1.
(a)

Rewrite the equation as dy i

55—y
and then integrate both sides. Doing so, we see that —In|5 — y| = ¢t + ¢. Applying
the exponential function, we have 5 — y = ce™!. Substituting in our initial condition

y(0) = yo, we have 5 — yy = c. Therefore, our solution is y(t) =5+ (yo — 5)e".
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Rewrite the equation as
d
L _at
5 — 2y
and then integrate both sides. Doing so, we see that In|5 — 2y| = —2t 4+ ¢. Applying

the exponential function, we have 5 — 2y = ce 2. Substituting in our initial condition

y(0) = yo, we have 5 — 2yy = ¢. Therefore, our solution is y(t) = (5/2) + [yo — (5/2)]e ™%

109

y(®)

Rewrite the equation as

= dt
10 — 2y

and then integrate both sides. Doing so, we see that In |10 — 2y| = —2t + ¢. Applying
the exponential function, we have 10 — 2y = ce~2!. Substituting in our initial condition
y(0) = yo, we have 10 — 2y = c. Therefore, our solution is y(t) = 5 + [yo — 5le ™%
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(b)

The equilibrium solution is y = 5 in (a) and (c¢), y = 5/2 in (b). The solution approaches
equilibrium faster in (b) and (c) than in (a).

Rewrite the equation as
d
YW _
y—>5
and then integrate both sides. Doing so, we see that In|y — 5| = ¢ + ¢. Applying the
exponential function, we have y —5 = ce’. Substituting in our initial condition y(0) = yp,

we have yo — 5 = ¢. Therefore, our solution is y(t) = 5 + [y — 5]e*
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Rewrite the equation as
dy
2y —5
and then integrate both sides. Doing so, we see that In|2y — 5| = 2t 4+ ¢. Applying
the exponential function, we have 2y — 5 = ce?. Substituting in our initial condition
y(0) = yo, we have 2yy — 5 = ¢. Therefore, our solution is y(t) = (5/2) + [yo — (5/2)]e**

dt
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(¢) Rewrite the equation as

dy
2y — 10
and then integrate both sides. Doing so, we see that In |2y — 10| = 2t + ¢. Applying

the exponential function, we have 2y — 10 = ce?*. Substituting in our initial condition
y(0) = yo, we have 2yg — 10 = c. Therefore, our solution is y(t) = 5 + [yo — 5|e*

dt
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The equilibrium solution is ¥ = 5 in (a) and (c¢), ¥y = 5/2 in (b); solution diverges from
equilibrium faster in (b) and (c) than in (a).

Rewrite the equation as
d
Y _at
b—ay

and then integrate both sides. Doing so, we see that In |b — ay| = —at + c. Applying the
exponential function, we have b — ay = ce™ ™, or y = ce”* + (b/a)

Below we show solution curves for various initial conditions under the cases a = 1,b =1,
a=5b=1a=1,0=>5and a =5,b =5, respectively.
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(c) (i) As a increases, the equilibrium is lower and is approached more rapidly. (ii) As b
increases, the equilibrium is higher. (iii) As a and b increase, but a/b remains the same,
the equilibrium remains the same and is approached more rapidly.

4.

(a) The equilibrium solution occurs when dy/dt = ay — b = 0. Therefore, the equilibrium
solution is y. = b/a

b) HY(t) =y —vye, then Y'(t) = —¢y. =y =ay—b=a(Y +y.) —b=aY +ay. — b=
aY +a(b/a) —b=0=aY. Therefore, Y satisfies the equation Y’ = aY.

5. The solution of the homogeneous problem is y = ce=2. Therefore, we assume the solution
will have the form y = ce™2'+ At+ B. Substituting a function of this form into the differential
equation leads to the equation

2At+ A+ 2B =1t - 3.

Equating like coefficients, we see that A = 1/2 and B = —7/4. Therefore, the general
solution is
=ce ? + 1t - z
V= 2 T4

6. The solution of the homogeneous problem is y = ce®. Therefore, we assume the solution
will have the form y = ce3® + Ae~!. Substituting a function of this form into the differential
equation leads to the equation

—4Ae7 "t =e".
Equating like coefficients, we see that A = —1/4. Therefore, the general solution is
1
. e
Yy =ce 1€

7. The solution of the homogeneous problem is y = ce™*. Therefore, we assume the solution
will have the form y = ce™" + A cos(2t) + Bsin(2t). Substituting a function of this form into
the differential equation leads to the equation

[—2A + B]sin(2t) + [2B + A] cos(2t) = 3 cos(2t).

Solving the two equations, —2A+ B = 0 and 2B+ A = 3, we see that A =3/5 and B = 6/5.
Therefore, the general solution is

3 6
y=ce '+ R cos(2t) + R sin(2t).

8. The solution of the homogeneous problem is y = ce?. Therefore, we assume the solution
will have the form y = ce* + Acos(t) + Bsin(t). Substituting a function of this form into
the differential equation leads to the equation

[—A —2B]sin(t) + [B — 2A] cos(t) = 2sin(t).

13



Solving the system of equations —A — 2B =2 and B — 2A = 0, we see that A = —2/5 and
B = —4/5. Therefore, the general solution is

2 4
y = ce* — = cos(t) — R sin(t).

9. The solution of the homogeneous problem is y = ce=2. Therefore, we assume the solution
will have the form y = ce " + At + B + C cos(t) — Dsin(t). Substituting a function of this
form into the differential equation leads to the equation

2At + [A+2B] + [C + 2D] cos(t) + [2C — D]sin(t) = 2t + 3sin(t).

Equating like coefficients, we see that A =1, B=—1/2, C = 6/5 and D = —3/5. Therefore,
the general solution is

1 6 3
y=ce +t— 3 + R sin(t) — £ cos(t).

10. The solution of the homogeneous problem is y = ce?*. Therefore, we assume the solution
will have the form y = ce?® + Ae! + Bt> + Ct + D. Substituting a function of this form into
the differential equation leads to the equation

—Ae' —2Bt* + 2B — 2C|t + [C — 2D] = 3¢" + * + 1.

Equating like coefficients, we see that A = -3, B = —1/2, C = —1/2 and D = —3/4.
Therefore, the general solution is
ot 1, 1 3

Yy = ce —Set—ﬁt _§t_4_1'

11.

(a) The general solution is p(t) = 900 + ce’/2. Plugging in for the initial condition, we have
p(t) = 900+ (po—900)et/2. With py = 850, the solution is p(t) = 900 —50¢*/2. To find the
time when the population becomes extinct, we need to find the time 7" when p(7T) = 0.
Therefore, 900 = 50e’/2, which implies /2 = 18, and, therefore, T = 2In18 = 5.78
months.

(b) Using the general solution, p(t) = 900 + (py — 900)e!/2, we see that the population will
become extinct at the time T'when 900 = (900—pg)e?/2. That is, T' = 21n[900/(900—py)]
months

(c) Using the general solution, p(t) = 900 + (po — 900)e’/?, we see that the population after
1 year (12 months) will be p(6) = 900 + (po — 900)e®. If we want to know the initial
population which will lead to extinction after 1 year, we set p(6) = 0 and solve for py.
Doing so, we have (900 — pg)e® = 900 which implies py = 900(1 — ¢~ %) = 897.8

12.
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(a)

(b)

13.
(a)

14.

The general solution is p(t) = pee™, where t is measured in days. If the population
doubles in 30 days, then p(30) = 2py = pee3?”. Therefore, r = (In2)/30 day .

If the population doubles in N days, then p(N) = 2py = poe™". Therefore, r = (In2)/N
day~!

The solution is given by v(t) = 35(1 — e %?%). The limiting velocity is 35 m/sec.
Therefore, we want to find the time 7" when v(7") = .98 - 35 = 34.3 m/sec. Plugging
this value into our equation for v, we have 34.3 = 35(1 — e %%T) or ¢70287 = 02 which
implies 7' = (In50)/0.28 = 13.97 sec

To find the position, we integrate the velocity function above. For v(t) = 35(1 — e~ 0-28%),

the height is given by s(t) = [v(t) = 35t + 125te *?% dt + C. Assuming, s(0) = 0, we
see that ¢ = —125. Therefore, s(t) = 35t + 125¢7 928 — 125. When T = 13.97 seconds,
we see that the distance traveled is approximately 366.5 m.

Assuming no air resistance, Newton’s Second Law can be expressed as

dv

M =mg

where ¢ is the gravitational constant. Dividing the above equation by m and assuming
that the initial velocity is zero, we see that our initial value problem is dv/dt = 9.8,
v(0) =0

We are assuming the object is released from a height of 300 meters above the ground.
The height at a later time ¢ satisfies ds/dt = v = 9.8t. Taking the point of release as
the origin and integrating the above equation for s, we have s(t) = 4.9t>. We need to
find the time T" when s(T) = 300. That is, 4.97% = 300. Solving this equation, we have
T = 4/300/4.9 = 7.82 sec

Using the equation v = 9.8¢, we see that when T 2 7.82 seconds, v = 76.68 m/sec

If we are assuming that the drag force is proportional to the square of the velocity,

equation (1) becomes
dv

m— = mg — yv°.

dt
Plugging in m = 0.025, g = 9.8, the equation can be written as

dv T2

15



()

If the limiting velocity is 35 m/sec, then v(35)% = 9.8 - .025 which implies v = 0.0002.

Therefore,
d
% 98— 0.00802,
dt
or d
v
— =1[(35)% — v?]/125.
i [(35)" —v7]/

The equation can be rewritten as

dv ot
(35)2 —v2 125
Integrating both sides, we have
v+ 35 70
In = —t+c
v—35 125

Plugging in the initial condition v(0) = 0, we have ¢ = 0. Applying the exponential
function to both sides of the equation, we have

v+ 35 = 12535 — p).
Solving this equation for v, we have

e70t/125 _
v(t) =35 L70t/125 + 1]

or
635t/125(635t/125 _ e—35t/125)

vu(t) =35 [63515/125(63515/125 n e—35t/125):| = 35 tanh(7¢/25)

Below we show the graphs of v(t) above (the top curve) and the solution to the problem
in example 2 (the bottom curve)

351 -
301
254
207
154 y

104 /

10

The quadratic force leads to the falling object attaining its limiting velocity sooner.
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(e) The distance x(t) = [v(t)dt = [ 35tanh(7¢/25) dt = 1251n cosh(7t/25).

(f) Plugging 300 in for z(7") in the answer to part (d), we have 300 = 1251n cosh(777/25).
Therefore, T' = (25/7)arccosh(e'?/®) = 11.04 sec

16.

(a) The general solution of the equation is Q(t) = ce™™. Given that Q(0) = 100, we have
¢ = 100. Assuming that Q(1) = 82.04, we have 82.04 = 100e™". Solving this equation
for r, we have r = —1n(82.04/100) = .19796 per week or r = 0.02828 per day.

(b) Using the form of the general solution and r found above, we have Q(t) = 100e~%-02828¢

(c) Let T be the time it takes the isotope to decay to half of its original amount. From part
(b), we conclude that .5 = e %27 which implies that T = —1n(0.5)/0.2828 = 24.5
days

17. The general solution of the differential equation is Q(t) = Qpe™"" where Qo = Q(0). Let
7 be the half-life. Plugging 7 into the equation for @), we have 0.5Q¢ = Qoe™"". Therefore,
0.5 = e"" which implies 7 = —In(0.5)/r = In(2)/r. Therefore, we conclude that r7 =In2.

18. The differential equation for radium-226 is dQ)/dt = —r(@). The solution of this equation
is Q(t) = Qoe ™. Using the result from exercise 17 and the fact that the half-life is 1620
years, we conclude that the decay rate r = In(2)/7 = In(2)/1620. Let T" be the time it takes
for the isotope to decay to 3/4 of its original amount. Then

§QO _ Qoe—ln(Z)T/162O
4

which implies T'= —16201n(3/4)/In(2) = 672.4 years.
19.
(a) We rewrite the equation as
du
u—"T
Integrating both sides, we have In |u —T'| = —kt + ¢. Applying the exponential function

to both sides of the equation and plugging in the initial condition u(0) = g, we arrive
at the general solution u(t) = T + (ug — T)e™*

= —k.

(b) Since T' is a constant, we see that if u satisfies the equation du/dt = —k(u — T'), then
d(u—T)/dt = du/dt = —k(u—T). Then using the result from exercise 17 above, we know
that the relationship between the decay rate k£ and the time 7 when the temperature
difference is reduced by half satisfies the relationship k7 = In 2.

20. Based on exercise 19 above, the differential equation for the temperature in the room is

given by
du

Y 15m—1
p” 5(u — 10)
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with an initial condition of u(0) = 70. As shown in exercise 19 above, the solution is given by
u(t) = 10+ 60e~%15*. We need to find the time ¢ such that u(t) = 32. That is, 22 = 60e %15,
Solving this equation for ¢, we have t = —1In(22/60)/0.15 = 6.69 hours.

21.

(a) The solution of the differential equation with ¢(0) = 0 is q(t) = CV (1 — /%), Below
we show a sketch in the case when C' =V = R = 1.

1 L
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/
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027/

0 2 4 6 8 10

(b) Ast — oo, the exponential term vanishes. Therefore, the limiting value is g, = CV
(c) If the battery is removed, then V' = 0. Therefore, our differential equation is

dg  q

R—+—==0.

it

Also, we are assuming that ¢(t;) = ¢, = C'V. Solving the differential equation, we have
q = ce /R, Using the initial condition ¢(t;) = OV, we have q(t,) = ce 4/ = OV,
Therefore, ¢ = CVel*/FC We conclude that ¢(t) = CV exp[—(t — t;)/RC] Below we
show a graph of the solution taking C'=V = R =1 and ¢; = 5.
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22.
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(a) The accumulation rate of the chemical is (0.01)(300) grams per hour. At any given time
t, the concentration of the chemical in the pond is Q(¢)/10° grams per gallon. Therefore,
the chemical leaves the pond at the rate of 300Q(t)/10° grams per hour. Therefore, the
equation for @ is given by Q" = 3(1 — 107*Q). Since initially there are no chemicals in
the pond, Q(0) = 0.

(b) Rewrite the equation as
dQ
10000 — Q
Integrating both sides of this equation, we have In |10000— Q| = —0.0003t+C'". Applying
the exponential function to both sides of this equation, we have 10000 — Q = ce 00003t
Assuming Q(0) = 0, we see that ¢ = 10000. Therefore, Q(t) = 10000(1 — e~0993%) where

t is measured in hours. Since 1 year is 8760 hours, we see that the amount of chemical
in the pond after 1 year is Q(8760) = 10000(1 — e0-9003t) = 9277.77 grams.

= 0.0003dt.

(c) With the accumulation rate now equal to zero, the equation becomes d@/dt = —0.0003Q(t)
grams/hour. Resetting the time variable, we assign the new initial value as Q(0) =
9277.77 grams.

(d) The solution of the differential equation is Q(t) = 9277.77e~%9093¢ after ¢ hrs. Therefore,
after 1 year Q(8760) = 670.07 g

(e) Letting T be the amount of time after the source is removed, we obtain the equation
10 = 9277.77¢~%0903 " Solving this equation, we have T — In(10/9277.77)/0.0003 = 2.60
years

BOOO - "

000

#000

b000{

0 2000 4000 6000 8000
t

23.

(a) We are assuming that no dye is entering the pool. The rate at which the dye is leaving
the pool is given by 200 - (¢/60,000) g/min = ¢/300 g/min. Since initially, there are 5
kg of the dye in the pool, the initial value problem is ¢ = —¢/300, ¢(0) = 5000 g
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(b)

(c)

The solution of this initial value problem is ¢(t) = 5000e~*/3% where g is in grams and
t is in minutes.

In 4 hours (240 minutes), the amount of dye in the pool will be ¢(240) = 2246.6
grams. Since there is 60,000 gallons of water in the pool, the concentration will be
2246.6/60,000 = 0.0374 grams/gallon. So, no, the pool will not be reduced to the
desired level within 4 hours.

Let T be the time that it takes to reduce the concentration level of the dye to 0.02
grams/gallon. At that time, the amount of dye in the pool needs to be 1200 grams (as
1200/60000 = 0.02). Plugging ¢(7") = 1200 into our equation for ¢, we have 1200 =
5000e~7/3%0_ Solving this equation, we have 7' = 3001n(25/6) = 7.136 hr

Let r be the necessary flw rate. Asin part (a), if the water leaves the pool at the rate of
r gallons/minute, then the initial value problem will be ¢' = —rgq/60,000, ¢(0) = 5000.
The solution of this initial value problem is given by ¢(t) = 5000e~"/6009% We need
to fid the decay rate r such that when ¢ = 240 minutes, the amount of dye ¢ = 1200
grams. That is, we need to solve the equation 1200 = 5000e2407/60.000  Qolying this
equation, we have r = 2501n(25/6) = 256.78 gal/min
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