
Introduction to bond
graph theory

Second part: multiport field and 
junction structures, and 
thermodynamics



Multiport fields

We will look at multiport generalizations of C, I and R elements.
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C-fields

Allows easier displaying
of individual causalities

State variables q1, q2, . . . , qn

Used mainly for sets of bonds
with geometrical properties.

q̇1 = f1

q̇2 = f2
...

q̇n = fn

e1 = φ1(q1, . . . , qn)

e2 = φ2(q1, . . . , qn)

...

en = φn(q1, . . . , qn)



Energy is computed as

H(t) = H(t0) +

Z t

t0

nX
k=1

ek(τ)fk(τ) dτ

Changing t→ q yields the line integral

H(q) = H(q0) +

Z
γ

e(q̃) dq̃ γ is any curve connecting q0 and q

However, this must be independent of the
particular curve connecting q0 and q!

Barring topological obstructions, this is equivalent to

∂φi
∂qj

=
∂φj
∂qi

, i, j = 1, . . . , n

Maxwell reciprocity condition

exactness of the 1-form given by e

e = dφ



q = CeLinear case:
stiffness form compliance form

e = kq
all differentialall integral

Mixed forms are also possible, but for a given system
some of the forms, including the compliance one, may not exist.

The above nomenclature extends to the nonlinear case as well.

In the linear case, exactness of e implies that
the matrices k and C, if the latter exists, are symmetric.

The available forms determine which causal patterns are admissible.
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furthermore . . .
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C-fields given from the beginning as a set of
effort-displacement relations at n ports are called explicit.

Implicit C-fields are obtained when several C-elements
are assembled by way of a power continuous network.

Implicit C-fields can be reduced to implicit form. In the process, some
elements with differential causality may be hidden from the port interface.
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e1 = e6 = e3 e4 = e7 = e2f6 = f5 = f7

f3 = f1 + f6 f4 = f7 + f2e5 = −e6 − e7

q5 = C3e5q̇3 = f3 q̇4 = f4 f1 = i1

e3 =
1
C1
q3 e4 =

1
C2
q4f5 = q̇5 f2 = i2

q̇5 = −C3
µ
q̇3
C1

+
q̇4
C2

¶
q5 = C3e5 = C3(−e6 − e7) = −C3(e3 + e4) = −C3

µ
q3
C1

+
q4
C2

¶



= i1 − C3
µ
q̇3
C1

+
q̇4
C2

¶
q̇3 = f3 = f1 + f6 = i1 + f5 = i1 + q̇5

= i2 − C3
µ
q̇3
C1

+
q̇4
C2

¶
q̇4 = f4 = f2 + f7 = i2 + f5 = i2 + q̇5

Ã
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!µ
q̇3
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¶
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¶
µ
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¶
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C1C2 + C2C3 + C1C3

µ
C1C2 + C1C3 −C1C3
−C2C3 C1C2 + C2C3

¶µ
i1
i2

¶

We introduce new state variables q1, q2 such that q̇1 = i1 = f1, q̇2 = i2 = f2.

Using q3 = C1e3 = C1e1, q4 = C2e4 = C2e2, and integrating in time:µ
e1
e2

¶
=

1

C1C2 + C2C3 + C1C3

µ
C2 + C3 −C3
−C3 C1 + C3

¶µ
q1
q2

¶



µ
e1
e2

¶
=

1

C1C2 + C2C3 + C1C3

µ
C2 + C3 −C3
−C3 C1 + C3

¶µ
q1
q2

¶

k

This is a 2-port C-field in stiffness form.

C
e1

f1

e2

f2

They are just a convenient
parametrization of the R3 surface

q5 = −C3
³
q3
C1
+ q4

C2

´The state variables q1, q2 do not
correspond to physical charges.

The dependent state variable has been hidden away from the port interface.



I-fields
e1

e2

en

f1
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fn
I n

e

f I
State variables p1, p2, . . . , pn

ṗ1 = e1

ṗ2 = e2
...

ṗn = en

f1 = φ1(p1, . . . , pn)

f2 = φ2(p1, . . . , pn)

...

fn = φn(p1, . . . , pn)

Energy:

H(p) = H(p0) +

Z
γ

f(p̃) dp̃

∂φi
∂pj

=
∂φj
∂pi

, i, j = 1, . . . , n

independence of γ



CM

F1

F2

V1

V2
Rigid bar with mass m, length L and
moment of inertia J respect to the CM.

We consider only vertical displacements
and small rotations around CM.

Under these assumptions, this can be described as an
explicit I-field, with constitutive relation

µ
V1
V2

¶
=

Ã
1
m +

L2

4J
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m − L2

4J
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m − L2

4J
1
m +

L2

4J

!µ
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¶



IC-fields ṗ1 = e1
...

ṗI = eI

q̇1 = f̃1
...

q̇C = f̃C

f1 = φ1(p1, . . . , pI , q1, . . . , qC)

...

fI = φI(p1, . . . , pI , q1, . . . , qC)

ẽ1 = φ̃1(p1, . . . , pI , q1, . . . , qC)

...

ẽC = φ̃I(p1, . . . , pI , q1, . . . , qC)

e1

f1
IC

fI

eI

ẽC

f̃C

ẽ1f̃1

Maxwell reciprocity equations

∂φ̃i
∂qj

=
∂φ̃j
∂qi

, i, j = 1, . . . , C
∂φi
∂pj

=
∂φj
∂pi

, i, j = 1, . . . , I

∂φi
∂qj

=
∂φ̃j
∂pi

, i = 1, . . . , I, j = 1, . . . , C



A typical example of an IC-field is an electrical solenoid transducer.

A more academic example is
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q̇2 = f1 −
1

m
e6

ṗ5 = e6

To get an explicit IC-field, define
state variables q, p such that f1 = q̇, e6 = ṗ

p = p5, q = q2 +
1
mp5

e1 =
1

C
q − 1

mC
p

f6 = − 1

mC
q +

µ
1

L
+

1

m2C

¶
p

Maxwell condition



R-fields
Onsager forms
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R

resistance form e = Φ(f)

f = Φ−1(e)conductance form

Mixed causality forms may also be possible

In the linear case, implicit R-fields without gyrators
or sources have Onsager forms with symmetric matrices.

If some (e, f) pairs are interchanged in their causality from
an Onsager form, the corresponding matrix adquires antisymmetric
terms. Such contitutive relations are said to be in Casimir form.
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Several forms are possible by
switching the causality around.

µ
e1
e2

¶
=

µ
R3 +R4 m+R4
−m+R4 R4 +R5

¶µ
f1
f2

¶

This Onsager form is not symmetric, due to the presence of a gyrator.



Junction structures
Assemblages of 0, 1, TF and GY elements which switch energy around.

Limiting cases of R-fields (without sources)which do not dissipate.

Unless modulated TF or GY elements are present, effort/flow
constitutive relations in a junction structure are always linear.

With an all-input power sign convention, the matrix
relating inputs to outputs must be antisymmetric.

Causality patterns are more restricted, though.

Junction structures without gyrators cannot accept
conductance or resistance causality on all ports.



0

1

0

TF

GY

P2

P3

P1

m :
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⎛⎝ f1
e2
f3

⎞⎠ =
⎛⎝ 0 −m m

r
m 0 −m
−mr m 0

⎞⎠⎛⎝ e1
f2
e3

⎞⎠

Pure conductance or resistance
forms are not possible.

Multiport transformers are an special case of junction structures.

TF 0

1 0

P4

P1

TF

P3

1P2

: m
1

..
m2

Through-power convention

With an all-input power
convention, (e1, e2, f3, f4) would be
obtained from (f1, f2, e3, e4) with

an antisymmetric matrix.



With the through-power convention, the matrix is symmetric
and can be decomposed into two matrices wich are transpose:µ
e1
e2

¶
=

µ
1 1
m1 m2

¶µ
e3
e4

¶ µ
f3
f4

¶
=

µ
1 m1

1 m2

¶µ
f1
f2

¶

TF

M
.. The fact that the flow

transformation is given by MT

ensures the power continuity.

Multiport transformers need not have
the same number of inputs ans outputs.

Example: abc→ dq transformation in induction machines.

Junction structures are also necessary to connect the bond graph
formalism with port Hamiltonian and Dirac structure concepts.



Thermodynamics from
the bond graph point of view
Pure substance with no motion, constant mass and

no electromagnetic or surface-tension forces:

u = u(s, v)internal energy
per unit mass

volume
per unit mass

entropy
per unit mass

du = T ds− p dvGibbs equation:

absolute temperature pressure



T =
∂u

∂s
∂T

∂v
=
∂(−p)
∂s

du = T ds− p dv
−p = ∂u

∂v

Maxwell relation for a 2-port C-field
with a power-through convention

T and p are efforts

T = T (s, v)

p = p(s, v)

constitutive
equations

ṡ and v̇ are the corresponding flows

for all-integral causality

C
T p

ṡ v̇



In thermodynamics, mixed and all-derivative causality
is implemented by means of Legendre transformations.

entalphy h Gibbs equation

h = u+ pv dh = du+ p dv + v dp = T ds+ v dp

h = h(s, p)

constitutive equations Maxwell condition
T =

∂h

∂s

v =
∂h

∂p

T = T (s, p)

v = v(s, p)

∂T

∂p
=
∂v

∂s

C
T p

ṡ v̇
mixed causality



Helmholtz free energy f
Gibbs equation

f = u− Ts df = du− T ds− s dT = −s dT − p dv

f = f(T, v)

constitutive equations Maxwell condition
−s =

∂f

∂T

−p =
∂f

∂v

s = s(T, v)

p = p(T, v)

∂p

∂T
=
∂s

∂v

C
T p

ṡ v̇
mixed causality



Gibbs free energy φ

φ = u+ pv − Ts dφ = du+ p dv + v dp− T ds− s dT

= −s dT + v dp φ = φ(T, p)

Gibbs equation

Maxwell conditionconstitutive equations
−s =

∂φ

∂T

v =
∂φ

∂p

∂v

∂T
=
∂(−s)
∂p

s = s(T, p)

v = v(T, p)

C
T p

ṡ v̇
All-differential causality



Any of the four formulations gives constitutive equations
which guarantee conservation of energy.

The computation path depends on the causality pattern.

For instance, assume the entalphy is given, h = h(s, p)

C
T p

ṡ v̇

s =
R
ṡ dt

h = h(s, p)
T =

∂h

∂s

v =
∂h

∂p

v̇ =
∂2h

∂p2
ṗ +

∂2h

∂s∂p
ṡ

ṡ

p

v̇

T



One can also give constitutive equations without
using any of the energy functions u, h, f or φ.

However, this can easily give impossible substances, which
violate the First Principle of Thermodynamics (energy conservation).

Ideal gas:
pv = RT

Since this is a pure substance of the type considered, another
constitutive equation is needed to specify the 2-port.

The remaining equation is related to the gas being mono- or diatomic.

Giving this second equation arbitrarily runs into the above problem.

It is better to start with two other relations and build
an energy function from them, incorporating pv = RT .



specific heat at constant pressure

this makes sense since p is an
input in the h(s, p) formulationcp =

∂h

∂T

specific heat at constant volume

cv =
∂u

∂T

this makes sense since v̇ is an
input in the u(s, v) formulation

T is not a natural variable of h or u.

Together with pv = RT , we assume that cv
is a constant, determined by the particular ideal gas.

pv = RT

h = u+ pv
cp = cv +R



cv constant

cv =
∂u

∂T reference
temperature

u = cv(T − T0)

h is also function
of T alone

h = u+RT

h = cp(T − T0) +RT0
cp =

∂h

∂T

cp constant
due to cp = cv +R

ds =
du

T
+ p

dv

T
= cv

dT

T
+R

dv

v
du = T ds− p dv

T = T0e
s
cv

µ
v

v0

¶− R
cv

s = cv log
T

T0
+R log

v

v0
integration of
the 1-form



ds =
dh

T
− vdp

T
= cp

dT

T
− vdp

T
dh = T ds+ v dp

= cp
1

RT
(p dv + v dp)− v

T
dp= cp

dv

v
+
v

T

³cp
R
− 1
´
dp = cp

dv

v
+ cv

dp

p

p = p0e
s
cv

µ
v

v0

¶− cp
cv

s = cp log
v

v0
+ cv log

p

p0
integration of
the 1-form

p = p0e
s
cv

µ
v

v0

¶− cp
cv constitutive equations for

a perfect gas in all-integral form

ṡ, v̇

T, p
R, cvT = T0e

s
cv

µ
v

v0

¶− R
cv



Exercise: compute the constitutive equations
for the other three causality patterns.

Chemical engineering:
transport phenomena

quantities of substances vary with time

Requires an extension of the basic
thermodynamic bond graph framework

Université Claude Bernard Lyon:
Bernhard Maschke & Christian Jallut

stirred reaction tanks fuel cells

http://www.geoplex.cc/
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