
1.
(a) Rewrite the equation as dy

5− y
= dt

and then integrate both sides. Doing so, we see that − ln |5 − y| = t + c. Applying
the exponential function, we have 5 − y = ce−t. Substituting in our initial condition
y(0) = y0, we have 5− y0 = c. Therefore, our solution is y(t) = 5 + (y0 − 5)e−t.
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(b) Rewrite the equation as
dy

5− 2y
= dt

and then integrate both sides. Doing so, we see that ln |5 − 2y| = −2t + c. Applying
the exponential function, we have 5 − 2y = ce−2t. Substituting in our initial condition
y(0) = y0, we have 5− 2y0 = c. Therefore, our solution is y(t) = (5/2)+ [y0− (5/2)]e−2t
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(c) Rewrite the equation as
dy

10− 2y
= dt

and then integrate both sides. Doing so, we see that ln |10 − 2y| = −2t + c. Applying
the exponential function, we have 10− 2y = ce−2t. Substituting in our initial condition
y(0) = y0, we have 10− 2y0 = c. Therefore, our solution is y(t) = 5 + [y0 − 5]e−2t
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The equilibrium solution is y = 5 in (a) and (c), y = 5/2 in (b). The solution approaches
equilibrium faster in (b) and (c) than in (a).

2.

(a) Rewrite the equation as
dy

y − 5
= dt

and then integrate both sides. Doing so, we see that ln |y − 5| = t + c. Applying the
exponential function, we have y−5 = cet. Substituting in our initial condition y(0) = y0,
we have y0 − 5 = c. Therefore, our solution is y(t) = 5 + [y0 − 5]et
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(b) Rewrite the equation as
dy

2y − 5
= dt

and then integrate both sides. Doing so, we see that ln |2y − 5| = 2t + c. Applying
the exponential function, we have 2y − 5 = ce2t. Substituting in our initial condition
y(0) = y0, we have 2y0 − 5 = c. Therefore, our solution is y(t) = (5/2) + [y0 − (5/2)]e2t
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(c) Rewrite the equation as
dy

2y − 10
= dt

and then integrate both sides. Doing so, we see that ln |2y − 10| = 2t + c. Applying
the exponential function, we have 2y − 10 = ce2t. Substituting in our initial condition
y(0) = y0, we have 2y0 − 10 = c. Therefore, our solution is y(t) = 5 + [y0 − 5]e2t
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The equilibrium solution is y = 5 in (a) and (c), y = 5/2 in (b); solution diverges from
equilibrium faster in (b) and (c) than in (a).

3.

(a) Rewrite the equation as
dy

b− ay
= dt

and then integrate both sides. Doing so, we see that ln |b− ay| = −at + c. Applying the
exponential function, we have b− ay = ce−at, or y = ce−at + (b/a)

(b) Below we show solution curves for various initial conditions under the cases a = 1, b = 1,
a = 5, b = 1, a = 1, b = 5 and a = 5, b = 5, respectively.
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(c) (i) As a increases, the equilibrium is lower and is approached more rapidly. (ii) As b
increases, the equilibrium is higher. (iii) As a and b increase, but a/b remains the same,
the equilibrium remains the same and is approached more rapidly.

4.

(a) The equilibrium solution occurs when dy/dt = ay − b = 0. Therefore, the equilibrium
solution is ye = b/a

(b) If Y (t) = y − ye, then Y ′(t) = y′ − y′e = y′ = ay − b = a(Y + ye) − b = aY + aye − b =
aY + a(b/a)− b = 0 = aY . Therefore, Y satisfies the equation Y ′ = aY .

5. The solution of the homogeneous problem is y = ce−2t. Therefore, we assume the solution
will have the form y = ce−2t+At+B. Substituting a function of this form into the differential
equation leads to the equation

2At + A + 2B = t− 3.

Equating like coefficients, we see that A = 1/2 and B = −7/4. Therefore, the general
solution is

y = ce−2t +
1

2
t− 7

4
.

6. The solution of the homogeneous problem is y = ce3t. Therefore, we assume the solution
will have the form y = ce3t + Ae−t. Substituting a function of this form into the differential
equation leads to the equation

−4Ae−t = e−t.

Equating like coefficients, we see that A = −1/4. Therefore, the general solution is

y = ce3t − 1

4
e−t.

7. The solution of the homogeneous problem is y = ce−t. Therefore, we assume the solution
will have the form y = ce−t + A cos(2t) + B sin(2t). Substituting a function of this form into
the differential equation leads to the equation

[−2A + B] sin(2t) + [2B + A] cos(2t) = 3 cos(2t).

Solving the two equations, −2A+B = 0 and 2B +A = 3, we see that A = 3/5 and B = 6/5.
Therefore, the general solution is

y = ce−t +
3

5
cos(2t) +

6

5
sin(2t).

8. The solution of the homogeneous problem is y = ce2t. Therefore, we assume the solution
will have the form y = ce2t + A cos(t) + B sin(t). Substituting a function of this form into
the differential equation leads to the equation

[−A− 2B] sin(t) + [B − 2A] cos(t) = 2 sin(t).
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Solving the system of equations −A− 2B = 2 and B − 2A = 0, we see that A = −2/5 and
B = −4/5. Therefore, the general solution is

y = ce2t − 2

5
cos(t)− 4

5
sin(t).

9. The solution of the homogeneous problem is y = ce−2t. Therefore, we assume the solution
will have the form y = ce−2t + At + B + C cos(t)−D sin(t). Substituting a function of this
form into the differential equation leads to the equation

2At + [A + 2B] + [C + 2D] cos(t) + [2C −D] sin(t) = 2t + 3 sin(t).

Equating like coefficients, we see that A = 1, B = −1/2, C = 6/5 and D = −3/5. Therefore,
the general solution is

y = ce−2t + t− 1

2
+

6

5
sin(t)− 3

5
cos(t).

10. The solution of the homogeneous problem is y = ce2t. Therefore, we assume the solution
will have the form y = ce2t + Aet + Bt2 + Ct + D. Substituting a function of this form into
the differential equation leads to the equation

−Aet − 2Bt2 + [2B − 2C]t + [C − 2D] = 3et + t2 + 1.

Equating like coefficients, we see that A = −3, B = −1/2, C = −1/2 and D = −3/4.
Therefore, the general solution is

y = ce2t − 3et − 1

2
t2 − 1

2
t− 3

4
.

11.

(a) The general solution is p(t) = 900 + cet/2. Plugging in for the initial condition, we have
p(t) = 900+(p0−900)et/2. With p0 = 850, the solution is p(t) = 900−50et/2. To find the
time when the population becomes extinct, we need to find the time T when p(T ) = 0.
Therefore, 900 = 50eT/2, which implies eT/2 = 18, and, therefore, T = 2 ln 18 ∼= 5.78
months.

(b) Using the general solution, p(t) = 900 + (p0 − 900)et/2, we see that the population will
become extinct at the time T when 900 = (900−p0)e

T/2. That is, T = 2 ln[900/(900−p0)]
months

(c) Using the general solution, p(t) = 900 + (p0 − 900)et/2, we see that the population after
1 year (12 months) will be p(6) = 900 + (p0 − 900)e6. If we want to know the initial
population which will lead to extinction after 1 year, we set p(6) = 0 and solve for p0.
Doing so, we have (900− p0)e

6 = 900 which implies p0 = 900(1− e−6) ∼= 897.8

12.
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(a) The general solution is p(t) = p0e
rt, where t is measured in days. If the population

doubles in 30 days, then p(30) = 2p0 = p0e
30r. Therefore, r = (ln 2)/30 day−1.

(b) If the population doubles in N days, then p(N) = 2p0 = p0e
Nr. Therefore, r = (ln 2)/N

day−1

13.

(a) The solution is given by v(t) = 35(1 − e−0.28t). The limiting velocity is 35 m/sec.
Therefore, we want to find the time T when v(T ) = .98 · 35 = 34.3 m/sec. Plugging
this value into our equation for v, we have 34.3 = 35(1− e−0.28T ), or e−0.28T = .02 which
implies T = (ln 50)/0.28 ∼= 13.97 sec

(b) To find the position, we integrate the velocity function above. For v(t) = 35(1− e−0.28t),
the height is given by s(t) =

∫
v(t) = 35t + 125te−0.28t dt + C. Assuming, s(0) = 0, we

see that c = −125. Therefore, s(t) = 35t + 125e−0.28t − 125. When T = 13.97 seconds,
we see that the distance traveled is approximately 366.5 m.

14.

(a) Assuming no air resistance, Newton’s Second Law can be expressed as

m
dv

dt
= mg

where g is the gravitational constant. Dividing the above equation by m and assuming
that the initial velocity is zero, we see that our initial value problem is dv/dt = 9.8,
v(0) = 0

(b) We are assuming the object is released from a height of 300 meters above the ground.
The height at a later time t satisfies ds/dt = v = 9.8t. Taking the point of release as
the origin and integrating the above equation for s, we have s(t) = 4.9t2. We need to
find the time T when s(T ) = 300. That is, 4.9T 2 = 300. Solving this equation, we have
T =

√
300/4.9 ∼= 7.82 sec

(c) Using the equation v = 9.8t, we see that when T ∼= 7.82 seconds, v ∼= 76.68 m/sec

15.

(a) If we are assuming that the drag force is proportional to the square of the velocity,
equation (1) becomes

m
dv

dt
= mg − γv2.

Plugging in m = 0.025, g = 9.8, the equation can be written as

dv

dt
= 9.8− γ

.025
v2.
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If the limiting velocity is 35 m/sec, then γ(35)2 = 9.8 · .025 which implies γ = 0.0002.
Therefore,

dv

dt
= 9.8− 0.008v2,

or
dv

dt
= [(35)2 − v2]/125.

(b) The equation can be rewritten as

dv

(35)2 − v2
=

dt

125
.

Integrating both sides, we have

ln

∣∣∣∣
v + 35

v − 35

∣∣∣∣ =
70

125
t + c.

Plugging in the initial condition v(0) = 0, we have c = 0. Applying the exponential
function to both sides of the equation, we have

v + 35 = e70t/125(35− v).

Solving this equation for v, we have

v(t) = 35

[
e70t/125 − 1

e70t/125 + 1

]

or

v(t) = 35

[
e35t/125(e35t/125 − e−35t/125)

e35t/125(e35t/125 + e−35t/125)

]
= 35 tanh(7t/25)

(c) Below we show the graphs of v(t) above (the top curve) and the solution to the problem
in example 2 (the bottom curve)
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(d) The quadratic force leads to the falling object attaining its limiting velocity sooner.
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(e) The distance x(t) =
∫

v(t) dt =
∫

35 tanh(7t/25) dt = 125 ln cosh(7t/25).

(f) Plugging 300 in for x(T ) in the answer to part (d), we have 300 = 125 ln cosh(7T/25).
Therefore, T = (25/7)arccosh(e12/5) ∼= 11.04 sec

16.

(a) The general solution of the equation is Q(t) = ce−rt. Given that Q(0) = 100, we have
c = 100. Assuming that Q(1) = 82.04, we have 82.04 = 100e−r. Solving this equation
for r, we have r = − ln(82.04/100) = .19796 per week or r = 0.02828 per day.

(b) Using the form of the general solution and r found above, we have Q(t) = 100e−0.02828t

(c) Let T be the time it takes the isotope to decay to half of its original amount. From part
(b), we conclude that .5 = e−0.2828T which implies that T = − ln(0.5)/0.2828 ∼= 24.5
days

17. The general solution of the differential equation is Q(t) = Q0e
−rt where Q0 = Q(0). Let

τ be the half-life. Plugging τ into the equation for Q, we have 0.5Q0 = Q0e
−rτ . Therefore,

0.5 = e−rτ which implies τ = − ln(0.5)/r = ln(2)/r. Therefore, we conclude that rτ = ln 2.

18. The differential equation for radium-226 is dQ/dt = −rQ. The solution of this equation
is Q(t) = Q0e

−rt. Using the result from exercise 17 and the fact that the half-life is 1620
years, we conclude that the decay rate r = ln(2)/τ = ln(2)/1620. Let T be the time it takes
for the isotope to decay to 3/4 of its original amount. Then

3

4
Q0 = Q0e

− ln(2)T/1620

which implies T = −1620 ln(3/4)/ ln(2) ∼= 672.4 years.

19.

(a) We rewrite the equation as
du

u− T
= −k.

Integrating both sides, we have ln |u− T | = −kt + c. Applying the exponential function
to both sides of the equation and plugging in the initial condition u(0) = u0, we arrive
at the general solution u(t) = T + (u0 − T )e−kt

(b) Since T is a constant, we see that if u satisfies the equation du/dt = −k(u − T ), then
d(u−T )/dt = du/dt = −k(u−T ). Then using the result from exercise 17 above, we know
that the relationship between the decay rate k and the time τ when the temperature
difference is reduced by half satisfies the relationship kτ = ln 2.

20. Based on exercise 19 above, the differential equation for the temperature in the room is
given by

du

dt
= −.15(u− 10)

17



with an initial condition of u(0) = 70. As shown in exercise 19 above, the solution is given by
u(t) = 10+60e−0.15t. We need to find the time t such that u(t) = 32. That is, 22 = 60e−0.15t.
Solving this equation for t, we have t = − ln(22/60)/0.15 ∼= 6.69 hours.

21.

(a) The solution of the differential equation with q(0) = 0 is q(t) = CV (1− e−t/RC). Below
we show a sketch in the case when C = V = R = 1.
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(b) As t →∞, the exponential term vanishes. Therefore, the limiting value is qL = CV

(c) If the battery is removed, then V = 0. Therefore, our differential equation is

R
dq

dt
+

q

C
= 0.

Also, we are assuming that q(t1) = qL = CV . Solving the differential equation, we have
q = ce−t/RC . Using the initial condition q(t1) = CV , we have q(t1) = ce−t1/RC = CV .
Therefore, c = CV et1/RC . We conclude that q(t) = CV exp[−(t − t1)/RC] Below we
show a graph of the solution taking C = V = R = 1 and t1 = 5.
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22.
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(a) The accumulation rate of the chemical is (0.01)(300) grams per hour. At any given time
t, the concentration of the chemical in the pond is Q(t)/106 grams per gallon. Therefore,
the chemical leaves the pond at the rate of 300Q(t)/106 grams per hour. Therefore, the
equation for Q is given by Q′ = 3(1 − 10−4Q). Since initially there are no chemicals in
the pond, Q(0) = 0.

(b) Rewrite the equation as
dQ

10000−Q
= 0.0003dt.

Integrating both sides of this equation, we have ln |10000−Q| = −0.0003t+C. Applying
the exponential function to both sides of this equation, we have 10000−Q = ce−0.0003t.
Assuming Q(0) = 0, we see that c = 10000. Therefore, Q(t) = 10000(1−e−0.0003t) where
t is measured in hours. Since 1 year is 8760 hours, we see that the amount of chemical
in the pond after 1 year is Q(8760) = 10000(1− e−0.0003t) ∼= 9277.77 grams.

(c) With the accumulation rate now equal to zero, the equation becomes dQ/dt = −0.0003Q(t)
grams/hour. Resetting the time variable, we assign the new initial value as Q(0) =
9277.77 grams.

(d) The solution of the differential equation is Q(t) = 9277.77e−0.0003t after t hrs. Therefore,
after 1 year Q(8760) ∼= 670.07 g

(e) Letting T be the amount of time after the source is removed, we obtain the equation
10 = 9277.77e−0.0003t. Solving this equation, we have T − ln(10/9277.77)/0.0003 ∼= 2.60
years

(f)
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23.

(a) We are assuming that no dye is entering the pool. The rate at which the dye is leaving
the pool is given by 200 · (q/60, 000) g/min = q/300 g/min. Since initially, there are 5
kg of the dye in the pool, the initial value problem is q′ = −q/300, q(0) = 5000 g
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(b) The solution of this initial value problem is q(t) = 5000e−t/300 where g is in grams and 
 t is in minutes.

 (c) In 4 hours (240 minutes), the amount of dye in the pool will be q(240) ∼= 2246.6 
 grams. Since there is 60, 000 gallons of water in the pool, the concentration will be 
 2246.6/60, 000 ∼= 0.0374 grams/gallon. So, no, the pool will not be reduced to the 
 desired level within 4 hours.

(d) Let T be the time that it takes to reduce the concentration level of the dye to 0.02 
 grams/gallon. At that time, the amount of dye in the pool needs to be 1200 grams (as 
 1200/60000 = 0.02). Plugging q(T ) = 1200 into our equation for q, we have 1200 = 
 5000e−T/300. Solving this equation, we have T = 300 ln(25/6) ∼= 7.136 hr

 (e) Let r be the necessary flow rate. As in part (a), if the water leaves the pool at the rate of  
 r gallons/minute, then the initial value problem will be q′ = −rq/60, 000, q(0) = 5000. 
 The solution of this initial value problem is given by q(t) = 5000e−rt/60,000. We need 
 to find the decay rate r such that when t = 240 minutes, the amount of dye q = 1200 
 grams. That is, we need to solve the equation 1200 = 5000e−240r/60,000. Solving this 
 equation, we have r = 250 ln(25/6) ∼= 256.78 gal/min 
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