1.

For $y>3 / 2$, the slopes are negative, and, therefore the solutions decrease. For $y<3 / 2$, the slopes are positive, and, therefore, the solutions increase. As a result, $y \rightarrow 3 / 2$ as $t \rightarrow \infty$ 2.

For $y>3 / 2$, the slopes are positive, and, therefore the solutions increase. For $y<3 / 2$, the slopes are negative, and, therefore, the solutions decrease. As a result, y diverges from $3 / 2$ as $t \rightarrow \infty$
3.

For $y>-3 / 2$, the slopes are positive, and, therefore the solutions increase. For $y<-3 / 2$, the slopes are negative, and, therefore, the solutions decrease. As a result, y diverges from $-3 / 2$ as $t \rightarrow \infty$
4.

For $y>-1 / 2$, the slopes are negative, and, therefore the solutions decrease. For $y<-1 / 2$, the slopes are positive, and, therefore, the solutions increase. As a result, $y \rightarrow-1 / 2$ as $t \rightarrow \infty$
5.

For $y>-1 / 2$, the slopes are positive, and, therefore the solutions increase. For $y<-1 / 2$, the slopes are negative, and, therefore, the solutions decrease. As a result, y diverges from $-1 / 2$ as $t \rightarrow \infty$
6.

For $y>-2$, the slopes are positive, and, therefore the solutions increase. For $y<-2$, the slopes are negative, and, therefore, the solutions decrease. As a result, y diverges from -2 as $t \rightarrow \infty$
7. For the solutions to satisfy $y \rightarrow 3$ as $t \rightarrow \infty$, we need $y^{\prime}<0$ for $y>3$ and $y^{\prime}>0$ for $y<3$. The equation $y^{\prime}=3-y$ satisfies these conditions.
8. For the solutions to satisfy $y \rightarrow 2 / 3$ as $t \rightarrow \infty$, we need $y^{\prime}<0$ for $y>2 / 3$ and $y^{\prime}>0$ for $y<2 / 3$. The equation $y^{\prime}=2-3 y$ satisfies these conditions.
9. For the solutions to satisfy y diverges from 2 , we need $y^{\prime}>0$ for $y>2$ and $y^{\prime}<0$ for $y<2$. The equation $y^{\prime}=y-2$ satisfies these conditions.
10. For the solutions to satisfy y diverges from $1 / 3$, we need $y^{\prime}>0$ for $y>1 / 3$ and $y^{\prime}<0$ for $y<1 / 3$. The equation $y^{\prime}=3 y-1$ satisfies these conditions.
11.

$y=0$ and $y=4$ are equilibrium solutions; $y \rightarrow 4$ if initial value is positive; y diverges from 0 if initial value is negative.
12.

$y=0$ and $y=5$ are equilibrium solutions; y diverges from 5 if initial value is greater than $5 ; y \rightarrow 0$ if initial value is less than 5 .
13.

$y=0$ is equilibrium solution; $y \rightarrow 0$ if initial value is negative; y diverges from 0 if initial value is positive.
14.

$y=0$ and $y=2$ are equilibrium solutions; y diverges from 0 if initial value is negative;
$y \rightarrow 2$ if initial value is between 0 and $2 ; y$ diverges from 2 if initial value is greater than 2 .
15. (j)
16. (c)
17. (g)
18. (b)
19. (h)
20. (e)
21.
(a) Let $q(t)$ denote the amount of chemical in the pond at time t. The chemical q will be measured in grams and the time t will be measured in hours. The rate at which the chemical is entering the pond is given by 300 gallons/hour $\cdot .01$ grams $/$ gal $=300$. 10^{-2}. The rate at which the chemical leaves the pond is given by 300 gallons/hour $\cdot q / 1,000,000$ grams $/ \mathrm{gal}=300 \cdot q 10^{-6}$. Therefore, the differential equation is given by $d q / d t=300\left(10^{-2}-q 10^{-6}\right)$.
(b) As $t \rightarrow \infty, 10^{-2}-q 10^{-6} \rightarrow 0$. Therefore, $q \rightarrow 10^{4} \mathrm{~g}$. The limiting amount does not depend on the amount that was present initially.
22. The surface area of a spherical raindrop of radius r is given by $S=4 \pi r^{2}$. The volume of a spherical raindrop is given by $V=4 \pi r^{3} / 3$. Therefore, we see that the surface area $S=c V^{2 / 3}$ for some constant c. If the raindrop evaporates at a rate proportional to its surface area, then $d V / d t=-k V^{2 / 3}$ for some $k>0$.
23. The difference between the temperature of the object and the ambient temperature is $u-70$. Since the difference is decreasing if $u>70$ (and increasing if $u<70$) and the rate constant is 0.05 , the corresponding differential equation is given by $d u / d t=-0.05(u-70)$ where u is measured in degrees Fahrenheit and t is measured in minutes.
24.
(a) Let $q(t)$ be the total amount of the drug (in milligrams) in the body at a given time t (measured in hours). The drug enters the body at the rate of $5 \mathrm{mg} / \mathrm{cm}^{3} \cdot 100 \mathrm{~cm}^{3} / \mathrm{hr}$
$=500 \mathrm{mg} / \mathrm{hr}$, and the drug leaves the body at the rate of $0.4 q \mathrm{mg} / \mathrm{hr}$. Therefore, the governing differential equation si given by $d q / d t=500-0.4 q$.
(b) If $q>1250$, then $q^{\prime}>0$. If $q<1250$, then $q^{\prime}>0$. Therefore, $q \rightarrow 1250$.
25.
(a) Following the discussion in the text, the equation is given by $m v^{\prime}=m g-k v^{2}$.
(b) After a long time, $v^{\prime} \rightarrow 0$. Therefore, $m g-k v^{2} \rightarrow 0$, or $v \rightarrow \sqrt{m g / k}$
(c) We need to solve the equation $\sqrt{.025 \cdot 9.8 / k}=35$. Solving this equation, we see that $k=0.0002 \mathrm{~kg} / \mathrm{m}$
26.

y is asymptotic to $t-3$ as $t \rightarrow \infty$
27.

$y \rightarrow 0$ as $t \rightarrow \infty$
28.

$y \rightarrow \infty, 0$, or $-\infty$ depending on the initial value of y
29.

$y \rightarrow \infty$ or $-\infty$ depending whether the initial value lies above or below the line $y=-t / 2$.
30.

$y \rightarrow \infty$ or $-\infty$ or y oscillates depending whether the initial value of y lies above or below the sinusoidal curve.
31.

$y \rightarrow-\infty$ or is asymptotic to $\sqrt{2 t-1}$ depending on the initial value of y 32.

$y \rightarrow 0$ and then fails to exist after some $t_{f} \geq 0$
33.

$y \rightarrow \infty$ or $-\infty$ depending on the initial value of y

