.

18.

–4

–2

2

4

6

8

10

y(t)

–2 –1 1 2
t

If y0 ≥ 0, then y → 0. If y0 < 0, then y → −∞.

19.

–5

0

5

10

15

y(t)

–2 –1 1 2
t

If y0 > 9, then y →∞. If y0 < 9, then y → 0.

20.

53



–4

–2

0

2

4

y(t)

–2 2 4 6 8 10
t

If y0 < yc ≈ −0.019, then y → −∞. Otherwise, y is asymptotic to
√

t− 1.

21.

(a) We know that the family of solutions given by equation (19) are solutions of this initial-
value problem. We want to determine if one of these passes through the point (1, 1).
That is, we want to find t0 > 0 such that if y = [2

3
(t− t0)]

3/2, then (t, y) = (1, 1). That
is, we need to find t0 > 0 such that 1 = 2

3
(1 − t0). But, the solution of this equation is

t0 = −1/2.

(b) From the analysis in part (a), we find a solution passing through (2, 1) by setting t0 = 1/2.

(c) Since we need y0 = ±[2
3
(2− t0)]

3/2, we must have |y0| ≤ [4
3
]3/2.

22.

(a) First, it is clear that y1(2) = −1 = y2(2). Further,

y′1 = −1 =
−t + [(t− 2)2]1/2

2
=
−t + (t2 + 4(1− t))1/2

2

and

y′2 = − t

2
=
−t + (t2 − t2)1/2

2
.

The function y1 is a solution for t ≥ 2. The function y2 is a solution for all t.

(b) Theorem 2.4.2 requires that f and ∂f/∂y be continuous in a rectangle about the point
(t0, y0) = (2,−1). Since f is not continuous if t < 2 and y < −1, the hypothesis of
Theorem 2.4.2 are not satisfied.

(c) If y = ct + c2, then

y′ = c =
−t + [(t + 2c)2]1/2

2
=
−t + (t2 + 4ct + 4c2)1/2

2
.

Therefore, y satisfies the equation for t ≥ −2c.

23.
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(a) φ(t) = e2t =⇒ φ′ = 2e2t. Therefore, φ′ − 2φ = 0. Since (cφ)′ = cφ′, we see that
(cφ)′ − 2cφ = 0. Therefore, cφ is also a solution.

(b) φ(t) = 1/t =⇒ φ′ = −1/t2. Therefore, φ′ + φ2 = 0. If y = c/t, then y′ = −c/t2.
Therefore, y′ + y2 = −c/t2 + c2/t2 = 0 if and only if c2− c = 0; that is, if c = 0 or c = 1.

24. If y = φ satisfies φ′ + p(t)φ = 0, then y = cφ satisfies y′ + p(t)y = cφ′ + cp(t)φ =
c(φ′ + p(t)φ) = 0.

25. Let y = y1 + y2, then

y′ + p(t)y = y′1 + y′2 + p(t)(y1 + y2) = y′1 + p(t)y1 + y′2 + p(t)y2 = 0.

26.

(a)

y =
1

µ(t)

[∫ t

t0

µ(s)g(s) ds + c

]
=

1

µ(t)

∫ t

t0

µ(s)g(s) ds +
c

µ(t)
.

Therefore, y1 = 1/µ(t) and y2 = 1
µ(t)

∫ t

t0
µ(s)g(s) ds.

(b) For y1 = 1/µ(t) = e−
R

p(t) dt, we have

y′1 + p(t)y1 = −p(t)e−
R

p(t) dt + p(t)e−
R

p(t) dt = 0.

(c) For

y2 =
1

µ(t)

∫ t

t0

µ(s)g(s) ds = e−
R

p(t) dt

∫ t

t0

e
R

p(s) dsg(s) ds,

we have

y′2 + p(t)y2 = −p(t)e−
R

p(t) dt

∫ t

t0

e
R

p(s) dsg(s) ds + e−
R

p(t) dte
R

p(t) dtg(t)

+ p(t)e−
R

p(t) dt

∫ t

t0

e
R

p(s) dsg(s) ds = g(t).

27.

(a) If n = 0, then y(t) = ce−
R

p(t) dt. If n = 1, then y(t) = ce−
R

(p(t)−q(t)) dt.

(b) For n 6= 0, 1, let v = y1−n. Then

v′ = (1− n)y−ny′ = (1− n)y−n[−p(t)y + q(t)yn]

= (1− n)[−p(t)y1−n + q(t)] = (1− n)[−p(t)v + q(t)].

That is, v′ + (1− n)p(t)v = (1− n)q(t).
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