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a b s t r a c t

The transmission of real-time multimedia streams requires service guarantees, such as limited packet
loss, minimum bandwidth and low delay and jitter, to ensure a good quality of experience (QoE) for
viewers. The spatial and temporal redundancy of videos is addressed by coding algorithms that reduce
the amount of information necessary to represent the images. As a consequence, multimedia traffic
commonly presents variable bit rate behavior and self-similar characteristics. Although the reduction in
bandwidth requirements is highly desirable, the burstiness of traffic leads to problems in network design
and performance prediction. Even a low level of packet loss could severely affect the viewer QoE. In this
paper, we propose a real-time packet payload classifier, implemented with artificial neural network
(ANN) to be used at network routers. A priority packet discard strategy can be implemented to avoid
discarding packets that carry the most relevant information for image reconstruction, thus improving the
perceived quality. This approach does not require changes at the video source to classify outgoing
packets. The ANN was employed because of its good capacity in temporal series recognition and the
possibility of its implementation in real-time systems due to its low computational complexity. The video
traces used for training and validation were encoded with H.264/MPEG-4 Advanced Video Coding and
are publicly available. The priority packet discard strategy was tested through computational simulations.
The QoE was estimated comparing the peak signal-to-noise ratio (PSNR) of original and the received
frames of video, and the results indicate that the proposed method improves the QoE. The implementa-
tion does not require packet payload processing and can be performed with network layer
information only.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The network traffic of video streaming can be self-similar (Dai
et al., 2009) due to video encoding algorithms (codec), where the
frame sizes vary according to the information that the frames carry.
In a network architecture based on packet switching, the burstiness
of network traffic can cause congestion in the router queues, leading
to a possible loss of packets. The packet discard could occur even at
low average utilization levels, as a consequence of traffic burstiness,
leading to a temporary decrease in the quality of experience (QoE).
The delivery of high-quality video is a complex issue, particularly for
networks based on packet-switching techniques. Even the slightest

packet loss in a video stream may result in a severe degradation of
quality (Szymanski and Gilbert, 2009), and 1% or less of packet loss
could severely affect the quality of image, reducing the QoE
(Greengrass et al., 2009).

Numerous algorithms for video encoding have been developed.
Among them, MPEG-2 and MPEG-4 are currently the most used
standards. MPEG-4 is a family of open international standards that
provides tools for use in multimedia applications (Van der Auwera
et al., 2008a). The tools include codecs for encoding audio and
video. MPEG-4 has the advantage of requiring lower transmission
rates compared with its predecessors, MPEG-1 and MPEG-2. Thus,
MPEG-4 allows an improvement in terms of bandwidth utilization,
as well as a decrease in the amount of space for video storage
(Marpe et al., 2006). The MPEG algorithm addresses the temporal
redundancy of videos by representing the sequence of images with
a group of pictures (GOP) that consists of a specific sequence of
frames. The GOP starts with an intra frame (I-frame), which can be
decoded without other frames, followed by bidirectional frames
(B-frames) and predictive frames (P-frames). The P-frames depend
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on information from the nearest previous I- or P-frames and the
B-frames use both past and future I- or P-frames as references for
image representation.

The H.264/MPEG-4 part 10 Advanced Video Coding (AVC)
standard presents improvements in compression efficiency and
is widely used in multimedia application standards and industry
consortia specifications (Seeling and Reisslein, 2012; Maisonneuve
et al., 2009) and for this reason it is the codec we choose to use.
Hereinafter, for brevity, the H.264/MPEG-4 Part 10 AVC standard
shall be referred to as “H.264”. However, although the encoding
used was the H.264, we expect that the proposed method can also
be applied to MPEG-4 or MPEG-2.

Fig. 1 shows the transmission sequence of I-, P- and B-frames
for a video encoded with H.264. The GOP always starts with an
I-frame, followed by B- and then P-frames. The sequence of frames
depends on the encoding settings. The common notation uses the
pair (Y,Z), where Y indicates the number of frames in the GOP and
Z represents the number of B-frames between the P-frames. Fig. 1
illustrates the frame sequence for the (12,2) configuration. As the
I-frames include all the information needed to decode the image
without information from other frames, they are usually of a larger
size than the others. Therefore, more IP packets are needed to
transport an I-frame than to carry other frames, as shown in Fig. 2.

The effects of packet loss in viewer QoE are analyzed in
Greengrass et al. (2009). Discarded packets carrying I-frames could
result in image impairments propagated to all frames in that GOP.
This could last a long time (typically from 0.5 to 1 s); video quality
is recovered only when the decoder receives an unimpaired
I-frame. This kind of distortion happens because the H.264
decoder uses the I-frame as reference to decode the other frames
in the GOP. Depending on which packet is lost, the distortions may
result in several degrees of severity, e.g. the loss of a single IP
packet at the beginning of an I-frame, which contains the frame
header, might have the same effect as losing a whole I-frame.
Greengrass et al. (2009) also indicate that the higher the number
of frames in a GOP, the greater the impairments caused by a
packet loss.

To improve the viewer's QoE, Hong and Won (2010) proposed
the implementation of a packet scheduler algorithm, adjusting the
time intervals between packets based on their significance. The
significance is defined as the importance of a packet to the image
reconstruction and is obtained through analyses of the conse-
quence of loss for each pixel transported by the packet, consider-
ing the GOP structure. This concept was applied to implement a
packet scheduler called the Significance-Aware Packet Scheduler
(SAPS). With SAPS the packets with higher significance will take a
longer inter packet time interval than the less significant packets.
From the network perspective, when the technique is applied, the
resulting traffic has its burstiness modified. This allows routers to
free up some space on their buffers before the next packet arrival.
The most significant packets wait a longer time to be transmitted
and are likely to be preserved in case of network congestion. As a

result, according to the authors, the QoE perceived by the viewers
is improved. SAPS can also process the Explicit Congestion
Notification (Ramakrishnan et al., 2001) to collaborate with net-
work congestion and discard the less significant packets to reduce
the impairments to the QoE. The entire implementation of SAPS is
done at the streaming server. The evaluation of significance
requires payload processing, with high computational complexity,
making it prohibitive to implement in routers.

An algorithm that combines packet scheduling and queue
management is proposed in Huang et al. (2006). The algorithm
improves the transmission of video streams over networks with
bandwidth constraints. Called Active Drop Queue (ADQ), the
algorithm implements three distinct queues: one for the traffic
within the bandwidth limit (conformant queue), one for the traffic
exceeding the bandwidth limit (excess queue), and the last one for
the best-effort traffic. Each packet in queue is associated with a
time stamp. This allows the evaluation of an excess delay beyond a
specified deadline where the transmission of packet is useless.
In case of network congestion, the ADQ removes, from excess
queue, the packets with its deadline expired, freeing the queue to
receive new packets.

An active queue management algorithm based on priority
dropping (PD) and a proportional-integral-derivative (PID) con-
troller is proposed in Xiaogang et al. (2007) using the control
theory, called PID_PD, which first drops the least important
packets when network congestion arises. The packet is marked
by the application layer, writing the priority number to the priority
field of the IP packet. The B-frames receive the least priority and
I-frames receive the higher priority. The results show that the
schema can prevent the high-priority layer or frame from drop-
ping, thus preserving viewer QoE in case of network congestion.

Another strategy to preserve viewer QoE in situations of net-
work congestion is proposed in Schier and Welzl (2009). The
packet classification is based on macroblock distortion estimation,
requires superficial decoding of the video bitstream, and takes in
account important indicators such as the macroblock composition
of frames, temporal dependencies and potential scene cuts. The
results show an increase of perceived video quality by an average
of 3–4 dB in terms of peak signal-to-noise ratio (PSNR).

A survey on methods for Internet traffic identification, using
information available in the network layer to classify the payload
of packets is presented in Callado et al. (2009) and Nguyen and
Armitage (2008). The goal of these methods is to identify the
application protocol without relying on well-known TCP or UDP
port numbers or processing the packet payload. The main applica-
tions are in quality of service (i.e., different applications get
different service from the network), filtering (i.e., threats/attacks
can be blocked), and billing (i.e., per-application charging rates)
(Callado et al., 2009). The methods available for classification are
based on heuristics and use the time interval between packets, the
size of packets, and the length of session as input. The effective-
ness of classification varies greatly, depending on the application
protocols and the real-time capacity of the method.

In this paper, we analyze the use of a selective packet discard
(SPD) strategy to preserve the QoE in H.264 transmission over
congested IP networks. The idea is to preserve the packets that
carry more relevant information for image reconstruction in case
of network router congestion. To implement the SPD, the packets
of video traffic should be classified. The first and natural alter-
native is to perform the packet marking jointly by the video
encoder and packetization components at the streaming server.
This information can be stored as DiffServ Code Point (DSCP) in the
IP header, eliminating the need to classify packets in the routers at
real time. This strategy is possible if the network facilities and
streaming server can be configured jointly to collaborate. In some
cases, however, the streaming server administrator cannot control

Fig. 1. Sequence of I-, P- and B-frames encoded with H.264.

Fig. 2. Encoded packets carrying MPEG frames.
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the network facilities and vice-versa. In this case, one can imple-
ment a strategy in the server or in the network routers, indepen-
dently. SAPS was designed to be implemented at the server side,
without the collaboration of network routers. Thus, in this paper
we analyze two alternatives: (i) performing the packet classifica-
tion and SPD at network routers using only information available
at network layer – the goal is to investigate if this can be done
without the cooperation of the servers, using artificial neural
networks (ANN) due to their low computational complexity, thus
allowing their implementation in routers; and (ii) a collaborative
setting, with servers marking the packets and routers implement-
ing the SPD. The latter alternative was implemented as a perfor-
mance reference and will be referred to as the golden standard. The
main benefit is the preservation of the viewer's QoE in case of
network congestion.

The rest of this paper is structured as follows. Section 2
describes the ANN topologies used for the packet payload classi-
fication, the origin of the data set under study, and the classifica-
tion results. Section 3 presents the proposed packet discard
strategy. Section 4 shows the method evaluation for several
network congestion scenarios. Section 5 presents the conclusions.

2. Packet classification

We choose to employ ANN to perform the packet payload
classification, because ANNs are noted for being capable of solving
complex problems of forecasting and recognition of time series
and can be implemented in real-time systems because of their low
computational complexity. According to Basu et al. (2010), ANNs
provide a suite of nonlinear algorithms for feature extraction and
classification, and can be efficiently implemented in hardware,
including the implementation of sigmoid activation functions
(Szabó and Horváth, 2004; Mishra et al., 2007).

Particularly in the case of video traffic encoded with H.264,
with variable bit-rate characteristics due the variation of frame
size, we expect that the training of the ANN is capable of capturing
the characteristics of packet flow and relating these with the type
of frame they carry.

As a basic premise, the video streams should be pre-classified
in separate queues, as illustrated in Fig. 3. This pre-classification
could be implemented based on IP address and port numbers. The
effects of misclassification at this stage are not analyzed in this
paper. However, a misclassification at this stage would negatively
affect the proposed method. We consider the development of
methods to prevent this problem a topic of future work, because
we are interested in finding out whether it is possible to imple-
ment a packet classifier with ANN associated with an SPD
mechanism exclusively on routers.

Several approaches have been proposed to model MPEG traffic
(Dai et al., 2009; Van der Auwera et al., 2008a, 2008b; Klein Junior
and Pedroso, 2013). The high variability of the video traffic, the
short- and long-range correlations, and the sudden scene changes
make it difficult to perform the payload classification with
traditional methods. In this scenario, the use of ANN may be

appropriate, because the training process can capture the char-
acteristics of the system without the use of a particular traffic
model.

A common way to characterize the accuracy of a classifier is
through metrics known as false positives (FP), false negatives (FN),
true positives (TP), and true negatives (TN) (Nguyen and Armitage,
2008). TP is defined as the percentage of members of class X
correctly classified as belonging to class X and TN is the percentage
of members of other classes correctly classified as not belonging to
class X. FN and FP are given respectively by 1-TP and 1-TN.

Two approaches to define the class X were considered: (a) X¼
packets carrying I-frames, avoiding to discard them and (b) X¼packets
carrying B-frames, which would be the first to be discarded in case of
network congestion. With approach (b), the false negatives could be
packets carrying I-frames or P-frames, and they would be prioritized
to be discarded. With approach (a), the false negatives could be the
packets carrying the P-frames or B-frames, and they would be
preserved from discarding. As our goal is to preserve I-frames because
their importance to image decoding, we choose approach (a). Thus, X
represents the packets carrying I-frames.

The input parameters used in the ANNs were the time interval
between packets, δkAR, and the packet sizes, ρkANn, observed
within a past time window with N observations. The index kANn,
represents a particular observation. Therefore, the input consists of
δk, δk�1;…; δk�N , ρk, ρk�1;…;ρk�N . Thus, the number of inputs is 2N
considering the two input variables and the window size.

The output of the ANN is given solely by xAR, 0rxr1, where
x¼1 and x¼0 represent respectively the presence and the non-
presence of a packet carrying an I-frame in the input window. As
x is a real number, it will be used as a confidence level of the ANN
output.

The chosen approach was not designed to classify packets indivi-
dually, and one can observe that, with our proposal, achieving a true
positive classification of 100% would be almost impossible due to the
uncertainty about the type of all packets in the window. In a first
approach, we attempted to identify the packets individually.
We realized, however, that it would be very difficult to achieve a
good success rate this way. Nonetheless, considering the application,
the queue sizes, and the maximum packet loss to the video decoding
still being possible, we realized that a false positive identification was
acceptable, as long as a sufficient number of packets transporting
B- and P-frames were marked as priority candidates to discard. Thus,
the ANN topology was designed to improve the chances of success in
the identification of packets carrying I-frames, without much pre-
occupation with false negatives, since this approach improves the
percentage of true positives.

2.1. On the use of ANN to packet classification

A number of ANN topologies are commonly applied for the
prediction and identification of time series: feed-forward (FF),
cascade-forward (CF), feed-forward with tapped delay (FFTD),
radial basis (RB), general regression (GR) and Elman recurrent
with tapped delay (ERTD) (Principe et al., 1999). We choose to
employ two neural networks topologies: (i) FFTD and (ii) ERTD,
mainly due to the simplicity of FFTD and the good results reported
for ERTD in time series recognition (Abdennour, 2006).

Fig. 4(a) and (b) shows respectively the structure of the neural
networks FFTD and ERTD. Both architectures have 2N inputs, one
hidden layer and one output layer with one neuron whose output
reports if the packets within window N carry I-frames or not.
Additionally, ERTD has a context layer with the same number of
neurons of the hidden layer. The number of neurons in the hidden
layer was established by the arithmetic average between the
number of inputs and outputs, ⌊ð2Nþ1Þ=2⌋¼N.

Fig. 3. Router configuration: each video stream should be pre-classified in an
independent queue.
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For the neural network training, the video coded data were
split into two sets. The first consisting of 70% of the total, was used
for training; the remaining 30% was used for the validation.
According to Haykin (1998), in practice, the training can achieve
a good generalization with training set T given by T ¼ OðW=EÞ,
where W is the total number of free parameters (i.e., synaptic
weights) of the network, E denotes the fraction of classification
errors allowed, and Oð�Þ denotes the order enclosed within.
Considering the worst case for neural network topology, for the
ERTD network, the number of free parameters is given by
3N2þ2N, where N represents the window size. Considering the
use of N¼12, which is the maximum GOP length for this video and
the maximum value for N, the training set has 6543 situations and
the fraction of errors allowed for Salesmen video can be calculated
as E¼6.9%. The error for all other videos is lower than this, what
ensure a good generalization for all training.

The window size N is fundamental to the success of the
classification. If N is lower than the number of packets necessary
to transport an I-frame, the neural network cannot recognize the
presence of an I-frame due to the lack of input data. If N is greater
than the GOP size, the window will necessarily contain an I-frame,
making the planned approach worthless, because the output of the
neural network would be always 1.

Thus, tests were performed using N greater than the minimal
number of packets to carry an I-frame and lower than the average
number of packets of the GOP. With these restrictions, we seek the
smallest possible window size N.

2.2. Data source

The videos employed for the tests are publicly available at
Video Trace Library (2012), with resolution of chrominance sub

sampling of 4:4:4, resolution of 352�288 pixels and 25 fps. The
GOP configuration was (12,2). Other authors have often used these
videos in the study of image and transmission systems, as in
Greengrass et al. (2009), Van der Auwera et al. (2008b),
Abdennour (2006) and Bouras et al. (2009). All videos were
encoded with H.264 through the use of the ffmepg (Niedermayer,
2012) tool, which is also publicly available. The ffmpeg tool allows
the adjustment of several parameters, such as the GOP configura-
tion, image size, quality/compression, and frame rate, among other
settings.

Table 1 summarizes the main video characteristics, showing
total and average frame sizes, and total and average packet sizes.
The videos were chosen because of their characteristics, ranging
from static to dynamic images, resulting in several levels of traffic
burstiness. The movies Star Wars Ep. IV (SW), Jurassic Park (JP) and
Silence of the Lambs (SL) were included to provide a range of
different behaviors, caused by scene changes.

As the movies have a large length, they were separated into
smaller sets, typically two minutes long, to facilitate the analysis
and reduce the computational effort to evaluate the results. The
subsets were named JP, JL, SW-1, SW-2, and SW-3; JP, JL, SW-2, and
SW-3, represent scenes with moderate motion whereas SW-1 has
sudden scene changes, which is the worst case for the packet
classifier. Fig. 5 illustrates the first images for the scene sets JP, JL,
SW-1, SW-2, and SW-3.

To collect δk and ρk, the videos were transmitted over a non-
congested Ethernet network, and the data were captured with
traffic monitoring tools tcpdump (Richardson and Fenner, 2012;
Wireshark, 2012).

2.3. Training and validation of classifier

The training and the validation of ANNs were done with the
Java Neural Network Simulator (javaNNS), developed by Wilhelm-
Schickard-Institute for Computer Science (Fischer et al., 2001). The
javaNNS was chosen because of its reliability, the large number of
available topologies and training algorithms supported, and the
ability to generate source code in C language, facilitating the later
implementation of the queue simulator.

The neural networks were trained with the Backpropagation
algorithm. During the training process using this algorithm, the
network operates a sequence of two steps. The first consists in
presenting a set of patterns to the network input. Data are
processed and flow through the network, layer by layer, until the
response is propagated to the output layer. This procedure is called
the forward propagation phase. In the second step, the ANN
output is compared with the training data set. If the outputs
values are not equal, the error is computed and propagated
from the output layer to the input layer, changing the values
of the connection weights of internal layers of the network.

Fig. 4. Topologies of ANN: (a) feed-forward with tapped delay (FFTD) and (b) Elman
recurrent with tapped delay (ERTD).

Table 1
Summary of basic statistics of the videos.

Video Number
of frames

Average frame
size (bytes)

Number
of packets

Average packet
size (bytes)

Highway 2001 13,016 18,810 1416
Bridge Far 2101 12,247 18,637 1403
Coast Guard 300 20,514 4360 1448
Paris 1065 11,413 8845 1408
Soccer 300 15,575 3345 1431
Salesman 450 1863 779 1075
JP 3720 5772 16,158 1329
SL 3600 2811 8515 1189
SW-1 3719 5708 16,096 1319
SW-2 3719 4181 12,324 1262
SW-3 3599 3345 9999 1205

C. E. Maffini Santos et al. / Engineering Applications of Artificial Intelligence 27 (2014) 137–147140



This procedure is known as the backward propagation. The Error
Backpropagation algorithm is the most famous among the learning
algorithms, being particularly useful in cases of large training sets
with many similar examples (Zell et al., 2011). The parameters of
the training algorithm are dmax, i.e., the maximum difference
between target value and the value obtained by the output of the
neuron, and η, i.e., the learning rate. Typically, dmax should range
from 0 to 0.2, according to the desired error, and was set at 0.01 to
get a small error. The η parameter indicates the step size for the
adjustment of synaptic weights between neurons connections for
each training cycle. The lower the learning rate, the lower the
adjustment of synaptic weights, which will provide a gradual
update of the weights, but a considerably longer time of training.
Thus, increasing the learning rate will result in the acceleration of
the training time, but the adjustment in the weights between
connections will be more significant. The learning rate parameter
was set to 0.1. This was done because the time for training is not
critical for the application under consideration and the training is
performed offline. The amount of training cycles was set to 50,000
due to the observation of a significant reduction in error after 5000
training cycles. All neurons were configured with the sigmoid
activation function, which has many interesting features, including
its capacity to capture the non-linear characteristics of the process
(Principe et al., 1999).

2.4. Classification results

This section shows the results of the tests employing the ANN
topologies described in Section 2.1. The window size was config-
ured with size of N¼15, 25, 35, 45, and 55, for Coast-Guard,
Highway, Bridge Far, Paris, and Soccer. For SW-1, SW-2, SL, and JP,
the window size was configured with N¼10, 13, 16, 21, 24, and 27.
The window size N was chosen due the GOP structure of the
videos, the average number of packets to carry an I-frame and the
GOP, and considering the maximum transfer unit (MTU) of
1500 bytes. Suppose the average number of packets for transport
I-, P- and B-frames are denoted by ϕI , ϕP , and ϕB, respectively.
Coast-Guard, Highway, Bridge Far, Paris, and Soccer present ϕI ¼ 15,
ϕP ¼ 10 and ϕB ¼ 10. SW-1, SW-2, SL, and JP present ϕI ¼ 10,
ϕP ¼ 5 and ϕB ¼ 3.

Tables 2 and 3 show the percentage of true positives for the
videos Coast-Guard, Highway, Bridge Far, Paris and Soccer, for the
training sets, for the FFTD and ERTD topologies, respectively. These
results show that the FFTD and ERTD topologies could be trained
with a good degree of accuracy. It is possible to see the growing of
true positive percentage as N increases. The poor performance of

N¼15 can be seen as well, because it is the average number of
packets necessary to carry an I-frame in those videos, and the
neural network does not have an enough number of parameters to
identify the transition between frames. With N¼25, the training
achieves a true positive percentage average of 98.2% and 94%, for
FFTD and ERTD, respectively. The N¼25 should be enough to
obtain a sufficient number of packets eligible to discard, as the
average packet number of the GOP is 125 packets. The use of a
larger window size implies a reduction of the number of packets
identified as non-I, decreasing the number of packets eligible for
discard in case of network congestion.

Tables 4 and 5 show the percentage of true positives for the
videos Coast-Guard, Highway, Bridge Far, Paris, and Soccer, for the
validation sets for the FFTD and ERTD topologies, respectively. For
N¼25, FFTD achieves an average of 55% and ERTD 58%. However,
considering the larger windows, the performance of ERTD was
consistently better than FFTD. The hit rate in the validation set is
compatible with the classification results reported for the IP traffic
classification methods.

The data sets SW-1, SW-2, SL, and JP were used the same way
as the videos presented before, with 70% for training and 30% for
validation. For the SW-3, however, we took another strategy: SW-3
were used only for validation, with the ANN trained with the SW-2

Fig. 5. First images for the scene sets JP, SL, SW-1, SW-2, and SW-3, respectively, from the left to the right.

Table 2
Percentage of true positives using the topology FFTD for the videos Coast-Guard,
Highway, Bridge Far, Paris, and Soccer for the training sets.

N Highway (%) Bridge (%) Coast (%) Paris (%) Soccer (%) Average (%)

15 17 32 22 95 50 43.2
25 99 100 92 100 100 98.2
35 100 100 100 100 100 100
45 100 100 100 100 100 100
55 100 100 96.4 100 100 99.3

Table 3
Percentage of true positives using the topology ERTD for the videos Coast-Guard,
Highway, Bridge Far, Paris, and Soccer for the training sets.

N Highway (%) Bridge (%) Coast (%) Paris (%) Soccer (%) Average (%)

15 86 81 65 98 90 83.9
25 96 100 85 99 91 94
35 98 99 85 100 96 95.7
45 99 99 93 100 100 98.2
55 98.5 100 93 100 100 98.3

Table 4
Percentage of true positives using the topology FFTD for the videos Coast-Guard,
Highway, Bridge Far, Paris and Soccer for the validation sets.

N Bridge (%) Coast (%) High (%) Paris (%) Soccer (%) Average (%)

15 55 52 51 66 51 55
25 65 42 59 48 49 53
35 61 49 50 54 18 46
45 62 32 45 47 27 43
55 64 39 56 72 33 53

Table 5
Percentage of true positives using the topology ERTD for the videos Coast-Guard,
Highway, Bridge Far, Paris and Soccer for the validation sets.

N Bridge (%) Coast (%) High (%) Paris (%) Soccer (%) Average (%)

15 77 73 73 74 63 72
25 72 42 65 59 54 58
35 69 62 62 59 29 56
45 62 39 51 75 41 54
55 62 96 53 70 44 65

C. E. Maffini Santos et al. / Engineering Applications of Artificial Intelligence 27 (2014) 137–147 141



set. We are interested in whether a trained ANN can produce good
results in the classification of an arbitrary movie subset. Tables 6 and 7
present the true positive percentage for training SW-1, SW-2, SL, and JP
for the topologies FFTD and ERTD, respectively. From N¼16, both ANN
topologies could be trained with good results: the averages of true
positive were 99% and 97%, respectively. The results show a better
performance for larger window size, as in the videos before.

Tables 8 and 9 present the true positive percentage for the
validation sets of movies, as well as the true positive percentage
for SW-3 submitted to an ANN trained with SW-2. SW-1 presents
sudden scene changes, and the classifier achieves 58% of success
for N¼13 for both FFTD and ERTD. For the more regular scene
pattern of SW-2, SL, and JP, the true positives using FFTD for
N¼ 13 were respectively 68%, 64%, and 58%. Using ERTD with
N¼ 13, the true positives were respectively 71%, 63%, and 67%. The
average performance of the classifier for SW-3 with N¼13 was
64% and 71%, for the FFTD and ERTD, respectively. For SW-3, with
N¼27, FFTD and ERTD achieve 95% and 100%, respectively.

It is important to notice the increasing hit rate with larger
window sizes. This behavior was observed in all validation sets.
One can observe in Tables 8 and 9 that the averages considering all
movies are quite similar for FFTD and ERTD, varying from 58% with
N¼10 to 78% with N¼27.

As the minimum size of the window is specified by the number
of packets carrying I-frames and the maximum size is limited by
the number of packets in the GOP, we suggest the use of the
following relation for determining the window size:

N¼ϕIþα � ðA �ϕPþB � ϕBÞ; 0oαo1 ð1Þ
where ϕI , ϕP and ϕB represents the number of packets, on average,
to carry I-, P- and B-frames, respectively. A and B represent,
respectively, the number of P- and B-frames of GOP. The results
suggest good performance of classification with α¼ 0:1.

The video salesman was employed to compare the results with
a different quality and GOP configuration. The video coding was
made in the same way as performed in Hong and Won (2010).
We employed a window size of 7, 8, 9, 11, and 12. Table 10 presents
the results for training and validation, which indicate that the
classification could be performed with a good true positive
percentage - for instance, with N¼8, the true positive is 97% for
FFTD and 93% for ERTD.

3. Selective packet discard

The Packet Discard Algorithm (PDA) manages the queues of a
network element and is responsible for discarding the packets in
case of queue congestion. Among the available queue management
methods, the most known is the drop tail. The drop tail is a simple
queue management algorithm: when the queue is occupied to its
maximum capacity, the newly arriving packets are discarded.
Other popular options are Random Early Detection (RED) and
Weighted RED (WRED), which could drop packets even before the
queue is totally filled, as a warning to the congestion control
mechanisms on the traffic sources, to reduce their transmission
rate and help the network. However, only protocols like TCP
(Transmission Control Protocol) and SCTP (Stream Control Trans-
mission Protocol) are able to dynamically adjust its transmission
rate based on the packet loss rate. Time-sensitive applications, as
video streaming, often use UDP (User Datagram Protocol) because
dropping packets is preferable to waiting for delayed packets.
None of these can perform a selective packet discard based on
information of application. The performance of H.264 with active
queue management (AQM) was investigated in Torres et al. (2012).

We propose a priority packet discard mechanism to drop
packets according to the classification made by the ANN. The
method has three steps:

1. The time between successive arrivals of packets and the size of
the last N packets received are stored and used as input of
the ANN.

Table 6
Percentage of true positives using the FFTD topology for video sets SW-1, SW-2,
JP, and SL for the training set.

N SW1 (%) SW2 (%) JP (%) SL (%) Average (%)

10 51 95.1 72 71.4 72
13 90.4 99.4 99.7 92.7 96
16 98.4 99.7 99.7 100 99
21 98 100 100 100 100
24 99 100 100 99.7 100
27 98.5 98.1 100 99.3 99

Table 7
Percentage of true positives using the ERTD topology for video sets SW-1, SW-2,
JP, and SL for the training set.

N SW1 (%) SW2 (%) JP (%) SL (%) Average(%)

10 57.3 94.9 96.8 75.9 81
13 91.2 98.6 99.7 96.1 96
16 95.3 95.3 100 97.5 97
21 99.3 100 100 100 100
24 98.6 100 100 99.7 100
27 100 99.6 100 100 100

Table 8
Percentage of true positives using the FFTD topology for the videos SW-1, SW-2,
SW-3, JP, and SL for the validation set.

N SW1 (%) SW2 (%) SW3 (%) SL (%) JP (%) Average (%)

10 32 72 68 65 55 58
13 58 68 64 64 58 62
16 49 81 76 65 57 65
21 48 83 86 73 64 71
24 54 86 94 75 58 74
27 52 87 95 84 73 78

Table 9
Percentage of true positives using the ERTD topology for the videos SW-1, SW-2,
SW-3, JP, and SL for the validation set.

N SW1 (%) SW2 (%) SW3 (%) SL (%) JP (%) Average (%)

10 36 64 57 68 63 58
13 58 71 71 63 67 66
16 51 76 75 64 58 65
21 48 81 86 68 54 68
24 53 85 98 77 58 74
27 50 86 100 82 71 78

Table 10
Training and validation for the video salesman.

N Training (%) Validation (%)

FFTD ERTD FFTD ERTD

7 100 95 76 67
8 100 100 97 93
9 100 100 85 81
11 100 100 71 81
12 100 100 77 81
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2. Packet classification is performed according to the output of
neural network, xk. If xk4Lim1 the presence of packets carrying
information about an I-frame is assumed, and in this case the
packets will be marked as green. The mark is done in an
auxiliary data structure, without changing any values in the
IP header. If xkoLim2, it is assumed that the packets in the
window do not carry information about I-Frames and they will
be marked as red. If the output is in the range Lim2rxkrLim1,
the packets will be marked as yellow.

3. If the queue capacity reaches its limit, the proposed method
discards the red packets first, then the yellow, and finally the
green. In the tests, Lim1 and Lim2 were configured, respectively,
with 0.1 and 0.9.

In the method we propose, the computational complexity
depends almost on the packet classifier, which has the worst-
case computational complexity given by O(n), n being the window
size.

4. Results

The efficiency of the proposed method was measured through a
queue simulator, developed in C language, to evaluate the perfor-
mance of a queue fed by real traffic. The queue simulator was
carefully validated by comparing the results with known analytical
models, as indicated in Banks et al. (2001), accordingly the
M=M=1=1 and M=M=1=B queue systems, and the simulated
results are consistent with the analytical models.

In the first test, the bottleneck link rate was configured at 90%
of queue utilization and the maximum queue size was varied.
In this case, the burstiness of video could cause packet discard for
a limited length of time. In the second test the queue depth was
kept constant and the queue utilization varied. For all tests, the
number of discarded packets carrying I-frames was observed and
compared with drop tail and the golden standard. The golden
standard represents the best possible performance in a given
network congestion situation.

The mean opinion score (MOS) is a subjective evaluation of the
quality of a video transmission; it depends on the impression a
human observer has on the delivered video, as described in ITU-T
recommendation BT 500 (Recommendation ITU-T BT.500, 2012).
The MOS is one of the most commonly used metrics to estimate
QoE and is expressed by a number, 1 being the worst and 5 the
best perceived quality. In contrast, objective video quality metrics
are calculated by computers. The most relevant metrics in the area
of video quality assessment are PSNR and Structural Similarity
(SSIM) (Serral-Gracià et al., 2010). Recent results show that SSIM
presents better approximation of human subjective evaluation of
quality (Silpa and Mastani, 2012). However, we need to evaluate
the relative quality, allowing comparison of between golden
standard, drop tail, and the proposed method. A study presented
in Hore and Ziou (2010) indicates that both PSNR and SSIM are
capable to capture the degradation of video quality, and that a
simple analytical link exists between the PSNR and the SSIM. Thus,
the simple metric of PSNR is still adequate to compare the
efficiency of proposed method and will reduce the computational
overhead of quality evaluation.

Thereby, MOS was estimated employing the Evalvid tool (Klaue
et al., 2003). The Evalvid compares the original video image with
the video received to estimate MOS, through the evaluation of
PSNR. The PSNR is calculated frame by frame using the mean
squared error (MSE) given by

MSE¼ 1
rc

∑
r

i ¼ 1
∑
c

j ¼ 1
½Yoði; jÞ�Yrði; jÞ�2 ð2Þ

where r and c represent, respectively, the number of rows and
columns of image, Yoði; jÞ and Yrði; jÞ represent the luminance of
pixel ði; jÞ of original and received frame, respectively. The PSNR
can be obtained using

PSNR¼ 20 log 10
MAXIffiffiffiffiffiffiffiffiffiffi
MSE

p
� �

ð3Þ

where MAXI represents the maximum value of pixel intensity. For
the videos in consideration, MAXI ¼ 255.

The conversion between PSNR and MOS was done using the
convention presented in Table 11. The PSNR of video was com-
puted with an average of PSNR of all video images.

As mentioned previously, a strategy of marking traffic on the
server, in cooperation with the application, was also implemented.
In case of network congestion, the SPD first drop packets carrying
B-frames, followed by packets carrying P-frames finally packets
carrying I-frames. This strategy was implemented as a reference
and is called the golden standard.

Fig. 6(a) and (b) shows the percentage of packets carrying
I-frames dropped as a function of maximum queue size, with link
utilization of 90%, for the videos Highway and Bridge Far. For each
figure, three lines are presented: for the proposed method, drop
tail, and golden standard. The proposed method presents a better
performance than drop tail for both videos. Fig. 6(c) and (d)
presents the MOS evaluation for the same videos. It can be seen
that the method prevents QoE degradation, e.g. drop tail achieves
a MOS of 2.8 and the proposed method 4.5 when queue size is
6000 bytes for the video Bridge Far. For the golden standard, the
packets carrying I-frames were preserved and the degradation of
MOS is consequence of delay and jitter. Additionally, when the
queue depth increases, the performance of the proposed method
approaches the golden standard.

For the second test, Fig. 7(a) and (b) presents, respectively, the
percentage of packets carrying I-frames discarded and the MOS
evaluation for several queue utilization levels, with a fixed queue
size, for the video Highway. The proposed method outperforms
drop tail in all cases, preventing I-packets from being dropped and
thus increasing the MOS.

The performance of the proposed method was also analyzed for
the movies subsets SW-1, SW-2, SW-3, SL, and JP. These movies
have different characteristics from the other videos analyzed
earlier. The sudden scene changes of movies cause variation on
the frame sizes, decreasing the efficiency of the classifier. The
subsets were submitted to the queue simulator. Fig. 8 shows the
percentage of packets carrying I-frames discarded for each subset
with several values of queue maximum queue depth, for utiliza-
tion of 90%. In all cases, the ANN achieves a good success rate in
preserving the packets carrying I-frames, with a performance
similar to that of the golden standard for the higher values of
queue depth. Fig. 9 shows the MOS estimation. The MOS improved
for the SW-1, SL, and SP, respectively, presented in Fig. 9(b)–(d).
For the SW-2, with sudden scene changes, the method seems to
have a worse MOS than drop tail, as shown in Fig. 9(a). However,
the ANN was actually able to identify the packets carrying
I-frames, as presented in Fig. 8(a). With the sudden scene changes,
the P- and B-frames become important because the aggressive

Table 11
PSNR to MOS conversion (Klaue et al., 2003).

PSNR (dB) MOS

437 5 (excellent)
31–37 4 (good)
25–31 3 (fair)
20–25 2 (poor)
o20 1 (bad)
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changes in scenes decorrelate the first image of GOP with
subsequent images, and in this case, the proposed SPD strategy
does not benefit the quality of experience.

The ANN previously trained with SW-2 was employed to verify
the feasibility of using a standard trained ANN to traffic classifica-
tion. The transmission of SW-3 subset was simulated. Fig. 10
(a) presents the percentage of packets carrying I-frames discarded
and Fig. 10(b) shows the MOS evaluation for this case. The results
show an improvement of MOS compared with drop tail, with good
results for N¼13. In order to extend this test we randomly selected
two sequences from Star Wars Ep. IV. Both sequences are 2 min
long. The percentage of packets carrying I-frames discarded is
shown in Fig. 11, respectively, for the two sequences. Its possible to
see that ANN successfully preserves from discarding a good
number of packets carrying I-frames, and this results in an

improvement of QoE. This indicates that it is possible to employ
a standard trained ANN to implement the strategy in routers.

Even if the buffers of routers are large enough to avoid
dropping packets, a deadline could be establish for the transmis-
sion of each packet in queue, and the packets that exceed this
deadline could be considered lost. From this point, the proposed
method can be applied.

Another important result is the performance of golden stan-
dard. For all scenarios, the estimated MOS was greatly improved
for golden standard, and this indicates that the use of this method
is possible to provide a good quality with higher network utiliza-
tion levels. This implies in lower infrastructure costs for video
transmission networks if compared to the scenario where the
proposed method is not used. Additionally, the use of the golden
standard should be preferred compared to the method using

Fig. 6. Percentage of packets carrying I-frames discarded for the videos Highway (a) and Bridge Far (b), and MOS measure for the videos Highway (c) and Bridge Far (d).

Fig. 7. Percentage of packets carrying I-frames discarded for the videos (a) and MOS evaluation for the video Highway at several queue utilization levels (b).
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Fig. 8. Percentage of packets carrying I-frames discarded for SW-1 (a), SW-2 (b), SL (c), and JP (d).
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classification with ANNs. However, in the situations where it is not
possible to perform the jointly configuration required to imple-
ment the golden standard, this alternative results in a performance
improvement for the system.

5. Conclusions

In this paper we propose a selective packet discard strategy, at
network routers, to preserve user QoE in case of network conges-
tion. Even if the transmission network is well planned, packet loss
can occur due the burstiness of video traffic. A packet that has
exceeded its delay in a maximum threshold may also be consid-
ered a loss.

The impact of packet loss on QoE can have several degrees of
severity, depending on which packet is discarded. The most
relevant packets are those that carry information about I-frames,
because they are used by the decoder as references for decoding
other frames. Thus, if the queue becomes congested and packet
discard is unavoidable, the preservation of these packets leads to a
better QoE. The standard method for packet discard is drop tail,
but this method is not aware of the payload of the discarded
packet.

We proposed the use of neural networks to classify the packets
using only information about their size and time interval. We
simulated a priority discard queue where packets classified as
I-frames are preserved and packages classified as P- and B-frames
are preferably discarded. This resulted in an improvement of user
perceived QoE. We showed how much improvement can be
obtained in many videos used as examples. We also compared

the video quality improvement due to neural network classifica-
tion with the ideal scenario where all packets were correctly
classified at the source. The proposed classification scheme can be
performed with available information in network layer protocol,
without the decoding of higher protocol layers.
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