
Chapter 2

Section 2.1
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(b) All solutions seem to converge to an increasing function as t →∞.

(c) The integrating factor is µ(t) = e3t. Then

e3ty′ + 3e3ty = e3t(t + e−2t) =⇒ (e3ty)′ = te3t + et

=⇒ e3ty =

∫
(te3t + et) dt =

1

3
te3t − 1

9
e3t + et + c

=⇒ y =
t

3
− 1

9
+ e−2t + ce−3t.

We conclude that y is asymptotic to t/3− 1/9 as t →∞.
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(b) All slopes eventually become positive, so all solutions will eventually increase without
bound.

(c) The integrating factor is µ(t) = e−2t. Then

e−2ty′ − 2e−2ty = e−2t(t2e2t) =⇒ (e−2ty)′ = t2

=⇒ e−2ty =

∫
t2 dt =

t3

3
+ c

=⇒ y =
t3

3
e2t + ce2t.

We conclude that y increases exponentially as t →∞.
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(b) All solutions appear to converge to the function y(t) = 1.

(c) The integrating factor is µ(t) = et. Therefore,

ety′ + ety = t + et =⇒ (ety)′ = t + et

=⇒ ety =

∫
(t + et) dt =

t2

2
+ et + c

=⇒ y =
t2

2
e−t + 1 + ce−t.

Therefore, we conclude that y → 1 as t →∞.
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(b) The solutions eventually become oscillatory.

(c) The integrating factor is µ(t) = t. Therefore,

ty′ + y = 3t cos(2t) =⇒ (ty)′ = 3t cos(2t)

=⇒ ty =

∫
3t cos(2t) dt =

3

4
cos(2t) +

3

2
t sin(2t) + c

=⇒ y = +
3 cos 2t

4t
+

3 sin 2t

2
+

c

t
.

We conclude that y is asymptotic to (3 sin 2t)/2 as t →∞.

5.

(a)

–4

–2

0

2

4

y(t)

–1 –0.5 0.5 1 1.5 2
t

(b) All slopes eventually become positive so all solutions eventually increase without bound.

(c) The integrating factor is µ(t) = e−2t. Therefore,

e−2ty′ − 2e−2ty = 3e−t =⇒ (e−2ty)′ = 3e−t

=⇒ e−2ty =

∫
3e−t dt = −3e−t + c

=⇒ y = −3et + ce2t.

We conclude that y increases exponentially as t →∞.
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6.
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(b) For t > 0, all solutions seem to eventually converge to the function y = 0.

(c) The integrating factor is µ(t) = t2. Therefore,

t2y′ + 2ty = t sin(t) =⇒ (t2y)′ = t sin(t)

=⇒ t2y =

∫
t sin(t) dt = sin(t)− t cos(t) + c

=⇒ y =
sin t− t cos t + c

t2
.

We conclude that y → 0 as t →∞.
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(b) For t > 0, all solutions seem to eventually converge to the function y = 0.
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(c) The integrating factor is µ(t) = et2 . Therefore, using the techniques shown above, we
see that y(t) = t2e−t2 + ce−t2 . We conclude that y → 0 as t →∞.
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(b) For t > 0, all solutions seem to eventually converge to the function y = 0.

(c) The integrating factor is µ(t) = (1 + t2)2. Then

(1 + t2)2y′ + 4t(1 + t2)y =
1

1 + t2

=⇒ ((1 + t2)2y) =

∫
1

1 + t2
dt

=⇒ y = (tan−1(t) + c)/(1 + t2)2.

We conclude that y → 0 as t →∞.
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(b) All slopes eventually become positive. Therefore, all solutions will increase without
bound.

(c) The integrating factor is µ(t) = et/2. Therefore,

2et/2y′ + et/2y = 3tet/2 =⇒ 2et/2y =

∫
3tet/2 dt = 6tet/2 − 12et/2 + c

=⇒ y = 3t− 6 + ce−t/2.

We conclude that y → 3t− 6 as t →∞.
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(b) For y > 0, the slopes are all positive, and, therefore, the corresponding solutions increase
without bound. For y < 0 almost all solutions have negative slope and therefore decrease
without bound.

(c) By dividing the equation by t, we see that the integrating factor is µ(t) = 1/t. Therefore,

y′/t− y/t2 = te−t =⇒ (y/t)′ = te−t

=⇒ y

t
=

∫
te−t dt = −te−t − e−t + c

=⇒ y = −t2e−t − te−t + ct.

We conclude that y →∞ if c > 0, y → −∞ if c < 0 and y → 0 if c = 0.
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(b) The solution appears to be oscillatory.

(c) The integrating factor is µ(t) = et. Therefore,

ety′ + ety = 5et sin(2t) =⇒ (ety)′ = 5et sin(2t)

=⇒ ety =

∫
5et sin(2t) dt = −2et cos(2t) + et sin(2t) + c =⇒ y = −2 cos(2t) + sin(2t) + ce−t.

We conclude that y → sin(2t)− 2 cos(2t) as t →∞.

12.
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(b) All slopes are eventually positive. Therefore, all solutions increase without bound.

(c) The integrating factor is µ(t) = et/. Therefore,

2et/2y′ + et/2y = 3t2et/2 =⇒ (2et/2y)′ = 3t2et/2

=⇒ 2et/2y =

∫
3t2et/2 dt = 6t2et/2 − 24tet/2 + 48et/2 + c

=⇒ y = 3t2 − 12t + 24 + ce−t/2.

We conclude that y is asymptotic to 3t2 − 12t + 24 as t →∞.
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13. The integrating factor is µ(t) = e−t. Therefore,

(e−ty)′ = 2tet =⇒ y = et

∫
2tet dt = 2te2t − 2e2t + cet.

The initial condition y(0) = 1 implies −2 + c = 1. Therefore, c = 3 and y = 3et + 2(t− 1)e2t

14. The integrating factor is µ(t) = e2t. Therefore,

(e2ty)′ = t =⇒ y = e−2t

∫
t dt =

t2

2
e−2t + ce−2t.

The initial condition y(1) = 0 implies e−2t/2 + ce−2t = 0. Therefore, c = −1/2, and
y = (t2 − 1)e−2t/2

15. Dividing the equation by t, we see that the integrating factor is µ(t) = t2. Therefore,

(t2y)′ = t3 − t2 + t =⇒ y = t−2

∫
(t3 − t2 + t) dt =

(
t2

4
− t

3
+

1

2
+

c

t2

)
.

The initial condition y(1) = 1/2 implies c = 1/12, and y = (3t4 − 4t3 + 6t2 + 1)/12t2.

16. The integrating factor is µ(t) = t2. Therefore,

(t2y)′ = cos(t) =⇒ y = t−2

∫
cos(t) dt = t−2(sin(t) + c).

The initial condition y(π) = 0 implies c = 0 and y = (sin t)/t2

17. The integrating factor is µ(t) = e−2t. Therefore,

(e−2ty)′ = 1 =⇒ y = e2t

∫
1 dt = e2t(t + c).

The initial condition y(0) = 2 implies c = 2 and y = (t + 2)e2t.

18. After dividing by t, we see that the integrating factor is µ(t) = t2. Therefore,

(t2y)′ = 1 =⇒ y = t−2

∫
t sin(t) dt = t−2(sin(t)− t cos(t) + c).

The initial condition y(π/2) = 1 implies c = (π2/4)−1 and y = t−2[(π2/4)−1−t cos t+sin t].

19. After dividing by t3, we see that the integrating factor is µ(t) = t4. Therefore,

(t4y)′ = te−t =⇒ y = t−4

∫
te−t dt = t−4(−te−t − e−t + c).

The initial condition y(−1) = 0 implies c = 0 and y = −(1 + t)e−t/t4, t 6= 0

20. After dividing by t, we see that the integrating factor is µ(t) = tet. Therefore,

(tety)′ = tet =⇒ y = t−1e−t

∫
tet dt = t−1e−t(tet − et + c) = t−1(t− 1 + ce−t).

The initial condition y(ln 2) = 1 implies c = 2 and y = (t− 1 + 2e−t)/t, t 6= 0

21.
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The solutions appear to diverge from an oscillatory solution. It appears that a0 ≈ −1.
For a > −1, the solutions increase without bound. For a < −1, the solutions decrease
without bound.

(b) The integrating factor is µ(t) = e−t/2. From this, we conclude that the general solution
is y(t) = (8 sin(t)− 4 cos(t))/5 + cet/2. The solution will be sinusoidal as long as c = 0.
The initial condition for the sinusoidal behavior is y(0) = (8 sin(0)−4 cos(0))/5 = −4/5.
Therefore, a0 = −4/5.

(c) y oscillates for a = a0

22.
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All solutions eventually increase or decrease without bound. The value a0 appears to be
approximately a0 = −3.

(b) The integrating factor is µ(t) = e−t/2, and the general solution is y(t) = −3et/3 + cet/2.
The initial condition y(0) = a implies y = −3et/3 + (a + 3)et/2. The solution will behave
like (a + 3)et/2. Therefore, a0 = −3.
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(c) y → −∞ for a = a0

23.
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Solutions eventually increase or decrease without bound, depending on the initial value
a0. It appears that a0 ≈ −1/8.

(b) Dividing the equation by 3, we see that the integrating factor is µ(t) = e−2t/3. Therefore,
the solution is y = [(2 + a(3π + 4))e2t/3− 2e−πt/2]/(3π + 4). The solution will eventually
behave like (2 + a(3π + 4))e2t/3/(3π + 4). Therefore, a0 = −2/(3π + 4).

(c) y → 0 for a = a0

24.
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It appears that a0 ≈ .4. As t → 0, solutions increase without bound if y > a0 and
decrease without bound if y < a0.
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(b) The integrating factor is µ(t) = tet. The general solution is y = te−t +ce−t/t. The initial
condition y(1) = a implies y = te−t + (ea− 1)e−t/t. As t → 0, the solution will behave
like (ea− 1)e−t/t. From this, we see that a0 = 1/e.

(c) y → 0 as t → 0 for a = a0
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It appears that a0 ≈ .4. That is, as t → 0, for y(−π/2) > a0, solutions will increase
without bound, while solutions will decrease without bound for y(−π/2) < a0.

(b) After dividing by t, we see that the integrating factor is t2, and the solution is y =
− cos t/t2 + π2a/4t2. Since limt→0 cos(t) = 1, solutions will increase without bound if
a > 4/π2 and decrease without bound if a < 4/π2. Therefore, a0 = 4/π2.

(c) For a0 = 4/π2, y = (1− cos(t))/t2 → 1/2 as t → 0.
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It appears that a0 ≈ 2. For y(1) > a0, the solution will increase without bound as t → 0,
while the solution will decrease without bound if y(t) < a0.

(b) After dividing by sin(t), we see that the integrating factor is µ(t) = sin(t). As a result,
we see that the solution is given by y = (et + c) sin(t). Applying our initial condition,
we see that our solution is y = (et − e + a sin 1)/ sin t. The solution will increase if
1 − e + a sin 1 > 0 and decrease if 1 − e + a sin 1 < 0. Therefore, we conclude that
a0 = (e− 1)/ sin 1

(c) If a0 = (e− 1) sin(1), then y = (et − 1)/ sin(t). As t → 0, y → 1.

27. The integrating factor is µ(t) = et/2. Therefore, the general solution is y(t) = [4 cos(t) +
8 sin(t)]/5 + ce−t/2. Using our initial condition, we have y(t) = [4 cos(t) + 8 sin(t)− 9et/2]/5.
Differentiating, we have

y′ = [−4 sin(t) + 8 cos(t) + 4.5e−t/2]/5

y′′ = [−4 cos(t)− 8 sin(t)− 2.25et/2]/5.

Setting y′ = 0, the first solution is t1 = 1.3643, which gives the location of the first stationary
point. Since y′′(t1) < 0, the first stationary point is a local maximum. The coordinates of
the point are (1.3643, .82008).

28. The integrating factor is µ(t) = e2t/3. The general solution of the differential equation is
y(t) = (21− 6t)/8 + ce−2t/3. Using the initial condition, we have y(t) = (21− 6t)/8 + (y0 −
21/8)e−2t/3. Therefore, y′(t) = −3/4− (2y0−21/4)e−2t/3/3. Setting y′(t) = 0, the solution is
t1 = 3

2
ln[(21− 8y0)/9]. Substituting into the solution, the respective value at the stationary

point is y(t1) = 3
2

+ 9
4
ln 3 − 9

8
ln(21 − 8y0). Setting this result equal to zero, we obtain the

required initial value y0 = (21− 9e4/3)/8 = −1.643.

29.

(a) The integrating factor is µ(t) = et/4. The general solution is

y(t) = 12 + [8 cos(2t) + 64 sin(2t)]/65 + ce−t/4.

Applying the initial condition y(0) = 0, we arrive at the specific solution

y(t) = 12 + [8 cos(2t) + 64 sin(2t)− 788e−t/4]/65.

For large values of t, the solution oscillates about the line y = 12.

(b) To find the value of t for which the solution first intersects the line y = 12, we need
to solve the equation 8 cos(2t) + 64 sin(2t)− 788e−t/4 = 0. The time t is approximately
10.519.

30. The integrating factor is µ(t) = e−t. The general solution is y(t) = −1 − 3
2
cos(t) −

3
2
sin(t) + cet. In order for the solution to remain finite as t →∞, we need c = 0. Therefore,

y0 must satisfy y0 = −1− 3/2 = −5/2.
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31. The integrating factor is µ(t) = e−3t/2 and the general solution of the equation is y(t) =
−2t−4/3−4et+ce3t/2. The initial condition implies y(t) = −2t−4/3−4et+(y0+16/3)e3t/2.
The solution will behave like (y0+16/3)e3t/2 (for y0 6= −16/3). For y0 > −16/3, the solutions
will increase without bound, while for y0 < −16/3, the solutions will decrease without bound.
If y0 = −16/3, the solution will decrease without bound as the solution will be −2t−4/3−4et.

32. By equation (41), we see that the general solution is given by

y = e−t2/4

∫ t

0

es2/4 ds + ce−t2/4.

Applying L’Hospital’s rule,

lim
t→∞

∫ t

0
es2/4 ds

et2/4
= lim

t→∞
et2/4

(t/2)et2/4
= 0.

Therefore, y → 0 as t →∞.

33. The integrating factor is µ(t) = eat. First consider the case a 6= λ. Multiplying the
equation by eat, we have

(eaty)′ = be(a−λ)t =⇒ y = e−at

∫
be(a−λ)t = e−at

(
b

a− λ
e(a−λ)t + c

)
=

b

a− λ
e−λt + ce−at.

Since a, λ are assumed to be positive, we see that y → 0 as t → ∞. Now if a = λ above,
then we have

(eaty)′ = b =⇒ y = e−at(bt + c)

and similarly y → 0 as t →∞.

34. We notice that y(t) = ce−t + 3 approaches 3 as t → ∞. We just need to find a first-
order linear differential equation having that solution. We notice that if y(t) = f + g, then
y′ + y = f ′ + f + g′ + g. Here, let f = ce−t and g(t) = 3. Then f ′ + f = 0 and g′ + g = 3.
Therefore, y(t) = ce−t + 3 satisfies the equation y′ + y = 3. That is, the equation y′ + y = 3
has the desired properties.

35. We notice that y(t) = ce−t + 3 − t approaches 3 − t as t → ∞. We just need to find a
first-order linear differential equation having that solution. We notice that if y(t) = f + g,
then y′ + y = f ′ + f + g′ + g. Here, let f = ce−t and g(t) = 3 − t. Then f ′ + f = 0
and g′ + g = −1 + 3 − t = −2 − t. Therefore, y(t) = ce−t + 3 − t satisfies the equation
y′ + y = −2− t. That is, the equation y′ + y = −2− t has the desired properties.

36. We notice that y(t) = ce−t + 2t− 5 approaches 2t− 5 as t →∞. We just need to find a
first-order linear differential equation having that solution. We notice that if y(t) = f + g,
then y′ + y = f ′ + f + g′ + g. Here, let f = ce−t and g(t) = 2t − 5. Then f ′ + f = 0
and g′ + g = 2 + 2t − 5 = 2t − 3. Therefore, y(t) = ce−t + 2t − 5− satisfies the equation
y′ + y = 2t− 3. That is, the equation y′ + y = 2t− 3 has the desired properties.

37. We notice that y(t) = ce−t + 4− t2 approaches 4− t2 as t →∞. We just need to find a
first-order linear differential equation having that solution. We notice that if y(t) = f + g,
then y′ + y = f ′ + f + g′ + g. Here, let f = ce−t and g(t) = 4 − t2. Then f ′ + f = 0 and
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g′ + g = −2t + 4− t2 = 4− 2t− t2. Therefore, y(t) = ce−t + 2t− 5− satisfies the equation
y′ + y = 4− 2t− t2. That is, the equation y′ + y = 4− 2t− t2 has the desired properties.

38. Multiplying the equation by ea(t−t0), we have

ea(t−t0)y′ + aea(t−t0)y = ea(t−t0)g(t)

=⇒ (ea(t−t0)y)′ = ea(t−t0)g(t)

=⇒ y(t) =

∫ t

t0

e−a(t−s)g(s) ds + e−a(t−t0)y0.

Assuming g(t) → g0 as t →∞,
∫ t

t0

e−a(t−s)g(s) ds →
∫ t

t0

e−a(t−s)g0 ds =
g0

a
− e−a(t−t0)

a
g0 → g0

a
as t →∞

For an example, let g(t) = e−t +1. Assume a 6= 1. By undetermined coefficients, we look
for a solution of the form y = ce−at + Ae−t + B. Substituting a function of this form into
the differential equation leads to the equation

[−A + aA]e−t + aB = e−t + 1 =⇒ −A + aA = 1 and aB = 1.

Therefore, A = 1/(a − 1), B = 1/a and y = ce−at + 1
a−1

e−t + 1/a. The initial condition

y(0) = y0 implies y(t) = (y0 − 1
a−1

− 1
a
)e−at + 1

a−1
e−t + 1/a → 1/a as t →∞.

39.

(a) The integrating factor is e
R

p(t) dt. Multiplying by the integrating factor, we have

e
R

p(t) dty′ + e
R

p(t) dtp(t)y = 0.

Therefore, (
e
R

p(t) dty
)′

= 0

which implies
y(t) = Ae−

R
p(t) dt

is the general solution.

(b) Let y = A(t)e−
R

p(t) dt. Then in order for y to satisfy the desired equation, we need

A′(t)e−
R

p(t) dt − A(t)p(t)e−
R

p(t) dt + A(t)p(t)e−
R

p(t) dt = g(t).

That is, we need
A′(t) = g(t)e

R
p(t) dt.

(c) From equation (iv), we see that

A(t) =

∫ t

0

g(τ)e
R

p(τ) dτ dτ + C.

Therefore,

y(t) = e−
R

p(t) dt

(∫ t

0

g(τ)e
R

p(τ) dτ dτ + C

)
.
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