1. Rewriting the equation as

$$
y^{\prime}+\frac{\ln t}{t-3} y=\frac{2 t}{t-3}
$$

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval $0<t<3$.
2. Rewriting the equation as

$$
y^{\prime}+\frac{1}{t(t-4)} y=0
$$

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval $0<t<4$.
3. By Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval $\pi / 2<t<3 \pi / 2$.
4. Rewriting the equation as

$$
y^{\prime}+\frac{2 t}{4-t^{2}} y=\frac{3 t^{2}}{4-t^{2}}
$$

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval $-\infty<t<-2$.
5. Rewriting the equation as

$$
y^{\prime}+\frac{2 t}{4-t^{2}} y=\frac{3 t^{2}}{4-t^{2}}
$$

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval $-2<t<2$.
6. Rewriting the equation as

$$
y^{\prime}+\frac{1}{\ln t} y=\frac{\cot t}{\ln t}
$$

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval $1<t<\pi$.
7. Using the fact that

$$
f=\frac{t-y}{2 t+5 y} \Longrightarrow f_{y}=\frac{3 t-10 y}{(2 t+5 y)^{2}},
$$

we see that the hypothesis of Theorem 2.4.2 are satisfied as long as $2 t+5 y \neq 0$.
8. Using the fact that

$$
f=\left(1-t^{2}-y^{2}\right)^{1 / 2} \Longrightarrow f_{y}=-\frac{y}{\left(1-t^{2}-y^{2}\right)^{1 / 2}}
$$

we see that the hypothesis of Theorem 2.4.2 are satisfied as long as $t^{2}+y^{2}<1$.
9. Using the fact that

$$
f=\frac{\ln |t y|}{1-t^{2}+y^{2}} \Longrightarrow f_{y}=\frac{1-t^{2}+y^{2}-2 y^{2} \ln |t y|}{y\left(1-t^{2}+y^{2}\right)^{2}}
$$

we see that the hypothesis of Theorem 2.4.2 are satisfied as long as $y, t \neq 0$ and $1-t^{2}+y^{2} \neq 0$.
10. Using the fact that

$$
f=\left(t^{2}+y^{2}\right)^{3 / 2} \Longrightarrow f_{y}=3 y\left(t^{2}+y^{2}\right)^{1 / 2}
$$

we see that the hypothesis of Theorem 2.4.2 are satisfied for all $t \in \mathbb{R}$.
11. Using the fact that

$$
f=\frac{1+t^{2}}{3 y-y^{2}} \Longrightarrow f_{y}=-\frac{\left(1+t^{2}\right)(3-2 y)}{\left(3 y-y^{2}\right)^{2}}
$$

we see that the hypothesis of Theorem 2.4.2 are satisfied as long as $y \neq 0,3$.
12. Using the fact that

$$
f=\frac{(\cot t) y}{1+y} \Longrightarrow f_{y}=\frac{1}{(1+y)^{2}}
$$

we see that the hypothesis of Theorem 2.4.2 are satisfied as long as $y \neq-1, t \neq n \pi$ for $n=0,1,2 \ldots$..
13. The equation is separable, $y d y=-4 t d t$. Integrating both sides, we conclude that $y^{2} / 2=-2 t^{2}+y_{0}^{2} / 2$ for $y_{0} \neq 0$. The solution is defined for $y_{0}^{2}-4 t^{2} \geq 0$.
14. The equation is separable and can be written as $d y / y^{2}=2 t d t$. Integrating both sides, we arrive at the solution $y=y_{0} /\left(1-y_{0} t^{2}\right)$. For $y_{0}>0$, solutions exist as long as $t^{2}<1 / y_{0}$. For $y_{0} \leq 0$, solutions exist for all t.
15. The equation is separable and can be written as $d y / y^{3}=-d t$. Integrating both sides, we arrive at the solution $y=y_{0} /\left(\sqrt{2 t y_{0}^{2}+1}\right)$. Solutions exist as long as $2 y_{0}^{2} t+1>0$.
16. The equation is separable and can be written as $y d y=t^{2} d t /\left(1+t^{3}\right)$. Integrating both sides, we arrive at the solution $y= \pm\left(\frac{2}{3} \ln \left|1+t^{3}\right|+y_{0}^{2}\right)^{1 / 2}$. The sign of the solution depends on the sign of the initial data y_{0}. Solutions exist as long as $\frac{2}{3} \ln \left|1+t^{3}\right|+y_{0}^{2} \geq 0$; that is, as long as $y_{0}^{2} \geq-\frac{2}{3} \ln \left|1+t^{3}\right|$. We can rewrite this inequality as $\left|1+t^{3}\right| \geq e^{-3 y_{0}^{2} / 2}$. In order for the solution to exist, we need $t>-1$ (since the term $t^{2} /\left(1+t^{3}\right)$ has a singularity at $t=-1$. Therefore, we can conclude that our solution will exist for $\left[e^{-3 y_{0}^{2} / 2}-1\right]^{1 / 3}<t<\infty$.
17.

If $y_{0}>0$, then $y \rightarrow 3$. If $y_{0}=0$, then $y=0$. If $y_{0}<0$, then $y \rightarrow-\infty$.
18.

If $y_{0} \geq 0$, then $y \rightarrow 0$. If $y_{0}<0$, then $y \rightarrow-\infty$.
19.

If $y_{0}>9$, then $y \rightarrow \infty$. If $y_{0}<9$, then $y \rightarrow 0$.
20.

If $y_{0}<y_{c} \approx-0.019$, then $y \rightarrow-\infty$. Otherwise, y is asymptotic to $\sqrt{t-1}$.
21.
(a) We know that the family of solutions given by equation (19) are solutions of this initialvalue problem. We want to determine if one of these passes through the point $(1,1)$. That is, we want to find $t_{0}>0$ such that if $y=\left[\frac{2}{3}\left(t-t_{0}\right)\right]^{3 / 2}$, then $(t, y)=(1,1)$. That is, we need to find $t_{0}>0$ such that $1=\frac{2}{3}\left(1-t_{0}\right)$. But, the solution of this equation is $t_{0}=-1 / 2$.
(b) From the analysis in part (a), we find a solution passing through $(2,1)$ by setting $t_{0}=1 / 2$.
(c) Since we need $y_{0}= \pm\left[\frac{2}{3}\left(2-t_{0}\right)\right]^{3 / 2}$, we must have $\left|y_{0}\right| \leq\left[\frac{4}{3}\right]^{3 / 2}$.
22.
(a) First, it is clear that $y_{1}(2)=-1=y_{2}(2)$. Further,

$$
y_{1}^{\prime}=-1=\frac{-t+\left[(t-2)^{2}\right]^{1 / 2}}{2}=\frac{-t+\left(t^{2}+4(1-t)\right)^{1 / 2}}{2}
$$

and

$$
y_{2}^{\prime}=-\frac{t}{2}=\frac{-t+\left(t^{2}-t^{2}\right)^{1 / 2}}{2}
$$

The function y_{1} is a solution for $t \geq 2$. The function y_{2} is a solution for all t.
(b) Theorem 2.4.2 requires that f and $\partial f / \partial y$ be continuous in a rectangle about the point $\left(t_{0}, y_{0}\right)=(2,-1)$. Since f is not continuous if $t<2$ and $y<-1$, the hypothesis of Theorem 2.4.2 are not satisfied.
(c) If $y=c t+c^{2}$, then

$$
y^{\prime}=c=\frac{-t+\left[(t+2 c)^{2}\right]^{1 / 2}}{2}=\frac{-t+\left(t^{2}+4 c t+4 c^{2}\right)^{1 / 2}}{2} .
$$

Therefore, y satisfies the equation for $t \geq-2 c$.
23.
(a) $\phi(t)=e^{2 t} \Longrightarrow \phi^{\prime}=2 e^{2 t}$. Therefore, $\phi^{\prime}-2 \phi=0$. Since $(c \phi)^{\prime}=c \phi^{\prime}$, we see that $(c \phi)^{\prime}-2 c \phi=0$. Therefore, $c \phi$ is also a solution.
(b) $\phi(t)=1 / t \Longrightarrow \phi^{\prime}=-1 / t^{2}$. Therefore, $\phi^{\prime}+\phi^{2}=0$. If $y=c / t$, then $y^{\prime}=-c / t^{2}$. Therefore, $y^{\prime}+y^{2}=-c / t^{2}+c^{2} / t^{2}=0$ if and only if $c^{2}-c=0$; that is, if $c=0$ or $c=1$.
24. If $y=\phi$ satisfies $\phi^{\prime}+p(t) \phi=0$, then $y=c \phi$ satisfies $y^{\prime}+p(t) y=c \phi^{\prime}+c p(t) \phi=$ $c\left(\phi^{\prime}+p(t) \phi\right)=0$.

25 . Let $y=y_{1}+y_{2}$, then

$$
y^{\prime}+p(t) y=y_{1}^{\prime}+y_{2}^{\prime}+p(t)\left(y_{1}+y_{2}\right)=y_{1}^{\prime}+p(t) y_{1}+y_{2}^{\prime}+p(t) y_{2}=0 .
$$

