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Abstract—The linearization of the power amplifier (PA) is an
indispensable step in the project of a wireless communication
system to improve the PA efficiency and reduce the spread
spectrum effect, avoiding interference among neighbor channels.
For the linearization of the PA, a behavioral modeling is nec-
essary. This article deals with the study of a cascade among
three Volterra series for the behavioral modeling of a class
AB PA with GaN-based technology stimulated by a WCDMA
signal. The numerical experiments were realized in Python.
The parameters were estimated by the separable least squares
method (SLS) and optimized through the Levenberg-Marquardt
method. All trained models have 250 or fewer coefficients and
parameter order truncation of 10. A total of 32284 cases were
performed, qualified, treated and presented according to the
normalized mean square error (NMSE). The results show that
the proposed model, compared to the traditional model, reduces
computational complexity and NMSE by up to 51% and -3.787
dB respectively, and compared with the two-blocks Volterra series
cascade, reduces computational complexity and NMSE by up to
40% and -1.286 dB respectively. The best NMSE result of the
models was -38.83 dB for the traditional model, -40.106 dB for
the two-blocks cascade model and -41.359 dB for the three-blocks
cascade model.

Index Terms—PA, amplifier, behavioral modeling, Volterra
series, cascade model.

I. INTRODUCTION

The Power Amplifier (PA) [1] is the most important device
in a wireless communication system, responsible to increase
the power of a signal before its transmission, being the major
consumer of power and often the most expensive device of
the system. Although, its use is compromised by its nonlinear
input-output response to high power input levels due to the
saturation and compression effects of its internal transistor and
the phase distortion caused by capacitors and inductors of the
impedance matching networks. Thanks to this, the application
of a linearization step is indispensable to improve the PA
efficiency and reduce the spread spectrum effect, avoiding
interference among neighbor channels.

The Digital Pre-Distortion (DPD) [2] is a widely applied
method for the PA linearization purpose, consisting into the
previous application of the PA’s inverse signal, resulting in
a linear relationship between the DPD input and the PA
output. For the project of a DPD, a behavioral model of the
PA is required, with high accuracy and low computational
complexity.

The models employed for the behavioral modeling usually
are based on polynomial series with fading memory, like the

Volterra series [3], and neural networks, like the time delay
neural network (TDNN) [4]. In [5] the cascade among two
Volterra series was investigated and better performance was
achieved in relation to the traditional model. In this paper, the
applied model was an extension of this model: the Volterra
series cascade with three concatenated blocks.

The objective of this article was to compare the results
of the proposed model with the traditional model and the
two-blocks Volterra series cascade model, looking for better
results with the expansion of the cascade, keeping constant the
maximum number of coefficients. The numerical experiments
were performed in Python.

II. BEHAVIORAL MODELING DESCRIBED BY
THE CASCADE OF THREE VOLTERRA SERIES

The process of describing the behavior of a device, physi-
cally or mathematically, is called behavioral modeling. Physi-
cal models represent the relations explicitly with linear equa-
tions and partial derivative equations, which demand a deep
knowledge about the device to be modeled and, consequently,
have a significant computational complexity. For the PA mod-
eling purpose, its use is discarded by the principle that we are
looking for low-complexity models.

A mathematical modeling consists into the abstraction of
the real process, looking at the device like a black box, where
only the inputs and outputs are known. The modeling process
is related to approximating the so-called ”transfer function”,
which in our model will be represented as the instantaneous
gain of the PA, described by:

Av(n) =
|ŷ(n)|
|x̂(n)|

[
V

V

]
(1)

where x̂(n) and ŷ(n) are the complex-valued envelopes,
respectively, at the input and output of the PA.

In this research, the employed model is based on the Volterra
series, a polynomial series with the ability to reproduce
memory effects. Its output does not depend only on the
instantaneous input, but also on the M previous instants (for
the discrete-time model). Thank to this, the output is related
to the input in a nonlinear form, being possible to represent
the non-linearity and memory effects of the PA, moreover, the
series is linear in its parameters without any generality loss.
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For the PA purpose, it is convenient to adopt the discrete-time
low-pass equivalent Volterra series model [6], described by:

ŷ(n)=

P∑
p=1

M∑
q1=0

M∑
q2=q1

· · ·
M∑

qp=qp−1

M∑
qp+1=0

M∑
qp+2=qp+1

· · ·
M∑

q2p−1=q2p−2

×ĥ2p−1(q1, · · · , q2p−1)

p∏
j1=1

x̂(n− qj1 )

2p−1∏
j2=p+1

x̂∗(n− qj2 ) (2)

where (∗) denotes the complex conjugate operator, M is the
memory length, P0 = 2P − 1 is the polynomial order trun-
cation and ĥ2p−1(q1, · · · , q2p−1) are the low-pass equivalent
Volterra kernels. The number of parameters to be determined
in (2) is given by

L =

P−1∑
p=0

[(M + p)!]2(M + p+ 1)

(M !)2(p!)2(p+ 1)
(3)

As the number of coefficients in (3) increases quickly
with P and M , the method becomes unfeasible for higher
orders of M and P, so we are going to investigate another
modeling, looking for a complexity reduction. The proposed
model, represented by Fig. 1 in a simplified block diagram, is
composed by a cascade of three Volterra series in parallel with
the PA to be modeled, represented as a black box, where Z−1

is the unit delay block, (M1, P1), (M2, P2) and (M3, P3)
are the truncation parameters of each Volterra series of the
model, X1, X2 and X3 are matrices composed by the product
presented in (2) for all index combinations, H1, H2 and H3
are the coefficient vectors of each series, y1(n), y2(n) and
y3(n) are the outputs of each block and E(n) is the error
between the measured and the estimated output of the PA,
y3(n). The traditional case with only one Volterra series, as
the two Volterra series cascade model, are particular cases
of the proposed model, respectively when two or one of the
blocks has M = 0 and P = 1 as arguments.

Fig. 1. Proposed model with three Volterra series in cascade

III. PARAMETER EXTRACTION AND
OPTIMIZATION STEP

Since the proposed model presents a nonlinear input-output
response, its coefficients also present a nonlinear relationship
among them, being necessary an optimization step to improve
the contributions of all blocks. Commonly the Levenberg-
Marquardt method (LM) [7] is employed, which is an al-
gorithm based on gradient decreasing direction search with

unconstrained parameters. The method takes at each iteration
an approximate of the Jacobian matrix of the system, which
tells us the sensitivity of the model in each coefficient, and
then takes a direction that decreases the linear approximation
of the function (that decrease the error function E(n)).

For the LM method, an initial point is required, which
can be randomly generated or estimated with a sub-optimal
method, like the separable least-squares (SLS) detailed in [5].
Neither methods ensure the convergence to the global optima.

In python, the LM method can be applied through the
function scipy.optimize.least_squares, which unfortunately
does not support complex input or output data functions. For
its application, the manipulation of the data is necessary. The
objective function optimized in this paper is constructed as:

f(HH) = [real (E(HH)) , imag (E(HH))] ,

HH = [real ([H1, H2, H3]) , imag ([H1, H2, H3])]

where HH is the concatenation of the real and imaginary part
of all the cascade coefficients, E(HH) is the error when HH
is applied to the cascade, and f(HH) is the objective function
to be minimized.

The initial guess of the coefficients was taken utilizing the
SLS method with the instruction:

H = numpy.linalg.pinv(XX )@ŷ[M :]

IV. CASE STUDY FOR MODEL VALIDATION

In this research, the proposed model was applied in a case
study with a class AB PA with GaN-based technology, excited
by a 900 MHz carrier and stimulated by a WCDMA signal
with 3.84 MHz of bandwidth. The signals were measured us-
ing a vector signal analyzer (VSA) with a sampling frequency
of 61.44 MHz. The data was previously collected and detailed
in [8]. For performance analysis, the normalized mean square
error (NMSE), was calculated for all computed cases as:

NMSE = 10log

∑N
n=1(y3(n)− y(M1 +M2 +M3 + n))2∑N

n=1 y(M1 +M2 +M3 + n)2
[dB] (4)

where y(∗) is the measured output extraction data and y 3(∗)
is the estimated output signal, both complex-valued vectors
with dimension N +M1 +M2 +M3 and N respectively.

For the validation of the method, the model was trained with
several combinations of the parameters, that satisfy:

0 ≤ M1,M2,M3 ≤ 10,

1 ≤ P1, P2, P3 ≤ 10, (5)

L1 + L2 + L3 ≤ 250

where L1, L2 and L3 are the numbers of coefficients respec-
tively of the first, second and third blocks. A total of 32284
cases were performed by the SLS method and then ranked by
decreasing NMSE. In Fig. 2 it is presented the scatter plots
of the proposed model, evidencing in A) the traditional and
two blocks cascade model results. We can observe from this
figure that the three-blocks cascade Volterra series model was



Fig. 2. A) Tetrahedron edges and orthogonal faces represent respectively the results of the traditional model and the two blocks cascade model. B) Tetrahedron
interior represent the results of the cascade with three Volterra series

represented in lowest colors temperatures, so, in general, it
returned better NMSE results.

Figure 3 presents the NMSE curves for distinct parameter
truncation orders, where T ′n′ represent the curve with trunca-
tion order ′n′. We then observe that the NMSE curves converge
for truncation order above to six.

With this assumption, we have filtered the data with the
parameter truncation order equal to six, and generated new
NMSE curves: three representing the traditional model and
the two and three blocks Volterra series cascade models, and
three curves of the proposed model considering the number of
nonlinear blocks into the scheme (the number of blocks with
M > 0). All the points in these curves were optimized through
the LM method, with the process limited by 100 iterations.
The result is presented in Fig. 4. The results show that the
proposed model, compared to the traditional model, reduces
computational complexity and NMSE by up to 51% (28% on
average) and −3.787 dB (−1.218 dB on average) respectively,
and compared with the two-blocks Volterra series cascade,
reduces computational complexity and NMSE by up to 40%
(10% on average) and −1.286 dB (−0.156 dB on average)

Fig. 3. NMSE curves for different parameter truncation orders

respectively.
Table I presents the results for the traditional, two-blocks

and three-blocks cascade Volterra series models for the extrac-
tion and validation datasets applying the best results from Fig.
4B).

Figure 5 presents two plots of these results. The first
compares the measured and modeled instantaneous gain of the
PA. The second compares the measured and modeled phase
shift between the PA output and input. The traditional model

Fig. 4. NMSE curves. A) Traditional model and cascade derivations with two
and three blocks (SLS parameter extraction). B) Optimized results from ”A)”.
C) Three blocks cascade Volterra series for different numbers of nonlinear
blocks into the scheme (SLS parameter extraction). D) Optimized results from
”C)”.

TABLE I
COMPARATIVE ANALYSIS OF THE MODELS

M1 P1 M2 P2 M3 P3 L1+L2+L3 NMSE [dB]
Extraction Validation

3 3 0 1 0 1 246 -38.830 -38.233
0 2 6 2 0 1 206 -40.106 -39.544
0 2 6 2 1 4 245 -41.359 -40.595



was excluded from these plots for better visualization. From
Fig. 5, there is a smaller dispersion between measured and
estimated data when using the model with three blocks in the
cascade.

Fig. 5. Measured and modeled instantaneous gain and phase shift

Figure 6 presents the spectrum of the input and output signal
applied to the PA and the error spectrum for the three models
compared in this paper. From Fig. 6, there is a smaller error in
most of the spectrum when using the model with three blocks
in the cascade.

Fig. 6. Power Spectral Density (PSD) for measured input and output signals
and modeled errors

Figure 7 presents the error accumulation regions in heatmap
graphs for the three compared models. We can observe from
this representation that the error converges to zero when the
number of blocks in the cascade is increased because the dot
scattering decreases. Moreover, as the red region grow up into
the third plot we can conclude that more points were close to
the ”zero error” in relation to the second plot.

V. CONCLUSIONS
Through the analysis of the results, we are able to observe

the best approaches given by the three-blocks Volterra series

Fig. 7. Heatmap from error accumulation region for the three models

model. The computational complexity was reduced by up to
51% and 40% based respectively on the traditional model
and the two-blocks cascade model. The maximum difference
between the NMSE curves was −3.787 dB and −1.286 dB
in relation, respectively, to the traditional model and the
two-blocks cascade model. The error was reduced in the
major part of the frequency domain, as presented in Fig. 6,
and its converging can be observed in Fig. 7. The set of
results denotes the best approaches of the three-blocks cascade
Volterra series model. Future works should take into account
the optimization based on the module and angle errors and/or
global optimization methods.
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