1. Rewriting as $y d y=x^{2} d x$, then integrating both sides, we have $y^{2} / 2=x^{3} / 3+C$, or $3 y^{2}-2 x^{3}=c ; \quad y \neq 0$
2. Rewriting as $y d y=\left[x^{2} /\left(1+x^{3}\right)\right] d x$, then integrating both sides, we have $y^{2} / 2=\ln \mid 1+$ $x^{3} \mid / 3+C$, or $3 y^{2}-2 \ln \left|1+x^{3}\right|=c ; \quad x \neq-1, y \neq 0$
3. Rewriting as $y^{-2} d y=-\sin (x) d x$, then integrating both sides, we have $-y^{-1}=\cos (x)+C$, or $y^{-1}+\cos x=c$ if $y \neq 0$;. Also, we have $y=0$ everywhere
4. Rewriting as $(3+2 y) d y=\left(3 x^{2}-1\right) d x$, then integrating both sides, we have $3 y+y^{2}-$ $x^{3}+x+C$ as long as $y \neq-3 / 2$.
5. Rewriting as $\sec ^{2}(2 y) d y=\cos ^{2}(x) d x$, then integrating both sides, we have $\tan (2 y) / 2=$ $x / 2+\sin (2 x) / 4+C$, or $2 \tan 2 y-2 x-\sin 2 x=C$ as long as $\cos 2 y \neq 0$. Also, if $y=$ $\pm(2 n+1) \pi / 4$ for any integer n, then $y^{\prime}=0=\cos (2 y)$
6. Rewriting as $\left(1-y^{2}\right)^{-1 / 2} d y=d x / x$, then integrating both sides, we have $\sin ^{-1}(y)=$ $\ln |x|+C$. Therefore, $y=\sin [\ln |x|+c]$ as long as $x \neq 0$ and $|y|<1$;. We also notice that if $y= \pm 1$, then $x y^{\prime}=0=\left(1-y^{2}\right)^{1 / 2}$ is a solution.
7. Rewriting as $\left(y+e^{y}\right) d y=\left(x-e^{-x}\right) d x$, then integrating both sides, we have $y^{2} / 2+e^{y}=$ $x^{2} / 2+e^{-x}+C$, or $y^{2}-x^{2}+2\left(e^{y}-e^{-x}\right)=C$ as long as $y+e^{y} \neq 0$.
8. Rewriting as $\left(1+y^{2}\right) d y=x^{2} d x$, then integrating both sides, we have $y+y^{3} / 3=x^{3} / 3+C$, or $3 y+y^{3}-x^{3}=c$;
9.

(a) Rewriting as $y^{-2} d y=(1-2 x) d x$, then integrating both sides, we have $-y^{-1}=x-x^{2}+C$.

The initial condition, $y(0)=-1 / 6$ implies $C=6$. Therefore, $y=1 /\left(x^{2}-x-6\right)$.
(b)

(c) $-2<x<3$
10.
(a) Rewriting as $y d y=(1-2 x) d x$, then integrating both sides, we have $y^{2} / 2=x-x^{2}+C$. Therefore, $y= \pm \sqrt{2 x-2 x^{2}+4}$. The initial condition, $y(1)=-2$ implies $C=2$ and $y=-\sqrt{2 x-2 x^{2}+4}$.
(b)

(c) $-1<x<2$
11.
(a) Rewriting as $x e^{x} d x=-y d y$, then integrating both sides, we have $x e^{x}-e^{x}=-y^{2} / 2+C$. The initial condition, $y(0)=1$ implies $C=-1 / 2$. Therefore, $y=\left[2(1-x) e^{x}-1\right]^{1 / 2}$.
(b)

(c) $-1.68<x<0.77$ approximately
12.
(a) Rewriting as $r^{-2} d r=\theta^{-1} d \theta$, then integrating both sides, we have $-r^{-1}=\ln \theta+C$. The initial condition, $r(1)=2$ implies $C=-1 / 2$. Therefore, $r=2 /(1-2 \ln \theta)$.
(b)

(c) $0<\theta<\sqrt{e}$
13.
(a) Rewriting as $y d y=2 x /\left(1+x^{2}\right) d x$, then integrating both sides, we have $y^{2} / 2=\ln \left(1+x^{2}\right)+$ C. The initial condition, $y(0)=-2$ implies $C=2$. Therefore, $y=-\left[2 \ln \left(1+x^{2}\right)+4\right]^{1 / 2}$.
(b)

(c) $-\infty<x<\infty$
14.
(a) Rewriting as $y^{-3} d y=x\left(1+x^{2}\right)^{-1 / 2} d x$, then integrating both sides, we have $-y^{-2} / 2=$ $\sqrt{1+x^{2}}+C$. The initial condition, $y(0)=1$ implies $C=-3 / 2$. Therefore, $y=$ $\left[3-2 \sqrt{1+x^{2}}\right]^{-1 / 2}$.
(b)

(c) $|x|<\frac{1}{2} \sqrt{5}$
15.
(a) Rewriting as $(1+2 y) d y=2 x d x$, then integrating both sides, we have $y+y^{2}=x^{2}+C$. The initial condition, $y(2)=0$ implies $C=-4$. Therefore, $y^{2}+y=x^{2}-4$. Completing the square, we have $(y+1 / 2)^{2}=x^{2}-15 / 4$, and, therefore, $y=-\frac{1}{2}+\frac{1}{2} \sqrt{4 x^{2}-15}$.
(b)

(c) $x>\frac{1}{2} \sqrt{15}$
16.
(a) Rewriting as $4 y^{3} d y=x\left(x^{2}+1\right) d x$, then integrating both sides, we have $y^{4}=\left(x^{2}+1\right)^{2} / 4+$ C. The initial condition, $y(0)=-1 / \sqrt{2}$ implies $C=0$. Therefore, $y=-\sqrt{\left(x^{2}+1\right) / 2}$.
(b)

(c) $-\infty<x<\infty$
17.
(a) Rewriting as $(2 y-5) d y=\left(3 x^{2}-e^{x}\right) d x$, then integrating both sides, we have $y^{2}-5 y=$ $x^{3}-e^{x}+C$. The initial condition, $y(0)=1$ implies $C=-3$. Completing the square, we have $(y-5 / 2)^{2}=x^{3}-e^{x}+13 / 4$. Therefore, $y=5 / 2-\sqrt{x^{3}-e^{x}+13 / 4}$.
(b)

(c) $-1.4445<x<4.6297$ approximately
18.
(a) Rewriting as $(3+4 y) d y=\left(e^{-x}-e^{x}\right) d x$, then integrating both sides, we have $3 y+2 y^{2}=$ $-\left(e^{x}+e^{-x}\right)+C$. The initial condition, $y(0)=1$ implies $C=7$. Completing the square, we have $(y+3 / 4)^{2}=-\left(e^{x}+e^{-x}\right) / 2+65 / 16$. Therefore, $y=-\frac{3}{4}+\frac{1}{4} \sqrt{65-8 e^{x}-8 e^{-x}}$.
(b)

(c) $|x|<2.0794$ approximately
19.
(a) Rewriting as $\cos (3 y) d y=-\sin (2 x) d x$, then integrating both sides, we have $\sin (3 y) / 3=$ $\cos (2 x) / 2+C$. The initial condition, $y(\pi / 2)=\pi / 3$ implies $C=1 / 2$. Therefore, $y=$ $\left[\pi-\arcsin \left(3 \cos ^{2} x\right)\right] / 3$.
(b)

(c) $|x-\pi / 2|<0.6155$ approximately
20.
(a) Rewriting as $y^{2} d y=\arcsin (x) / \sqrt{1-x^{2}} d x$, then integrating both sides, we have $y^{3} / 3=$ $(\arcsin (x))^{2} / 2+C$. The initial condition, $y(0)=1 /$ implies $C=0$. Therefore, $y=$ $\left[\frac{3}{2}(\arcsin x)^{2}\right]^{1 / 3}$.
(b)

(c) $-1<x<1$
21. Rewriting the equation as $\left(3 y^{2}-6 y\right) d y=\left(1+3 x^{2}\right) d x$ and integrating both sides, we have $y^{3}-3 y^{2}=x+x^{3}+C$. The initial condition, $y(0)=1$ implies $c=-2$. Therefore, $y^{3}-3 y^{2}-x-x^{3}+2=0$. When $3 y^{2}-6 y=0$, the integral curve will have a vertical tangent. In particular, when $y=0,2$. From our solution, we see that $y=0$ implies $x=1$ and $y=2$ implies $x=-1$. Therefore, the solution is defined for $-1<x<1$.
22. Rewriting the equation as $\left(3 y^{2}-4\right) d y=3 x^{2} d x$ and integrating both sides, we have $y^{3}-4 y=x^{3}+C$. The initial condition $y(1)=0$ implies $C=-1$. Therefore, $y^{3}-4 y-x^{3}=-1$. When $3 y^{2}-4=0$, the integral curve will have a vertical tangent. In particular, when $y= \pm 2 / \sqrt{3}$. At these values for y, we have $x=-1.276,1.598$. Therefore, the solution is defined for $-1.276<x<1.598$
23. Rewriting the equation as $y^{-2} d y=(2+x) d x$ and integrating both sides, we have $-y^{-1}=2 x+x^{2} / 2+C$. The initial condition $y(0)=1$ implies $C=-1$. Therefore, $y=-1 /\left(x^{2} / 2+2 x-1\right)$. To find where the function attains it minimum value, we look where $y^{\prime}=0$. We see that $y^{\prime}=0$ implies $y=0$ or $x=-2$. But, as seen by the solution formula, y is never zero. Further, it can be verified that $y^{\prime \prime}(-2)>0$, and, therefore, the function attains a minimum at $x=-2$.
24. Rewriting the equation as $(3+2 y) d y=\left(2-e^{x}\right) d x$ and integrating both sides, we have $3 y+y^{2}=2 x-e^{x}+C$. By the initial condition $y(0)=0$, we have $C=1$. Completing the square, it follows that $y=-3 / 2+\sqrt{2 x-e^{x}+13 / 4}$. The solution is defined if $2 x-e^{x}+13 / 4 \geq$ 0 , that is, $-1.5 \leq x \leq 2$ (approximately). In that interval, $y=0$ for $x=\ln 2$. It can be verified that $y^{\prime \prime}(\ln 2)<0$, and, therefore, the function attains its maximum value at $x=\ln 2$.
25. Rewriting the equation as $(3+2 y) d y=2 \cos (2 x) d x$ and integrating both sides, we have $3 y+y^{2}=\sin (2 x)+C$. By the initial condition $y(0)=-1$, we have $C=-2$. Completing the square, it follows that $y=-3 / 2+\sqrt{\sin (2 x)+1 / 4}$. The solution is defined for $\sin (2 x)+1 / 4 \geq$ 0 . That is, $-0.126 \leq x \leq 1.44$. To find where the solution attains its maximum value, we need to check where $y^{\prime}=0$. We see that $y^{\prime}=0$ when $2 \cos (2 x)=0$. In the interval of definition above, that occurs when $2 x=\pi / 2$, or $x=\pi / 4$.
26. Rewriting this equation as $\left(1+y^{2}\right)^{-1} d y=2(1+x) d x$ and integrating both sides, we have $\tan ^{-1}(y)=2 x+x^{2}+C$. The initial condition implies $C=0$. Therefore, the solution is $y=\tan \left(x^{2}+2 x\right)$. The solution is defined as long as $-\pi / 2<2 x+x^{2}<\pi / 2$. We note that $2 x+x^{2} \geq-1$. Further, $2 x+x^{2}=\pi / 2$ for $x=-2.6$ and 0.6 . Therefore, the solution is valid in the interval $-2.6<x<0.6$. We see that $y^{\prime}=0$ when $x=-1$. Furthermore, it can be verified that $y^{\prime \prime}(x)>0$ for all x in the interval of definition. Therefore, y attains a global minimum at $x=-1$.
27.
(a) First, we rewrite the equation as $d y /[y(4-y)]=t d t / 3$. Then, using partial fractions, we write

$$
\frac{1 / 4}{y} d y+\frac{1 / 4}{4-y} d y=\frac{t}{3} d t
$$

Integrating both sides, we have

$$
\begin{aligned}
& \frac{1}{4} \ln |y|-\frac{1}{4} \ln |4-y|=\frac{t^{2}}{6}+C \\
& \Longrightarrow \ln \left|\frac{y}{y-4}\right|=\frac{2}{3} t^{2}+C \\
& \Longrightarrow\left|\frac{y}{y-4}\right|=C e^{2 t^{2} / 3}
\end{aligned}
$$

From the equation, we see that $y_{0}=0 \Longrightarrow C=0 \Longrightarrow y(t)=0$ for all t. Otherwise, $y(t)>0$ for all t or $y(t)<0$ for all t. Therefore, if $y_{0}>0$ and $|y /(y-4)|=C e^{2 t^{2} / 3} \rightarrow \infty$, we must have $y \rightarrow 4$. On the other hand, if $y_{0}<0$, then $y \rightarrow-\infty$ as $t \rightarrow \infty$. (In particular, $y \rightarrow-\infty$ in finite time.)
(b) For $y_{0}=0.5$, we want to find the time T when the solution first reaches the value 3.98 . Using the fact that $|y /(y-4)|=C e^{2 t^{2} / 3}$ combined with the initial condition, we have $C=1 / 7$. From this equation, we now need to find T such that $|3.98 / .02|=e^{2 T^{2} / 3} / 7$. Solving this equation, we have $T=3.29527$.
28.
(a) Rewriting the equation as $y^{-1}(4-y)^{-1} d y=t(1+t)^{-1} d t$ and integrating both sides, we have $\ln |y|-\ln |y-4|=4 t-4 \ln |1+t|+C$. Therefore, $|y /(y-4)|=C e^{4 t} /(1+t)^{4} \rightarrow \infty$ as $t \rightarrow \infty$ which implies $y \rightarrow 4$.
(b) The initial condition $y(0)=2$ implies $C=1$. Therefore, $y /(y-4)=-e^{4 t} /(1+t)^{4}$. Now we need to find T such that $3.99 /-.01=-e^{4 T} /(1+T)^{4}$. Solving this equation, we have $T=2.84367$.
(c) Using our results from part (b), we note that $y /(y-4)=y_{0} /\left(y_{0}-4\right) e^{4 t} /(1+t)^{4}$. We want to find the range of initial values y_{0} such that $3.99<y<4.01$ at time $t=2$. Substituting $t=2$ into the equation above, we have $y_{0} /\left(y_{0}-4\right)=\left(3 / e^{2}\right)^{4} y(2) /(y(2)-4)$. Since the function $y /(y-4)$ is monotone, we need only find the values y_{0} satisfying $y_{0} /\left(y_{0}-4\right)=-399\left(3 / e^{2}\right)^{4}$ and $y_{0} /\left(y_{0}-4\right)=401\left(3 / e^{2}\right)^{4}$. The solutions are $y_{0}=3.6622$ and $y_{0}=4.4042$. Therefore, we need $3.6622<y_{0}<4.4042$.
29. We can rewrite the equation as

$$
\left(\frac{c y+d}{a y+b}\right) d y=d x \Longrightarrow \frac{c y}{a y+b}+\frac{d}{a y+b} d y=d x \Longrightarrow \frac{c}{a}-\frac{b c}{a^{2} y+a b}+\frac{d}{a y+b} d y=d x
$$

Then integrating both sides, we have

$$
\frac{c}{a} y-\frac{b c}{a^{2}} \ln \left|a^{2} y+a b\right|+\frac{d}{a} \ln |a y+b|=x+C .
$$

Simplifying, we have

$$
\begin{aligned}
& \frac{c}{a} y-\frac{b c}{a^{2}} \ln |a|-\frac{b c}{a^{2}} \ln |a y+b|+\frac{d}{a} \ln |a y+b|=x+C \\
& \Longrightarrow \frac{c}{a} y+\left(\frac{a d-b c}{a^{2}}\right) \ln |a y+b|=x+C
\end{aligned}
$$

Note, in this calculation, since $\frac{b c}{a^{2}} \ln |a|$ is just a constant, we included it with the arbitrary constant C. This solution will exist as long as $a \neq 0$ and $a y+b \neq 0$.
30.
(a) Factoring an x out of each term in the numerator and denominator of the right-hand side, we have

$$
\frac{d y}{d x}=\frac{x((y / x)-4)}{x(1-(y / x))}=\frac{(y / x)-4}{1-(y / x)}
$$

as claimed.
(b) Letting $v=y / x$, we have $y=x v$, which implies that $d y / d x=v+x \cdot d v / d x$.
(c) Therefore,

$$
v+x \cdot \frac{d v}{d x}=\frac{v-4}{1-v}
$$

which implies that

$$
x \cdot \frac{d v}{d x}=\frac{v-4-v(1-v)}{(1-v)}=\frac{v^{2}-4}{1-v}
$$

(d) To solve the equation above, we rewrite as

$$
\frac{1-v}{v^{2}-4} d v=\frac{d x}{x}
$$

Integrating both sides of this equation, we have

$$
-\frac{1}{4} \ln |v-2|-\frac{3}{4} \ln |v+2|=\ln |x|+C .
$$

Applying the exponential function to both sides of the equation, we have

$$
|v-2|^{-1 / 4}|v+2|^{-3 / 4}=C|x|
$$

(e) Replacing v with y / x, we have

$$
\left|\frac{y}{x}-2\right|^{-1 / 4}\left|\frac{y}{x}+2\right|^{-3 / 4}=C|x| \Longrightarrow|x||y-2 x|^{-1 / 4}|y+2 x|^{-3 / 4}=C|x| \Longrightarrow|y+2 x|^{3}|y-2 x|=C .
$$

(f)

31.
(a)

$$
\frac{d y}{d x}=1+(y / x)+(y / x)^{2} .
$$

Therefore, the equation is homogeneous.
(b) The substitution $v=y / x$ results in the equation

$$
v+x \frac{d v}{d x}=1+v+v^{2} \Longrightarrow x \frac{d v}{d x}=1+v^{2}
$$

This equation can be rewritten as

$$
\frac{d v}{1+v^{2}}=\frac{d x}{x}
$$

which has solution $\arctan (v)=\ln |x|+c$. Rewriting back in terms of y, we have $\arctan (y / x)-\ln |x|=c$.
(c)

32.
(a)

$$
\frac{d y}{d x}=(y / x)^{-1}+\frac{3}{2}(y / x) .
$$

Therefore, the equation is homogeneous.
(b) The substitution $v=y / x$ results in the equation

$$
v+x \frac{d v}{d x}=\frac{x^{2}+3 x^{2} v^{2}}{2 x^{2} v} \Longrightarrow \frac{d v}{d x}=\frac{1+v^{2}}{2 x v}
$$

The solution of this separable equation is $v^{2}+1=c x$. Rewriting back in terms of y, we have $x^{2}+y^{2}-c x^{3}=0$.
(c)

33.
(a)

$$
\frac{d y}{d x}=\frac{4(y / x)-3}{2-(y / x)} .
$$

Therefore, the equation is homogeneous.
(b) The substitution $v=y / x$ results in the equation

$$
v+x \frac{d v}{d x}=\frac{4 v-3}{2-v} \Longrightarrow x \frac{d v}{d x}=\frac{v^{2}+2 v-3}{2-v} .
$$

This equation can be rewritten as

$$
\frac{2-v}{v^{2}+2 v-3} d v=\frac{d x}{x} .
$$

Integrating both sides and simplifying, we arrive at the solution $|v+3|^{-5 / 4}|v-1|^{1 / 4}=$ $|x|+c$. Rewriting back in terms of y, we have $|y-x|=c|y+3 x|^{5}$. We also have the solution $y=-3 x$.
(c)

34.
(a)

$$
\frac{d y}{d x}=-2-\frac{y}{x}\left[2+\frac{y}{x}\right]^{-1} .
$$

Therefore, the equation is homogeneous.
(b) The substitution $v=y / x$ results in the equation

$$
v+x \frac{d v}{d x}=-2-\frac{v}{2+v} \Longrightarrow \frac{d v}{d x}=-\frac{v^{2}+5 v+4}{x(2+v)}
$$

This equation is separable with solution $(v+4)^{2}|v+1|=C / x^{3}$. Rewriting back in terms of y, we have $|y+x|(y+4 x)^{2}=c$.
(c)

35.
(a)

$$
\frac{d y}{d x}=\frac{1+3(y / x)}{1-(y / x)} .
$$

Therefore, the equation is homogeneous.
(b) The substitution $v=y / x$ results in the equation

$$
v+x \frac{d v}{d x}=\frac{1+3 v}{1-v} \Longrightarrow x \frac{d v}{d x}=\frac{v^{2}+2 v+1}{1-v}
$$

This equation can be rewritten as

$$
\frac{1-v}{v^{2}+2 v+1} d v=\frac{d x}{x}
$$

which has solution $-\frac{2}{v+1}-\ln |v+1|=\ln |x|+c$. Rewriting back in terms of y, we have $2 x /(x+y)+\ln |x+y|=c$. We also have the solution $y=-x$.
(c)

36.
(a)

$$
\frac{d y}{d x}=1+3(y / x)+(y / x)^{2}
$$

Therefore, the equation is homogeneous.
(b) The substitution $v=y / x$ results in the equation

$$
v+x \frac{d v}{d x}=1+3 v+v^{2} \Longrightarrow x \frac{d v}{d x}=1+2 v+v^{2}
$$

This equation can be rewritten as

$$
\frac{d v}{1+2 v+v^{2}}=\frac{d x}{x}
$$

which has solution $-1 /(v+1)=\ln |x|+c$. Rewriting back in terms of y, we have $x /(x+y)+\ln |x|=c$. We also have the solution $y=-x$.
(c)

37.
(a)

$$
\frac{d y}{d x}=\frac{1}{2}(y / x)^{-1}-\frac{3}{2}(y / x) .
$$

Therefore, the equation is homogeneous.
(b) The substitution $v=y / x$ results in the equation

$$
v+x \frac{d v}{d x}=1+\frac{1}{2 v}-\frac{3}{2} v \Longrightarrow x \frac{d v}{d x}=\frac{1-5 v^{2}}{2 v}
$$

This equation can be rewritten as

$$
\frac{2 v}{1-5 v^{2}} d v=\frac{d x}{x}
$$

which has solution $-\frac{1}{5} \ln \left|1-5 v^{2}\right|=\ln |x|+c$. Applying the exponential function, we arrive at the solution $1-5 v^{2}=c /|x|^{5}$. Rewriting back in terms of y, we have $|x|^{3}\left(x^{2}-5 y^{2}\right)=c$
(c)

38.
(a)

$$
\frac{d y}{d x}=\frac{3}{2}(y / x)-\frac{1}{2}(y / x)^{-1} .
$$

Therefore, the equation is homogeneous.
(b) The substitution $v=y / x$ results in the equation

$$
v+x \frac{d v}{d x}=\frac{3}{2} v-\frac{1}{2} v^{-1} \Longrightarrow x \frac{d v}{d x}=\frac{v^{2}-1}{2 v} .
$$

This equation can be rewritten as

$$
\frac{2 v}{v^{2}-1} d v=\frac{d x}{x}
$$

which has solution $\ln \left|v^{2}-1\right|=\ln |x|+c$. Applying the exponential function, we have $v^{2}-1=C|x|$. Rewriting back in terms of y, we have $c|x|^{3}=\left(y^{2}-x^{2}\right)$
(c)

