Introduction to bond graph theory

Second part: multiport field and junction structures, and thermodynamics

Multiport fields

We will look at multiport generalizations of C, I and R elements.

Used mainly for sets of bonds

State variables $q_{1}, q_{2}, \ldots, q_{n}$
Allows easier displaying of individual causalities

$$
\begin{aligned}
\dot{q}_{1} & =f_{1} & e_{1} & =\phi_{1}\left(q_{1}, \ldots, q_{n}\right) \\
\dot{q}_{2} & =f_{2} & e_{2} & =\phi_{2}\left(q_{1}, \ldots, q_{n}\right) \\
& \vdots & & \vdots \\
\dot{q}_{n} & =f_{n} & & e_{n}=\phi_{n}\left(q_{1}, \ldots, q_{n}\right)
\end{aligned}
$$

Energy is computed as

$$
H(t)=H\left(t_{0}\right)+\int_{t_{0}}^{t} \sum_{k=1}^{n} e_{k}(\tau) f_{k}(\tau) \mathrm{d} \tau
$$

Changing $t \rightarrow q$ yields the line integral

$$
H(q)=H\left(q_{0}\right)+\int_{\gamma} e(\tilde{q}) \mathrm{d} \tilde{q} \quad \gamma \text { is any curve connecting } q_{0} \text { and } q
$$

However, this must be independent of the particular curve connecting q_{0} and q !

Barring topological obstructions, this is equivalent to

Linear case:

stiffness form

$$
e=k q
$$

compliance form

Mixed forms are also possible, but for a given system some of the forms, including the compliance one, may not exist.

The above nomenclature extends to the nonlinear case as well.
In the linear case, exactness of e implies that the matrices k and C, if the latter exists, are symmetric.
The available forms determine which causal patterns are admissible.

$$
\begin{aligned}
& \begin{array}{l}
e_{2} \mid f_{2} \\
e_{f_{1}}^{e_{1}} \stackrel{C}{f_{3}}
\end{array} \quad k=\left(\begin{array}{lll}
2 & 0 & 2 \\
0 & 1 & 1 \\
2 & 1 & 3
\end{array}\right) \quad \begin{array}{c}
\text { et } k=0 \\
\text { furthermore } \ldots
\end{array}
\end{aligned}
$$

C-fields given from the beginning as a set of effort-displacement relations at n ports are called explicit.

Implicit C-fields are obtained when several C-elements are assembled by way of a power continuous network.

Implicit C-fields can be reduced to implicit form. In the process, some elements with differential causality may be hidden from the port interface.

$$
\begin{array}{ccc}
e_{1}=e_{6}=e_{3} & f_{6}=f_{5}=f_{7} & e_{4}=e_{7}=e_{2} \\
f_{3}=f_{1}+f_{6} & e_{5}=-e_{6}-e_{7} & f_{4}=f_{7}+f_{2} \\
\dot{q}_{3}=f_{3} & q_{5}=C_{3} e_{5} & \dot{q}_{4}=f_{4} \\
e_{3}=\frac{1}{C_{1}} q_{3} & f_{5}=\dot{q}_{5}=i_{1} \\
q_{5}=C_{3} e_{5}=C_{3}\left(-e_{6}-e_{7}\right)=-C_{3}\left(e_{3}+e_{4}\right)=-C_{3}\left(\frac{q_{3}}{C_{1}}+\frac{q_{4}}{C_{2}}\right) \\
\dot{q}_{5}=-C_{3}\left(\frac{\dot{q}_{3}}{C_{1}}+\frac{\dot{q}_{4}}{C_{2}}\right)
\end{array}
$$

$$
\begin{gathered}
\dot{q}_{3}=f_{3}=f_{1}+f_{6}=i_{1}+f_{5}=i_{1}+\dot{q}_{5}=i_{1}-C_{3}\left(\frac{\dot{q}_{3}}{C_{1}}+\frac{\dot{q}_{4}}{C_{2}}\right) \\
\dot{q}_{4}=f_{4}=f_{2}+f_{7}=i_{2}+f_{5}=i_{2}+\dot{q}_{5}=i_{2}-C_{3}\left(\frac{\dot{q}_{3}}{C_{1}}+\frac{\dot{q}_{4}}{C_{2}}\right) \\
\left(\begin{array}{cc}
1+\frac{C_{3}}{C_{1}} & \frac{C_{3}}{C_{2}} \\
\frac{C_{3}}{C_{1}} & 1+\frac{C_{3}}{C_{2}}
\end{array}\right)\binom{\dot{q}_{3}}{\dot{q}_{4}}=\binom{i_{1}}{i_{2}}
\end{gathered}
$$

$$
\binom{\dot{q}_{3}}{\dot{q}_{4}}=\frac{1}{C_{1} C_{2}+C_{2} C_{3}+C_{1} C_{3}}\left(\begin{array}{cc}
C_{1} C_{2}+C_{1} C_{3} & -C_{1} C_{3} \\
-C_{2} C_{3} & C_{1} C_{2}+C_{2} C_{3}
\end{array}\right)\binom{i_{1}}{i_{2}}
$$

We introduce new state variables q_{1}, q_{2} such that $\dot{q}_{1}=i_{1}=f_{1}, \dot{q}_{2}=i_{2}=f_{2}$.
Using $q_{3}=C_{1} e_{3}=C_{1} e_{1}, q_{4}=C_{2} e_{4}=C_{2} e_{2}$, and integrating in time:

$$
\binom{e_{1}}{e_{2}}=\frac{1}{C_{1} C_{2}+C_{2} C_{3}+C_{1} C_{3}}\left(\begin{array}{cc}
C_{2}+C_{3} & -C_{3} \\
-C_{3} & C_{1}+C_{3}
\end{array}\right)\binom{q_{1}}{q_{2}}
$$

$$
\binom{e_{1}}{e_{2}}=\frac{1}{C_{1} C_{2}+C_{2} C_{3}+C_{1} C_{3}}\left(\begin{array}{cc}
C_{2}+C_{3} & -C_{3} \\
-C_{3} & C_{1}+C_{3}
\end{array}\right)\binom{q_{1}}{q_{2}}
$$

k

This is a 2-port C-field in stiffness form.

The state variables q_{1}, q_{2} do not correspond to physical charges.

They are just a convenient parametrization of the \mathbb{R}^{3} surface

$$
q_{5}=-C_{3}\left(\frac{q_{3}}{C_{1}}+\frac{q_{4}}{C_{2}}\right)
$$

The dependent state variable has been hidden away from the port interface.

I-fields

$$
\frac{e_{1}^{f_{2}} e^{e_{2}}}{f_{1}} \stackrel{\mathbf{I}}{e_{n}}
$$

State variables $p_{1}, p_{2}, \ldots, p_{n}$

$$
\begin{array}{rlrl}
\dot{p}_{1} & =e_{1} & f_{1}=\phi_{1}\left(p_{1}, \ldots, p_{n}\right) \\
\dot{p}_{2} & =e_{2} & f_{2}=\phi_{2}\left(p_{1}, \ldots, p_{n}\right) \\
& \vdots & & \vdots \\
\dot{p}_{n} & =e_{n} & f_{n}=\phi_{n}\left(p_{1}, \ldots, p_{n}\right)
\end{array}
$$

Energy:

$$
H(p)=H\left(p_{0}\right)+\int_{\gamma} \underbrace{f(\tilde{p}) \mathrm{d} \tilde{p} \quad \frac{\partial \phi_{i}}{\partial p_{j}}=\frac{\partial \phi_{j}}{\partial p_{i}}, \quad i, j=1, \ldots, n}_{\text {independence of } \gamma}
$$

Rigid bar with mass m, length L and moment of inertia J respect to the CM.

We consider only vertical displacements and small rotations around CM.

Under these assumptions, this can be described as an explicit I-field, with constitutive relation

$$
\binom{V_{1}}{V_{2}}=\left(\begin{array}{cc}
\frac{1}{m}+\frac{L^{2}}{4 J} & \frac{1}{m}-\frac{L^{2}}{4 J} \\
\frac{1}{m}-\frac{L^{2}}{4 J} & \frac{1}{m}+\frac{L^{2}}{4 J}
\end{array}\right)\binom{p_{1}}{p_{2}}
$$

$$
\begin{aligned}
& \text { IC-fieldS } \quad \dot{p}_{1}=e_{1} \quad f_{1}=\phi_{1}\left(p_{1}, \ldots, p_{I}, q_{1}, \ldots, q_{C}\right) \\
& \begin{array}{c}
f_{I} e_{I} \quad \tilde{e}_{1} \tilde{f}_{1} \\
\left.e_{1}\right\rangle \\
e_{1}
\end{array} \quad \mathbf{I C} \stackrel{\tilde{e}_{C}}{\tilde{f}_{C}} \\
& \dot{p}_{I}=e_{I} \quad f_{I}=\phi_{I}\left(p_{1}, \ldots, p_{I}, q_{1}, \ldots, q_{C}\right) \\
& \dot{q}_{1}=\tilde{f}_{1} \quad \tilde{e}_{1}=\tilde{\phi}_{1}\left(p_{1}, \ldots, p_{I}, q_{1}, \ldots, q_{C}\right) \\
& \dot{q}_{C}=\tilde{f}_{C} \quad \tilde{e}_{C}=\tilde{\phi}_{I}\left(p_{1}, \ldots, p_{I}, q_{1}, \ldots, q_{C}\right)
\end{aligned}
$$

Maxwell reciprocity equations

$$
\begin{gathered}
\frac{\partial \phi_{i}}{\partial p_{j}}=\frac{\partial \phi_{j}}{\partial p_{i}}, \quad i, j=1, \ldots, I \quad \frac{\partial \tilde{\phi}_{i}}{\partial q_{j}}=\frac{\partial \tilde{\phi}_{j}}{\partial q_{i}}, \quad i, j=1, \ldots, C \\
\frac{\partial \phi_{i}}{\partial q_{j}}=\frac{\partial \tilde{\phi}_{j}}{\partial p_{i}}, \quad i=1, \ldots, I, j=1, \ldots, C
\end{gathered}
$$

A typical example of an $I C$-field is an electrical solenoid transducer.

A more academic example is

$\dot{q}_{2}=f_{1}-\frac{1}{m} e_{6}$
$\dot{p}_{5}=e_{6}$$\quad \begin{array}{r}\text { To get an explicit } I C \text {-field, define } \\ \text { state variables } q, p \text { such that } f_{1}=\dot{q}, e_{6}=\dot{p} \\ p=p_{5}, q=q_{2}+\frac{1}{m} p_{5}\end{array}$

$$
\begin{aligned}
e_{1} & =\frac{1}{C} q-\frac{1}{m C} p \\
f_{6} & =-\frac{1}{m C} q+\left(\frac{1}{L}+\frac{1}{m^{2} C}\right) p
\end{aligned}
$$

R-fields

Onsager forms

resistance form

$$
\begin{aligned}
& e=\Phi(f) \\
& f=\Phi^{-1}(e)
\end{aligned}
$$

Mixed causality forms may also be possible
In the linear case, implicit R-fields without gyrators or sources have Onsager forms with symmetric matrices.

If some (e, f) pairs are interchanged in their causality from an Onsager form, the corresponding matrix adquires antisymmetric terms. Such contitutive relations are said to be in Casimir form.

$$
\binom{e_{1}}{e_{2}}=\left(\begin{array}{cc}
R_{3}+R_{4} & m+R_{4} \\
-m+R_{4} & R_{4}+R_{5}
\end{array}\right)\binom{f_{1}}{f_{2}}
$$

This Onsager form is not symmetric, due to the presence of a gyrator.

Junction structures

Assemblages of $0,1, \mathrm{TF}$ and GY elements which switch energy around.
Limiting cases of R-fields (without sources)which do not dissipate.
Unless modulated TF or GY elements are present, effort/flow constitutive relations in a junction structure are always linear.

With an all-input power sign convention, the matrix relating inputs to outputs must be antisymmetric.

Causality patterns are more restricted, though.
Junction structures without gyrators cannot accept conductance or resistance causality on all ports.
Pure conductance or resistance forms are not possible.

$$
\left(\begin{array}{c}
f_{1} \\
e_{2} \\
f_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & -m & \frac{m}{r} \\
m & 0 & -m \\
-\frac{m}{r} & m & 0
\end{array}\right)\left(\begin{array}{c}
e_{1} \\
f_{2} \\
e_{3}
\end{array}\right)
$$

Multiport transformers are an special case of junction structures.
Through-power convention

With an all-input power convention, $\left(e_{1}, e_{2}, f_{3}, f_{4}\right)$ would be obtained from $\left(f_{1}, f_{2}, e_{3}, e_{4}\right)$ with an antisymmetric matrix.

With the through-power convention, the matrix is symmetric and can be decomposed into two matrices wich are transpose:

$$
\binom{e_{1}}{e_{2}}=\underbrace{\left(\begin{array}{cc}
1 & 1 \\
m_{1} & m_{2}
\end{array}\right)\binom{e_{3}}{e_{4}}}_{M} \quad\binom{f_{3}}{f_{4}}=\underbrace{\left(\begin{array}{ll}
1 & m_{1} \\
1 & m_{2}
\end{array}\right)}\binom{f_{1}}{f_{2}}
$$

The fact that the flow
 ensures the power continuity.

Multiport transformers need not have the same number of inputs ans outputs.

Example: $a b c \rightarrow d q$ transformation in induction machines.

Junction structures are also necessary to connect the bond graph formalism with port Hamiltonian and Dirac structure concepts.

Thermodynamics from

the bond graph point of view

Pure substance with no motion, constant mass and no electromagnetic or surface-tension forces:

Gibbs equation:

$$
\mathrm{d} u=T \mathrm{~d} s \in p \mathrm{~d} v
$$

absolute temperature

$$
\mathrm{d} u=T \mathrm{~d} s \ominus p \mathrm{~d} v \Longleftrightarrow\left\{\begin{array}{r}
T=\frac{\partial u}{\partial s} \\
\Theta p=\frac{\partial u}{\partial v}
\end{array} \Longleftrightarrow \frac{\partial T}{\partial v}=\frac{\partial(-p)}{\partial s}\right.
$$

T and p are efforts
Maxwell relation for a 2-port C-field with a power-through convention

$$
\left.\begin{array}{l}
T=T(s, v) \\
p=p(s, v)
\end{array}\right\} \begin{gathered}
\text { constitutive } \\
\text { equations }
\end{gathered}
$$

\dot{s} and \dot{v} are the corresponding flows

In thermodynamics, mixed and all-derivative causality is implemented by means of Legendre transformations.
entalphy h
Gibbs equation

$$
\begin{aligned}
h=u+p v & \Longrightarrow \mathrm{~d} h=\mathrm{d} u+p \mathrm{~d} v+v \mathrm{~d} p \stackrel{v}{=} T \mathrm{~d} s+v \mathrm{~d} p \\
& \Longrightarrow h=h(s, p)
\end{aligned}
$$

constitutive equations

$$
\begin{aligned}
T & =T(s, p) \\
v & =v(s, p)
\end{aligned}
$$

$$
\begin{aligned}
T & =\frac{\partial h}{\partial s} \\
v & =\frac{\partial h}{\partial p}
\end{aligned} \quad \Longrightarrow \quad \begin{gathered}
\text { Maxwell condition } \\
\end{gathered} \quad \begin{aligned}
& \partial T \\
& \partial p
\end{aligned} \frac{\partial v}{\partial s}
$$

mixed causality

$$
\stackrel{T}{\dot{s}} \longrightarrow \mathbf{C} \stackrel{p}{\dot{v}}
$$

Helmholtz free energy f

Gibbs equation

$$
\begin{aligned}
f=u-T s & \Longrightarrow \mathrm{~d} f=\mathrm{d} u-T \mathrm{~d} s-s \mathrm{~d} T \stackrel{\downarrow}{=}-s \mathrm{~d} T-p \mathrm{~d} v \\
& \Longrightarrow f=f(T, v)
\end{aligned}
$$

constitutive equations

$$
\begin{aligned}
s & =s(T, v) \\
p & =p(T, v)
\end{aligned}
$$

$$
\begin{aligned}
-s & =\frac{\partial f}{\partial T} \\
-p & =\frac{\partial f}{\partial v}
\end{aligned} \quad \Longrightarrow \quad \begin{gathered}
\text { Maxwell condi } \\
\frac{\partial p}{\partial T}=\frac{\partial s}{\partial v}
\end{gathered}
$$

Gibbs free energy ϕ

$$
\phi=u+p v-T s \quad \Longrightarrow \mathrm{~d} \phi=\mathrm{d} u+p \mathrm{~d} v+v \mathrm{~d} p-T \mathrm{~d} s-s \mathrm{~d} T
$$

$$
\underset{\hat{\wedge}}{=-s \mathrm{~d} T+v \mathrm{~d} p \quad \Longrightarrow \quad \phi=\phi(T, p), ~}
$$

Gibbs equation
constitutive equations

$$
\begin{aligned}
s & =s(T, p) \\
v & =v(T, p)
\end{aligned}
$$

$$
\begin{aligned}
-s & =\frac{\partial \phi}{\partial T} \\
v & =\frac{\partial \phi}{\partial p}
\end{aligned} \quad \Longrightarrow \quad \begin{gathered}
\text { Maxwell conditic } \\
\end{gathered} \quad \Longrightarrow \quad \frac{\partial v}{\partial T}=\frac{\partial(-s)}{\partial p}
$$

$\xrightarrow[\dot{s}]{T} \backslash \mathbf{C} \stackrel{p}{\dot{v}}$

Any of the four formulations gives constitutive equations which guarantee conservation of energy.

The computation path depends on the causality pattern.
For instance, assume the entalphy is given, $h=h(s, p)$

One can also give constitutive equations without using any of the energy functions u, h, f or ϕ.

However, this can easily give impossible substances, which violate the First Principle of Thermodynamics (energy conservation).

Ideal gas:

$$
p v=R T
$$

Since this is a pure substance of the type considered, another constitutive equation is needed to specify the 2-port.

The remaining equation is related to the gas being mono- or diatomic.
Giving this second equation arbitrarily runs into the above problem.
It is better to start with two other relations and build an energy function from them, incorporating $p v=R T$.
specific heat at constant pressure

$$
c_{p}=\frac{\partial h}{\partial T} \quad \begin{gathered}
\text { this makes sense since } p \text { is an } \\
\text { input in the } h(s, p) \text { formulation }
\end{gathered}
$$

specific heat at constant volume ${ }^{T}$ is not a natural variable of h or u.

$$
c_{v}=\frac{\partial u}{\partial T} \quad \text { this makes sense since } \dot{v} \text { is an }
$$

Together with $p v=R T$, we assume that c_{v} is a constant, determined by the particular ideal gas.

$$
\left.\begin{array}{rl}
p v & =R T \\
h & =u+p v
\end{array}\right\} \quad \Longrightarrow \quad c_{p}=c_{v}+R
$$

\(\left.\begin{array}{c}c_{v}=\frac{\partial u}{\partial T}

c_{v} constant\end{array}\right\} \Longrightarrow u=c_{v}\left(T-T_{0}\right) \quad\)| reference |
| :---: |
| temperature |

$$
\begin{gathered}
\left.h=u+R T \Longrightarrow \begin{array}{c}
h \text { is also function } \\
\text { of } T \text { alone } \\
c_{p}=\frac{\partial h}{\partial T}
\end{array}\right\} \Longleftrightarrow h=c_{p}\left(T-T_{0}\right)+R T_{0} \\
\begin{array}{c}
c_{p} \text { constant } \\
\text { due to } c_{p}=c_{v}+R
\end{array}
\end{gathered}
$$

$$
\mathrm{d} u=T \mathrm{~d} s-p \mathrm{~d} v \Longleftrightarrow \mathrm{~d} s=\frac{\mathrm{d} u}{T}+p \frac{\mathrm{~d} v}{T}=c_{v} \frac{\mathrm{~d} T}{T}+R \frac{\mathrm{~d} v}{v}
$$

$$
\rightleftarrows_{\text {ategration of }} s=c_{v} \log \frac{T}{T_{0}}+R \log \frac{v}{v_{0}} \Longleftrightarrow T=T_{0} e^{\frac{s}{c_{v}}}\left(\frac{v}{v_{0}}\right)^{-\frac{R}{c_{v}}}
$$

integration of the 1 -form

$$
\begin{aligned}
& \mathrm{d} h=T \mathrm{~d} s+v \mathrm{~d} p \Longrightarrow \mathrm{~d} s=\frac{\mathrm{d} h}{T}-v \frac{\mathrm{~d} p}{T}=c_{p} \frac{\mathrm{~d} T}{T}-v \frac{\mathrm{~d} p}{T} \\
& =c_{p} \frac{1}{R T}(p \mathrm{~d} v+v \mathrm{~d} p)-\frac{v}{T} \mathrm{~d} p=c_{p} \frac{\mathrm{~d} v}{v}+\frac{v}{T}\left(\frac{c_{p}}{R}-1\right) \mathrm{d} p=c_{p} \frac{\mathrm{~d} v}{v}+c_{v} \frac{\mathrm{~d} p}{p} \\
& \underbrace{}_{\begin{array}{c}
\text { integration of } \\
\text { the 1-form }
\end{array}} s=c_{p} \log \frac{v}{v_{0}}+c_{v} \log \frac{p}{p_{0}} \Longrightarrow p=p_{0} e^{\frac{s}{c_{v}}}\left(\frac{v}{v_{0}}\right)^{-\frac{c_{p}}{c_{v}}}
\end{aligned}
$$

$$
\left.\left.\begin{array}{l}
p=p_{0} e^{\frac{s}{c_{v}}}\left(\frac{v}{v_{0}}\right)^{-\frac{c_{p}}{c_{v}}} \\
T=T_{0} e^{\frac{s}{c_{v}}}\left(\frac{v}{v_{0}}\right)^{-\frac{R}{c_{v}}}
\end{array}\right\} \begin{array}{c}
\text { constitutive equations for } \\
\text { a perfect gas in all-integral form }
\end{array}\right\} \begin{gathered}
\left.\dot{s}, \dot{v} \Longrightarrow \quad \begin{array}{c}
\\
T, p \longleftrightarrow c_{v}
\end{array}\right\}
\end{gathered}
$$

Exercise: compute the constitutive equations for the other three causality patterns.

Chemical engineering:

> transport phenomena
quantities of substances vary with time
Requires an extension of the basic thermodynamic bond graph framework

