

Synthesis of QDI Combinatorial

Circuits with Weak-Indication

using Synchronous Tools

Duarte L. Oliveira, Gracieth C. Batista
Instituto Tecnológico de Aeronáutica – ITA, SJC, Brazil

E-mail: duarte@ita.br, gracieth@ita.br

Seminários de Microeletrônica do Paraná

Curitiba, Brasil

Abstract—Due to the clock signal problems on

synchronous circuits design, asynchronous circuits is a

design alternative, because it not use clock signal. An

essential class of asynchronous circuits, due to simplified

timing analysis and are robust to PVT variations (process,

supply voltage, temperature) is the class called quasi delay

insensitive (QDI). However, QDI circuits have high

overhead in area, due to signal coding, which uses delay

insensitive code and the excessive use of C elements. This

paper proposes a new method based on basic gates and C

elements to implement QDI combinatorial circuits

(QDI_CC). The QDI_CC circuits synthesized in the new

method interact with the environment in weak-indication

therefore they are robust in the interaction with the

environment. The proposal provides to be promising for a

set of eight benchmarks comparing the proposed

architecture with two methods from the literature. Our

proposal obtained for eight examples an average reduction

of 22.4% and 12.6% that respectively are number of C

elements and number of transistors, when compared with

the known NCL_D method.

I. INTRODUCTION

A promising alternative to digital design are the

asynchronous circuits, because they don't work with a

clock signal, so eliminate the problems related to clock

signal [1]. Asynchronous circuits are designed in different

classes [1]. The delay model in which the asynchronous

circuit works defines its class [1]. The Unbounded and

Gate Wire Delay (UGWD) model is robust, where the

delays of gates and the wires are undefined (any delay

value), but finite [1]. The delay insensitive (DI) circuits

satisfy the UGWD model. Martin [2] shows that this

delay model is very restricted, that is, few circuits can be

synthesized in this delay model. There are two less

restricted variants of this delay model [1]. Firstly, the

delay model in which the delay in the gates is undefined,

but finite and the delay in the wires is zero (UGD). The

speed-independent circuits work on UGD model, but the

assumption of zero delay on wire is not real in DSM-

MOS technology [3]. Secondly, the UGWD delay model,

but with the isochronic fork assumption. This assumption

says that, in some wires with fan-out> 1 (fork), the delays

should be equal [2]. Quasi-insensitive delay (QDI) circuits

work on UGWD model with the isochronic fork

assumption. QDI circuits interact with the environment in

I/O mode. This mode says that when an output is

activated, a specified input can be activated immediately.

This class has important features that are interesting, such

as: a) a potential to present better latency time; b) a higher

robustness to variations in temperature, supply voltage

and process (PVT); c) a higher robustness to delay and to

Stuck-at faults (easily tested fault classes); d) a higher

modularity, allowing reusability and design as intellectual

property; e) a better performance in security systems

design; and f) the timing analysis is highly simplified; g)
operates in natural form with sub-threshold supply

voltages.

QDI Combinational circuits (QDI_CC) employ m-of-n

DI codes to represent data, being the “4-phase” protocol

the most common processing [1]. Different techniques

and architectures have been proposed for the synthesis of

QDI_CC [4-15]. Where [4] [7-15] are techniques that

design QDI_CC at the basic gate level and C element [1],

while the techniques of [5,6] design at the transistor level.

The methods proposed in [8,9,11,14,15], despite being

highly efficient in area, use some type of valid data and

null data operation detector to satisfy QDI requirements,

but the detector degrades latency. The methods [4,7,

12,13] do not use any type of detector, where [12,13] are

geared towards multipliers. Sparsø, et al. [4] proposed a

very simple method called Delay-Insensitive Minterm

Synthesis (DIMS) that starts from canonical functions,

where each product term is implemented by C elements

and the sum term with OR gates. Figure 1 illustrates the

DIMS method implementing a 2x1 MUX.

F1

F0

A0 A1 Sel1Sel0

C

C

C

C

C

C

C

C

B0 B1

 DIMS method with strong-indication: QDI MUX-2x1. Fig. 1.

mailto:duarte@ita.br

The problem with this DIMS method is the excessive

use of C elements, which drastically increases the area

and degrades latency. Ligthart, et al. [7] proposed a

method called NCL_D (Null Convention Logic – DIMS)

that starts from minimized functions where each term

(AND,OR) is implemented as DIMS. This technique

reduces the number of C elements, leading to reduced area

and latency. Figure 2 illustrates the NCL_D method

implementing a 2x1 MUX.

A0 A1 Sel1Sel0

C

C

C

C

C

C

C

C

C

B0

B1

C

C

C

F1

F0

 NCL_D method with wak-indication: QDI MUX-2x1. Fig. 2.

Despite the reduction of C elements, obtained by the

NCL_D method, the use of C elements is still excessive.

This paper proposes a novel method for synthesis of

QDI_CC which is an extension of the NCL_D method,

where the terms (AND,OR) is implemented by optimized

DIMS called DIMOS (Delay Insensitive Minterms

Optimized Synthesis). This new method allows a further

reduction in the use of C elements. Figure 3 illustrates two

implementations of the C element, where the

implementation of Fig. 3d is not QDI.

C1 C2

0 0

0 1

1 1

1 0

QN+1

1

0

QN

QN

C Q

C1

Vdd

Weak

Q

C2

C2

Q

C1

(a)

(d)(c)(b)

 C element: a) table of operations; b) symbol; c) Fig. 3.

semi-static version; d) based on basic gates version.

II. QUASI DELAY INSENSITIVE FUNCTION:

CONCEPTS

QDI Boolean functions are synthesized in DI codes.

There are different DI codes and, in this paper, we

adopted the dual-rail coding [11]. The QDI combinatorial

circuits (QDI_CC) that will be synthesized operate behave

the 4-phase handshake protocol [11]. In the dual-rail code,

each variable is encoded with two bits. For the variable A,

we have A1A0=00 (null - space), A1A0=01 (data 0),

A1A0=10 (data 1) and A1A0=11 (never occurs). The DI

codes generate the operation conclusion signal without the

need of a delay element and with a relatively simple

circuit. The delay insensitive (DI) combinatorial circuits

are subject to hazard. Hazardous circuit means there is a

potential for glitches to occur, so it may lead to

malfunctioning. The hazard manifests in DI circuits

through gate orphan and wire orphan, i.e. a circuit is DI if

it is free of gate orphan and wire orphan. QDI_CC are free

of wire orphans because they satisfy the isochronic fork

assumption. So the combinatorial circuit is QDI if it is

free of gate orphan [13,14].

A. Boolean function: QDI condition

A QDI circuit has a gate orphan if a sequence of signal

transitions across a path of one or more gates is not

recognized by a transition signal on any primary output

[13,14]. The indicability property indicates how robust

the circuit in relation to timing analysis and ensures that

the QDI_CC circuit is free of wire orphan. There are three

types of indicability: a) strong-indication, the output

signal transitions will only occur, after all the input

signals are NULL or Valid; b) weak-indication, some

transitions of output signals can occur, before all input

signals are NULL or Valid, but in the last transition of the

output signal, all input signals are NULL or Valid; c)
early indication, if all transitions of the output signals are

NULL or Valid, it does not mean that all input signals are

NULL or Valid.

III. METHOD FOR SYNTHESIS OF QDI_CC

 The method DIMOS that synthesizes our QDI

circuits, interact with the environment in weak-indication

mode and is composed of three steps that uses

synchronous synthesis tools:

For each output variable Vs of the Boolean net, do:

a) Perform the logic minimization using the

ESPRESSO tool [16] in the sum-of-products style.

b) Perform the technological mapping with the

library (INV,AND2,OR2-3) using the SIS

tool[16].

c) Each product term and each sum term (when there

is any non-canonical product term) of Vs to

implement as DIMOS.

A. Synthesis of DIMOS

 Figure 4 shows the DIMS coverage and the circuits

of the product term AB and the sum term A+B. For

product AB, shown in Fig. 4a,b; the canonical (minterms)

coverage is F=AB  as dual-rail is F1=A1B1 and the

canonical (maxterms) coverage is F=A’B’ + AB’ + A’B

 as dual-rail is F0=A0B0+ A1B0 + A0B1. For the sum

A+B, shown in Fig.4c,d; the canonical (minterms)

coverage is F=AB + AB’ + A’B  as dual-rail is

F1=A1B1+A1B0+A0B1 and the canonical (maxterms)

coverage is F=A’B’  as dual-rail is F0=A0B0.

 Figure 5 shows the DIMOS coverage and the circuits

of the product term AB and the sum term A+B. For

product AB, shown in Fig. 5a,b; the dual-rail disjoint

(minterms) minimized coverage is F1=A1B1 and the

dual-rail disjoint (maxterms) minimized coverage is

F0=B0 + A0B1 and is introduced the OR gate of the

absent signal A, leaving F0=B0(A0+ A1) + A0B1. For

the sum A+B, shown in Fig.5c,d; the dual-rail disjoint

(minterms) minimized coverage is F1=A1+A0B1 and is

introduced the OR gate with the absent signal B, leaving

F1=A1(B0+B1) + A0B1 and the dual-rail minimized

coverage disjoint (maxterms) is F0=A0B0.

A
B 0 1

0

1

0 0

0 1

C

C

C

C

A1 A0 B1 B0

F1

F0

A
B 0 1

0

1

0 1

1 1

(a) (b)

C

C

C

C

A1 A0 B1 B0

F1

F0

(c) (d)
 Project DIMS: a,b) AND;c,d) OR. Fig. 4.

A
B 0 1

0

1

0 0

0 1

C

C

C

A1 A0 B1 B0

F1

F0

A
B 0 1

0

1

0 1

1 1

(a) (b)

C

C

C

A1 A0 B1 B0

F1

F0

(c) (d)
 Project DIMOS:a,b) AND; c,d) OR. Fig. 5.

IV. EXAMPLES DIMOS

A. Example: QDI F(a,b,c)=(3,6,7)

 The minimized F function is: FMIN=ab+bc. This

function implemented as DIMS needs 16 C elements and

2 OR4 gates. The implementation in the NCL_D method

needs 12 C elements and 3 OR3 gates. The two product

terms and the sum term are implemented as DIMS. Each

DIMS term needs 4 C elements and an OR3 gate. The

three terms of FMIN are implemented as DIMOS and Fig.

6 shows the circuit. For term ab, as dual-rail, disjoint

minimization is F11=a1b1 and F10=a1b0+a0

F10=a1b0+a0(b0+b1); for the term bc, as dual-rail,

the disjoint minimization is F21=b1c1 and

F20=b1c0+b0 F20=b1c0+b0(c0+c1); for the term

F1-10+F2-10F1-2, as dual-rail and disjoint

minimization, we have: F1=F10F21 + F11 

F1=F110F21+F11(F20+F21) and F0=F10F20.

c0

c1

a0 a1 b1b0

C

C

C

C

C

C

C

C

C

F1

F0

F11

F10

F21

F20

 Architecture with strong-indication: QDI F. Fig. 6.

B. Example: QDI MUX 2x1

 Figure 7 shown the project of QDI MUX 2x1, where

the minimized function is: Out=aSel’+bSel; for the term

aSel’ as dual-rail, the disjoint minimization is

F11=a1Sel0 and F10=a0Sel0+Sel1 F10=a0Sel0 +
Sel1 (a0+a1); for the term bSel as dual-rail, disjoint

minimization is:F21=b1Sel1 and F20=b1Sel0+b0

F20=b1Sel0+b0(Sel1+Sel0); for the term F1+F2 as

dual-rail, the disjoint minimization is:Out1=F20F11 +

F21Out1=F20F11+F21(F11+F10)and

Out0=F10F20.

b0

b1

a0 a1 Sel1Sel0

C

C

C

C

C

C

C

C

C

Out1

Out0

F11

F20

F21

F10

 DIMOS with weak-indication: QDI MUX 2x1. Fig. 7.

C. Example: QDI Half Adder

 Figure 8 shown the project of QDI half adder, where

the dual-rail disjoint minimized functions are: S1=A1B0

+ A0B1; S0=A0B0 + A1B1; Cout1=A1B1; Cout0=A0 +

A1B0  Cout0=A0(B0+B1) + A1B0.

C

C

C

C

C

A0 A1 B1B0

C

C
S1

S0

Cout1

Cout0

 Architecture with strong-indication: QDI Half Adder. Fig. 8.

D. Example: QDI 1-bit equality comparator

 Figure 9 shown the project of QDI 1-bit equality

comparator, where the dual-rail disjoint minimized

function is: Eq1=A1B1 + A0B0; Eq0=A1B0 + A0B1. In

this example there was no application of the optimization

technique, because the canonical already minimal.

C

C

A0 A1 B1B0

C

C
Eq1

Eq0

 Architecture with strong-indication: QDI 1-bit Fig. 9.

equality comparator.

V. EXPERIMETAL RESULTS

 In order to demonstrate our proposal viability, eight

benchmarks {AND4, AND8, MUX2x1, MUX4x1, Half-

Adder, Full-Adder, Equality comparator of 1-bit, 4x2,

Encoder of [8]} were synthesized, in the methods DIMS

[4], NCL_D [7] and in our DIMOS proposal.

 Table I shows the results of these eight benchmarks

for the four methods, involving number of gates, number

of C elements, and estimated number of transistors. The

estimation of the number of transistors occurred

following the procedure of using a library of gates

{AND2, OR2, NAND, NOR, C element}, where six

transistors for AND2, OR2 gates, and NAND/NOR is

2*Fan-in; twelve transistors for C element

implementation, which is required in the static style.

 Comparing our proposal with the NCL_D method,

which is also a weak-indication, we had an average

reduction of 12.6% and 22.4% respectively number of

transistors and number of C elements. Making a

comparison with the DIMS method that generates circuits

with strong-indication, we had an average reduction of

40.9% and 51.1% respectively number of components

(gates + C elements) and number of transistors.

TABLE I RESULT OF EIGHT BENCHMARKS

Example Method Number
of gates

Number of
C elements

Number of
transistors

NCL_D
 of [7]

DIMS
 of [4]

Proposal
DIMOS

AND4
dual-rail

3

620

168

1446

484

12

9

(a)

Example Method Number
of gates

Number of
C elements

Number of
transistors

NCL_D
 of [7]

DIMS
 of [4]

Proposal
DIMOS

AND8
dual-rail

7

1296

392

33614

1009

28

21

(b)

Example Method Number
of gates

Number of
C elements

Number of
transistors

NCL_D
 of [7]

DIMS
 of [4]

Proposal
DIMOS

MUX 2x1
dual-rail

3

212

168

1446

162

12

9

(c)

Example Method Number
of gates

Number of
C elements

Number of
transistors

NCL_D
 of [7]

DIMS
 of [4]

Proposal
DIMOS

MUX 4x1
dual-rail

11

636

614

52822

486

44

33

(d)

Example Method Number
of gates

Number of
C elements

Number of
transistors

NCL_D
 of [7]

DIMS
 of [4]

Proposal
DIMOS

Half
Adder

dual-rail

3

116

116

1084

83

8

7

(e)

Example Method Number
of gates

Number of
C elements

Number of
transistors

NCL_D
 of [7]

DIMS
 of [4]

Proposal
DIMOS

Full
Adder

dual-rail

7

232

288

26410

164

20

17

(f)

Example Method Number
of gates

Number of
C elements

Number of
transistors

NCL_D
 of [7]

DIMS
 of [4]

Proposal
DIMOS

Equality
Comparator

of 1-bit
dual-rail

2

60

60

602

42

4

4

(g)

Example Method Number
of gates

Number of
C elements

Number of
transistors

NCL_D
 of [7]

DIMS
 of [4]

Proposal
DIMOS

Encoder
Fig. 9 [8]
dual-rail

6

656

336

28812

4810

24

18

(h)

VI. CONCLUSION

Designs of combinatorial digital circuits in DSM-

MOS technologies must have characteristics that the QDI

style is the most promising. There are different literature

methods for the synthesis of QDI_CC, but they all use C

elements. In this paper we proposed a novel method for

synthesis of QDI_CC which is an extension of the

NCL_D method, where the terms (AND,OR) is

implemented by optimized DIMS called DIMOS. This

new method allows a further reduction in the use of C

elements. We show for eight examples, the performance

of the proposed architecture, when compared to two

methods of literature  46.4% average reduction of C

elements. Further works to develop an automated method

for synthesis of large QDI_CC in our DIMOS method.

REFERENCES

[1] P. Beerel, R. Ozdag and M. Ferretti, “A Designer’s Guide to

Asynchronous VLSI”. Cambridge University Press, p. 337,

2010.

[2] J. Martin, “The Limitations to Delay Insensitive in

Asynchronous Circuits,” 6th MIT Conference on Advanced

Research in VLSI Processes, pp.263-277, 1990.

[3] B. H. Calhoun, et al., “Digital Circuit Design Challenges and

Opportunities in the Era of Nanoscale CMOS,” Proc. of the

IEEE, Vol. 96, No. 2, pp. 343-365, February 2008.

[4] J. Sparsø, J. Staunstrup, "Delay Insensitive Multi-Ring

Structures", Integration, the VLSI Journal, v15(13), 1993.

[5] K. M. Fant and S. A. Brandt. “NULL convention logic: a

complete and consistent logic for asynchronous digital circuit

synthesis”. In Int. Conference on Application Specific

Systems, Architectures and Processors, pp. 261-273, 1996.

[6] C. Chuang, Y. Lai, and J. R. Jiang, “Synthesis of PCHB-

WCHB Hybrid Quasi-Delay Insensitive Circuits,” 51st

ACM/EDAC/IEEE Design Automation Conference (DAC),

pp.1-6, 2014.

[7] M. Ligthart, K. Fant, R. Smith, A. Taubin, A. Kondratyev,

“Asynchronous design using commercial HDL synthesis

tools”, IEEE 6th Int. Sym. on Advanced Research in

Asynchronous Circuits and Systems, pp. 114–125, 2000.

[8] A. Kondratyev, K. Lwin, “Design of Asynchronous Circuits

Using Synchronous CAD Tools”, IEEE Design and Test of

Computers, vol. 19, no. 4, pp. 107-117, 2002.

[9] P. Balasubramanian, and D.A. Edwards, “Efficient

Realization of Strongly Indicating Function Blocks,” IEEE

Computer Society Annual Symposium on VLSI, ISVLSI '08,

pp.429-432, 2008.

[10] Fu-Chiung Cheng and Chi Chen, “Can QDI Combinational

Circuits be Implemented without C-elements?,” IEEE 19th

International Symposium on Asynchronous Circuits and

Systems, pp134-141, 2013.

[11] P. Balasubramanian, et al. “Asynchronous early output

section-carry based carry lookahead adder with alias carry

logic,” IEEE 30th International Conference on

Microelectronics (MIEL), pp.1-7, 2017.

[12] D. L. Oliveira, et al. “Synthesis of QDI Combinational

Circuits using Null Convention Logic Based on Basic Gates,”

Advances in Science, Technology and Engineering Systems

Journal Vol. 3, No. 4, 308-317, 2018.

[13] P. Balasubramanian, D. L. Maskell, N. E. Mastorakis,

“Indicating Asynchronous Multipliers,” 2nd European

Conference on Electrical Engineering and Computer Science

(EECS), pp.1-7, 2018.

[14] P. Balasubramanian, et al., “Early Output Quasi-Delay-

Insensitive Array Multipliers,” Electronics, MDPI, 8,444,

pp.1-14, 2019.

[15] D. L. Oliveira, et al. “A High Performance Implementation of

Quasi Delay Insensitive Booleans Functions,” IEEE XXVI

International Conference on Electronics, Electrical

Engineering and Computing (INTERCON), pp.1-4, 2019.

[16] E. Sentovich et al. “SIS: A system for sequential circuit

synthesis, ”Technical Report, UCB/ERI, M92/41, ERL, Dept.

of EECS, UC Berkeley, 1992.

