Chapter 2

Section 2.1

1.

(a)

(b) All solutions seem to converge to an increasing function as $t \rightarrow \infty$.
(c) The integrating factor is $\mu(t)=e^{3 t}$. Then

$$
\begin{aligned}
& e^{3 t} y^{\prime}+3 e^{3 t} y=e^{3 t}\left(t+e^{-2 t}\right) \Longrightarrow\left(e^{3 t} y\right)^{\prime}=t e^{3 t}+e^{t} \\
& \Longrightarrow e^{3 t} y=\int\left(t e^{3 t}+e^{t}\right) d t=\frac{1}{3} t e^{3 t}-\frac{1}{9} e^{3 t}+e^{t}+c \\
& \Longrightarrow y=\frac{t}{3}-\frac{1}{9}+e^{-2 t}+c e^{-3 t}
\end{aligned}
$$

We conclude that y is asymptotic to $t / 3-1 / 9$ as $t \rightarrow \infty$.
2.
(a)

(b) All slopes eventually become positive, so all solutions will eventually increase without bound.
(c) The integrating factor is $\mu(t)=e^{-2 t}$. Then

$$
\begin{aligned}
& e^{-2 t} y^{\prime}-2 e^{-2 t} y=e^{-2 t}\left(t^{2} e^{2 t}\right) \Longrightarrow\left(e^{-2 t} y\right)^{\prime}=t^{2} \\
& \Longrightarrow e^{-2 t} y=\int t^{2} d t=\frac{t^{3}}{3}+c \\
& \Longrightarrow y=\frac{t^{3}}{3} e^{2 t}+c e^{2 t}
\end{aligned}
$$

We conclude that y increases exponentially as $t \rightarrow \infty$.
3.
(a)

(b) All solutions appear to converge to the function $y(t)=1$.
(c) The integrating factor is $\mu(t)=e^{t}$. Therefore,

$$
\begin{aligned}
& e^{t} y^{\prime}+e^{t} y=t+e^{t} \Longrightarrow\left(e^{t} y\right)^{\prime}=t+e^{t} \\
& \Longrightarrow e^{t} y=\int\left(t+e^{t}\right) d t=\frac{t^{2}}{2}+e^{t}+c \\
& \Longrightarrow y=\frac{t^{2}}{2} e^{-t}+1+c e^{-t} .
\end{aligned}
$$

Therefore, we conclude that $y \rightarrow 1$ as $t \rightarrow \infty$.
4.
(a)

(b) The solutions eventually become oscillatory.
(c) The integrating factor is $\mu(t)=t$. Therefore,

$$
\begin{aligned}
& t y^{\prime}+y=3 t \cos (2 t) \Longrightarrow(t y)^{\prime}=3 t \cos (2 t) \\
& \Longrightarrow t y=\int 3 t \cos (2 t) d t=\frac{3}{4} \cos (2 t)+\frac{3}{2} t \sin (2 t)+c \\
& \Longrightarrow y=+\frac{3 \cos 2 t}{4 t}+\frac{3 \sin 2 t}{2}+\frac{c}{t}
\end{aligned}
$$

We conclude that y is asymptotic to $(3 \sin 2 t) / 2$ as $t \rightarrow \infty$.
5.
(a)

(b) All slopes eventually become positive so all solutions eventually increase without bound.
(c) The integrating factor is $\mu(t)=e^{-2 t}$. Therefore,

$$
\begin{aligned}
& e^{-2 t} y^{\prime}-2 e^{-2 t} y=3 e^{-t} \Longrightarrow\left(e^{-2 t} y\right)^{\prime}=3 e^{-t} \\
& \Longrightarrow e^{-2 t} y=\int 3 e^{-t} d t=-3 e^{-t}+c \\
& \Longrightarrow y=-3 e^{t}+c e^{2 t}
\end{aligned}
$$

We conclude that y increases exponentially as $t \rightarrow \infty$.
6.
(a)

(b) For $t>0$, all solutions seem to eventually converge to the function $y=0$.
(c) The integrating factor is $\mu(t)=t^{2}$. Therefore,

$$
\begin{aligned}
& t^{2} y^{\prime}+2 t y=t \sin (t) \Longrightarrow\left(t^{2} y\right)^{\prime}=t \sin (t) \\
& \Longrightarrow t^{2} y=\int t \sin (t) d t=\sin (t)-t \cos (t)+c \\
& \Longrightarrow y=\frac{\sin t-t \cos t+c}{t^{2}}
\end{aligned}
$$

We conclude that $y \rightarrow 0$ as $t \rightarrow \infty$.
7.
(a)

(b) For $t>0$, all solutions seem to eventually converge to the function $y=0$.
(c) The integrating factor is $\mu(t)=e^{t^{2}}$. Therefore, using the techniques shown above, we see that $y(t)=t^{2} e^{-t^{2}}+c e^{-t^{2}}$. We conclude that $y \rightarrow 0$ as $t \rightarrow \infty$.
8.
(a)

(b) For $t>0$, all solutions seem to eventually converge to the function $y=0$.
(c) The integrating factor is $\mu(t)=\left(1+t^{2}\right)^{2}$. Then

$$
\begin{aligned}
& \left(1+t^{2}\right)^{2} y^{\prime}+4 t\left(1+t^{2}\right) y=\frac{1}{1+t^{2}} \\
& \Longrightarrow\left(\left(1+t^{2}\right)^{2} y\right)=\int \frac{1}{1+t^{2}} d t \\
& \Longrightarrow y=\left(\tan ^{-1}(t)+c\right) /\left(1+t^{2}\right)^{2}
\end{aligned}
$$

We conclude that $y \rightarrow 0$ as $t \rightarrow \infty$.
9.
(a)

(b) All slopes eventually become positive. Therefore, all solutions will increase without bound.
(c) The integrating factor is $\mu(t)=e^{t / 2}$. Therefore,

$$
\begin{aligned}
& 2 e^{t / 2} y^{\prime}+e^{t / 2} y=3 t e^{t / 2} \quad \Longrightarrow 2 e^{t / 2} y=\int 3 t e^{t / 2} d t=6 t e^{t / 2}-12 e^{t / 2}+c \\
& \Longrightarrow y=3 t-6+c e^{-t / 2}
\end{aligned}
$$

We conclude that $y \rightarrow 3 t-6$ as $t \rightarrow \infty$.
10.
(a)

(b) For $y>0$, the slopes are all positive, and, therefore, the corresponding solutions increase without bound. For $y<0$ almost all solutions have negative slope and therefore decrease without bound.
(c) By dividing the equation by t, we see that the integrating factor is $\mu(t)=1 / t$. Therefore,

$$
\begin{aligned}
& y^{\prime} / t-y / t^{2}=t e^{-t} \Longrightarrow(y / t)^{\prime}=t e^{-t} \\
& \Longrightarrow \frac{y}{t}=\int t e^{-t} d t=-t e^{-t}-e^{-t}+c \\
& \Longrightarrow y=-t^{2} e^{-t}-t e^{-t}+c t .
\end{aligned}
$$

We conclude that $y \rightarrow \infty$ if $c>0, y \rightarrow-\infty$ if $c<0$ and $y \rightarrow 0$ if $c=0$.
11.
(a)

(b) The solution appears to be oscillatory.
(c) The integrating factor is $\mu(t)=e^{t}$. Therefore,

$$
\begin{aligned}
e^{t} y^{\prime}+e^{t} y & =5 e^{t} \sin (2 t) \Longrightarrow\left(e^{t} y\right)^{\prime}=5 e^{t} \sin (2 t) \\
\Longrightarrow e^{t} y & =\int 5 e^{t} \sin (2 t) d t=-2 e^{t} \cos (2 t)+e^{t} \sin (2 t)+c \quad \Longrightarrow y=-2 \cos (2 t)+\sin (2 t)+c e^{-t}
\end{aligned}
$$

We conclude that $y \rightarrow \sin (2 t)-2 \cos (2 t)$ as $t \rightarrow \infty$.
12.
(a)

(b) All slopes are eventually positive. Therefore, all solutions increase without bound.
(c) The integrating factor is $\mu(t)=e^{t /}$. Therefore,

$$
\begin{aligned}
& 2 e^{t / 2} y^{\prime}+e^{t / 2} y=3 t^{2} e^{t / 2} \Longrightarrow\left(2 e^{t / 2} y\right)^{\prime}=3 t^{2} e^{t / 2} \\
& \Longrightarrow 2 e^{t / 2} y=\int 3 t^{2} e^{t / 2} d t=6 t^{2} e^{t / 2}-24 t e^{t / 2}+48 e^{t / 2}+c \\
& \Longrightarrow y=3 t^{2}-12 t+24+c e^{-t / 2}
\end{aligned}
$$

We conclude that y is asymptotic to $3 t^{2}-12 t+24$ as $t \rightarrow \infty$.
13. The integrating factor is $\mu(t)=e^{-t}$. Therefore,

$$
\left(e^{-t} y\right)^{\prime}=2 t e^{t} \Longrightarrow y=e^{t} \int 2 t e^{t} d t=2 t e^{2 t}-2 e^{2 t}+c e^{t}
$$

The initial condition $y(0)=1$ implies $-2+c=1$. Therefore, $c=3$ and $y=3 e^{t}+2(t-1) e^{2 t}$ 14. The integrating factor is $\mu(t)=e^{2 t}$. Therefore,

$$
\left(e^{2 t} y\right)^{\prime}=t \Longrightarrow y=e^{-2 t} \int t d t=\frac{t^{2}}{2} e^{-2 t}+c e^{-2 t}
$$

The initial condition $y(1)=0$ implies $e^{-2 t} / 2+c e^{-2 t}=0$. Therefore, $c=-1 / 2$, and $y=\left(t^{2}-1\right) e^{-2 t} / 2$
15. Dividing the equation by t, we see that the integrating factor is $\mu(t)=t^{2}$. Therefore,

$$
\left(t^{2} y\right)^{\prime}=t^{3}-t^{2}+t \Longrightarrow y=t^{-2} \int\left(t^{3}-t^{2}+t\right) d t=\left(\frac{t^{2}}{4}-\frac{t}{3}+\frac{1}{2}+\frac{c}{t^{2}}\right)
$$

The initial condition $y(1)=1 / 2$ implies $c=1 / 12$, and $y=\left(3 t^{4}-4 t^{3}+6 t^{2}+1\right) / 12 t^{2}$.
16. The integrating factor is $\mu(t)=t^{2}$. Therefore,

$$
\left(t^{2} y\right)^{\prime}=\cos (t) \Longrightarrow y=t^{-2} \int \cos (t) d t=t^{-2}(\sin (t)+c)
$$

The initial condition $y(\pi)=0$ implies $c=0$ and $y=(\sin t) / t^{2}$
17. The integrating factor is $\mu(t)=e^{-2 t}$. Therefore,

$$
\left(e^{-2 t} y\right)^{\prime}=1 \Longrightarrow y=e^{2 t} \int 1 d t=e^{2 t}(t+c)
$$

The initial condition $y(0)=2$ implies $c=2$ and $y=(t+2) e^{2 t}$.
18. After dividing by t, we see that the integrating factor is $\mu(t)=t^{2}$. Therefore,

$$
\left(t^{2} y\right)^{\prime}=1 \Longrightarrow y=t^{-2} \int t \sin (t) d t=t^{-2}(\sin (t)-t \cos (t)+c)
$$

The initial condition $y(\pi / 2)=1$ implies $c=\left(\pi^{2} / 4\right)-1$ and $y=t^{-2}\left[\left(\pi^{2} / 4\right)-1-t \cos t+\sin t\right]$.
19. After dividing by t^{3}, we see that the integrating factor is $\mu(t)=t^{4}$. Therefore,

$$
\left(t^{4} y\right)^{\prime}=t e^{-t} \Longrightarrow y=t^{-4} \int t e^{-t} d t=t^{-4}\left(-t e^{-t}-e^{-t}+c\right)
$$

The initial condition $y(-1)=0$ implies $c=0$ and $y=-(1+t) e^{-t} / t^{4}, \quad t \neq 0$
20. After dividing by t, we see that the integrating factor is $\mu(t)=t e^{t}$. Therefore,

$$
\left(t e^{t} y\right)^{\prime}=t e^{t} \Longrightarrow y=t^{-1} e^{-t} \int t e^{t} d t=t^{-1} e^{-t}\left(t e^{t}-e^{t}+c\right)=t^{-1}\left(t-1+c e^{-t}\right)
$$

The initial condition $y(\ln 2)=1$ implies $c=2$ and $y=\left(t-1+2 e^{-t}\right) / t, \quad t \neq 0$
21.
(a)

The solutions appear to diverge from an oscillatory solution. It appears that $a_{0} \approx-1$. For $a>-1$, the solutions increase without bound. For $a<-1$, the solutions decrease without bound.
(b) The integrating factor is $\mu(t)=e^{-t / 2}$. From this, we conclude that the general solution is $y(t)=(8 \sin (t)-4 \cos (t)) / 5+c e^{t / 2}$. The solution will be sinusoidal as long as $c=0$. The initial condition for the sinusoidal behavior is $y(0)=(8 \sin (0)-4 \cos (0)) / 5=-4 / 5$. Therefore, $a_{0}=-4 / 5$.
(c) y oscillates for $a=a_{0}$
22.
(a)

All solutions eventually increase or decrease without bound. The value a_{0} appears to be approximately $a_{0}=-3$.
(b) The integrating factor is $\mu(t)=e^{-t / 2}$, and the general solution is $y(t)=-3 e^{t / 3}+c e^{t / 2}$. The initial condition $y(0)=a$ implies $y=-3 e^{t / 3}+(a+3) e^{t / 2}$. The solution will behave like $(a+3) e^{t / 2}$. Therefore, $a_{0}=-3$.
(c) $y \rightarrow-\infty$ for $a=a_{0}$
23.
(a)

Solutions eventually increase or decrease without bound, depending on the initial value a_{0}. It appears that $a_{0} \approx-1 / 8$.
(b) Dividing the equation by 3, we see that the integrating factor is $\mu(t)=e^{-2 t / 3}$. Therefore, the solution is $y=\left[(2+a(3 \pi+4)) e^{2 t / 3}-2 e^{-\pi t / 2}\right] /(3 \pi+4)$. The solution will eventually behave like $(2+a(3 \pi+4)) e^{2 t / 3} /(3 \pi+4)$. Therefore, $a_{0}=-2 /(3 \pi+4)$.
(c) $y \rightarrow 0$ for $a=a_{0}$
24.
(a)

It appears that $a_{0} \approx .4$. As $t \rightarrow 0$, solutions increase without bound if $y>a_{0}$ and decrease without bound if $y<a_{0}$.
(b) The integrating factor is $\mu(t)=t e^{t}$. The general solution is $y=t e^{-t}+c e^{-t} / t$. The initial condition $y(1)=a$ implies $y=t e^{-t}+(e a-1) e^{-t} / t$. As $t \rightarrow 0$, the solution will behave like $(e a-1) e^{-t} / t$. From this, we see that $a_{0}=1 / e$.
(c) $y \rightarrow 0$ as $t \rightarrow 0$ for $a=a_{0}$
25.
(a)

It appears that $a_{0} \approx .4$. That is, as $t \rightarrow 0$, for $y(-\pi / 2)>a_{0}$, solutions will increase without bound, while solutions will decrease without bound for $y(-\pi / 2)<a_{0}$.
(b) After dividing by t, we see that the integrating factor is t^{2}, and the solution is $y=$ $-\cos t / t^{2}+\pi^{2} a / 4 t^{2}$. Since $\lim _{t \rightarrow 0} \cos (t)=1$, solutions will increase without bound if $a>4 / \pi^{2}$ and decrease without bound if $a<4 / \pi^{2}$. Therefore, $a_{0}=4 / \pi^{2}$.
(c) For $a_{0}=4 / \pi^{2}, y=(1-\cos (t)) / t^{2} \rightarrow 1 / 2$ as $t \rightarrow 0$.
26.
(a)

It appears that $a_{0} \approx 2$. For $y(1)>a_{0}$, the solution will increase without bound as $t \rightarrow 0$, while the solution will decrease without bound if $y(t)<a_{0}$.
(b) After dividing by $\sin (t)$, we see that the integrating factor is $\mu(t)=\sin (t)$. As a result, we see that the solution is given by $y=\left(e^{t}+c\right) \sin (t)$. Applying our initial condition, we see that our solution is $y=\left(e^{t}-e+a \sin 1\right) / \sin t$. The solution will increase if $1-e+a \sin 1>0$ and decrease if $1-e+a \sin 1<0$. Therefore, we conclude that $a_{0}=(e-1) / \sin 1$
(c) If $a_{0}=(e-1) \sin (1)$, then $y=\left(e^{t}-1\right) / \sin (t)$. As $t \rightarrow 0, y \rightarrow 1$.
27. The integrating factor is $\mu(t)=e^{t / 2}$. Therefore, the general solution is $y(t)=[4 \cos (t)+$ $8 \sin (t)] / 5+c e^{-t / 2}$. Using our initial condition, we have $y(t)=\left[4 \cos (t)+8 \sin (t)-9 e^{t / 2}\right] / 5$. Differentiating, we have

$$
\begin{aligned}
y^{\prime} & =\left[-4 \sin (t)+8 \cos (t)+4.5 e^{-t / 2}\right] / 5 \\
y^{\prime \prime} & =\left[-4 \cos (t)-8 \sin (t)-2.25 e^{t / 2}\right] / 5 .
\end{aligned}
$$

Setting $y^{\prime}=0$, the first solution is $t_{1}=1.3643$, which gives the location of the first stationary point. Since $y^{\prime \prime}\left(t_{1}\right)<0$, the first stationary point is a local maximum. The coordinates of the point are (1.3643, .82008).
28. The integrating factor is $\mu(t)=e^{2 t / 3}$. The general solution of the differential equation is $y(t)=(21-6 t) / 8+c e^{-2 t / 3}$. Using the initial condition, we have $y(t)=(21-6 t) / 8+\left(y_{0}-\right.$ $21 / 8) e^{-2 t / 3}$. Therefore, $y^{\prime}(t)=-3 / 4-\left(2 y_{0}-21 / 4\right) e^{-2 t / 3} / 3$. Setting $y^{\prime}(t)=0$, the solution is $t_{1}=\frac{3}{2} \ln \left[\left(21-8 y_{0}\right) / 9\right]$. Substituting into the solution, the respective value at the stationary point is $y\left(t_{1}\right)=\frac{3}{2}+\frac{9}{4} \ln 3-\frac{9}{8} \ln \left(21-8 y_{0}\right)$. Setting this result equal to zero, we obtain the required initial value $y_{0}=\left(21-9 e^{4 / 3}\right) / 8=-1.643$.
29.
(a) The integrating factor is $\mu(t)=e^{t / 4}$. The general solution is

$$
y(t)=12+[8 \cos (2 t)+64 \sin (2 t)] / 65+c e^{-t / 4}
$$

Applying the initial condition $y(0)=0$, we arrive at the specific solution

$$
y(t)=12+\left[8 \cos (2 t)+64 \sin (2 t)-788 e^{-t / 4}\right] / 65
$$

For large values of t, the solution oscillates about the line $y=12$.
(b) To find the value of t for which the solution first intersects the line $y=12$, we need to solve the equation $8 \cos (2 t)+64 \sin (2 t)-788 e^{-t / 4}=0$. The time t is approximately 10.519 .
30. The integrating factor is $\mu(t)=e^{-t}$. The general solution is $y(t)=-1-\frac{3}{2} \cos (t)-$ $\frac{3}{2} \sin (t)+c e^{t}$. In order for the solution to remain finite as $t \rightarrow \infty$, we need $c=0$. Therefore, y_{0} must satisfy $y_{0}=-1-3 / 2=-5 / 2$.
31. The integrating factor is $\mu(t)=e^{-3 t / 2}$ and the general solution of the equation is $y(t)=$ $-2 t-4 / 3-4 e^{t}+c e^{3 t / 2}$. The initial condition implies $y(t)=-2 t-4 / 3-4 e^{t}+\left(y_{0}+16 / 3\right) e^{3 t / 2}$. The solution will behave like $\left(y_{0}+16 / 3\right) e^{3 t / 2}$ (for $y_{0} \neq-16 / 3$). For $y_{0}>-16 / 3$, the solutions will increase without bound, while for $y_{0}<-16 / 3$, the solutions will decrease without bound. If $y_{0}=-16 / 3$, the solution will decrease without bound as the solution will be $-2 t-4 / 3-4 e^{t}$.
32. By equation (41), we see that the general solution is given by

$$
y=e^{-t^{2} / 4} \int_{0}^{t} e^{s^{2} / 4} d s+c e^{-t^{2} / 4}
$$

Applying L'Hospital's rule,

$$
\lim _{t \rightarrow \infty} \frac{\int_{0}^{t} e^{s^{2} / 4} d s}{e^{t^{2} / 4}}=\lim _{t \rightarrow \infty} \frac{e^{t^{2} / 4}}{(t / 2) e^{t^{2} / 4}}=0
$$

Therefore, $y \rightarrow 0$ as $t \rightarrow \infty$.
33. The integrating factor is $\mu(t)=e^{a t}$. First consider the case $a \neq \lambda$. Multiplying the equation by $e^{a t}$, we have

$$
\left(e^{a t} y\right)^{\prime}=b e^{(a-\lambda) t} \Longrightarrow y=e^{-a t} \int b e^{(a-\lambda) t}=e^{-a t}\left(\frac{b}{a-\lambda} e^{(a-\lambda) t}+c\right)=\frac{b}{a-\lambda} e^{-\lambda t}+c e^{-a t} .
$$

Since a, λ are assumed to be positive, we see that $y \rightarrow 0$ as $t \rightarrow \infty$. Now if $a=\lambda$ above, then we have

$$
\left(e^{a t} y\right)^{\prime}=b \Longrightarrow y=e^{-a t}(b t+c)
$$

and similarly $y \rightarrow 0$ as $t \rightarrow \infty$.
34. We notice that $y(t)=c e^{-t}+3$ approaches 3 as $t \rightarrow \infty$. We just need to find a firstorder linear differential equation having that solution. We notice that if $y(t)=f+g$, then $y^{\prime}+y=f^{\prime}+f+g^{\prime}+g$. Here, let $f=c e^{-t}$ and $g(t)=3$. Then $f^{\prime}+f=0$ and $g^{\prime}+g=3$. Therefore, $y(t)=c e^{-t}+3$ satisfies the equation $y^{\prime}+y=3$. That is, the equation $y^{\prime}+y=3$ has the desired properties.
35. We notice that $y(t)=c e^{-t}+3-t$ approaches $3-t$ as $t \rightarrow \infty$. We just need to find a first-order linear differential equation having that solution. We notice that if $y(t)=f+g$, then $y^{\prime}+y=f^{\prime}+f+g^{\prime}+g$. Here, let $f=c e^{-t}$ and $g(t)=3-t$. Then $f^{\prime}+f=0$ and $g^{\prime}+g=-1+3-t=-2-t$. Therefore, $y(t)=c e^{-t}+3-t$ satisfies the equation $y^{\prime}+y=-2-t$. That is, the equation $y^{\prime}+y=-2-t$ has the desired properties.
36. We notice that $y(t)=c e^{-t}+2 t-5$ approaches $2 t-5$ as $t \rightarrow \infty$. We just need to find a first-order linear differential equation having that solution. We notice that if $y(t)=f+g$, then $y^{\prime}+y=f^{\prime}+f+g^{\prime}+g$. Here, let $f=c e^{-t}$ and $g(t)=2 t-5$. Then $f^{\prime}+f=0$ and $g^{\prime}+g=2+2 t-5=2 t-3$. Therefore, $y(t)=c e^{-t}+2 t-5-$ satisfies the equation $y^{\prime}+y=2 t-3$. That is, the equation $y^{\prime}+y=2 t-3$ has the desired properties.
37. We notice that $y(t)=c e^{-t}+4-t^{2}$ approaches $4-t^{2}$ as $t \rightarrow \infty$. We just need to find a first-order linear differential equation having that solution. We notice that if $y(t)=f+g$, then $y^{\prime}+y=f^{\prime}+f+g^{\prime}+g$. Here, let $f=c e^{-t}$ and $g(t)=4-t^{2}$. Then $f^{\prime}+f=0$ and
$g^{\prime}+g=-2 t+4-t^{2}=4-2 t-t^{2}$. Therefore, $y(t)=c e^{-t}+2 t-5-$ satisfies the equation $y^{\prime}+y=4-2 t-t^{2}$. That is, the equation $y^{\prime}+y=4-2 t-t^{2}$ has the desired properties.
38. Multiplying the equation by $e^{a\left(t-t_{0}\right)}$, we have

$$
\begin{aligned}
& e^{a\left(t-t_{0}\right)} y^{\prime}+a e^{a\left(t-t_{0}\right)} y=e^{a\left(t-t_{0}\right)} g(t) \\
& \quad \Longrightarrow\left(e^{a\left(t-t_{0}\right)} y\right)^{\prime}=e^{a\left(t-t_{0}\right)} g(t) \\
& \quad \Longrightarrow y(t)=\int_{t_{0}}^{t} e^{-a(t-s)} g(s) d s+e^{-a\left(t-t_{0}\right)} y_{0}
\end{aligned}
$$

Assuming $g(t) \rightarrow g_{0}$ as $t \rightarrow \infty$,

$$
\int_{t_{0}}^{t} e^{-a(t-s)} g(s) d s \rightarrow \int_{t_{0}}^{t} e^{-a(t-s)} g_{0} d s=\frac{g_{0}}{a}-\frac{e^{-a\left(t-t_{0}\right)}}{a} g_{0} \rightarrow \frac{g_{0}}{a} \quad \text { as } t \rightarrow \infty
$$

For an example, let $g(t)=e^{-t}+1$. Assume $a \neq 1$. By undetermined coefficients, we look for a solution of the form $y=c e^{-a t}+A e^{-t}+B$. Substituting a function of this form into the differential equation leads to the equation

$$
[-A+a A] e^{-t}+a B=e^{-t}+1 \Longrightarrow-A+a A=1 \text { and } a B=1
$$

Therefore, $A=1 /(a-1), B=1 / a$ and $y=c e^{-a t}+\frac{1}{a-1} e^{-t}+1 / a$. The initial condition $y(0)=y_{0}$ implies $y(t)=\left(y_{0}-\frac{1}{a-1}-\frac{1}{a}\right) e^{-a t}+\frac{1}{a-1} e^{-t}+1 / a \rightarrow 1 / a$ as $t \rightarrow \infty$.
39.
(a) The integrating factor is $e^{\int p(t) d t}$. Multiplying by the integrating factor, we have

$$
e^{\int p(t) d t} y^{\prime}+e^{\int p(t) d t} p(t) y=0
$$

Therefore,

$$
\left(e^{\int p(t) d t} y\right)^{\prime}=0
$$

which implies

$$
y(t)=A e^{-\int p(t) d t}
$$

is the general solution.
(b) Let $y=A(t) e^{-\int p(t) d t}$. Then in order for y to satisfy the desired equation, we need

$$
A^{\prime}(t) e^{-\int p(t) d t}-A(t) p(t) e^{-\int p(t) d t}+A(t) p(t) e^{-\int p(t) d t}=g(t)
$$

That is, we need

$$
A^{\prime}(t)=g(t) e^{\int p(t) d t}
$$

(c) From equation (iv), we see that

$$
A(t)=\int_{0}^{t} g(\tau) e^{\int p(\tau) d \tau} d \tau+C
$$

Therefore,

$$
y(t)=e^{-\int p(t) d t}\left(\int_{0}^{t} g(\tau) e^{\int p(\tau) d \tau} d \tau+C\right)
$$

