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Abstract—Due to the clock signal problems on 

synchronous circuits design, asynchronous circuits is a 

design alternative, because it not use clock signal. An 

essential class of asynchronous circuits, due to simplified 

timing analysis and are robust to PVT variations (process, 

supply voltage, temperature) is the class called quasi delay 

insensitive (QDI). However, QDI circuits have high 

overhead in area, due to signal coding, which uses delay 

insensitive code and the excessive use of C elements. This 

paper proposes a new method based on basic gates and C 

elements to implement QDI combinatorial circuits 

(QDI_CC). The QDI_CC circuits synthesized in the new 

method interact with the environment in weak-indication 

therefore they are robust in the interaction with the 

environment. The proposal provides to be promising for a 

set of eight benchmarks comparing the proposed 

architecture with two methods from the literature. Our 

proposal obtained for eight examples an average reduction 

of 22.4% and 12.6% that respectively are number of C 

elements and number of transistors, when compared with 

the known NCL_D method.  

I. INTRODUCTION 

A promising alternative to digital design are the 

asynchronous circuits, because they don't work with a 

clock signal, so  eliminate the problems related to clock 

signal [1]. Asynchronous circuits are designed in different 

classes [1]. The delay model in which the asynchronous 

circuit works defines its class [1]. The Unbounded and 

Gate Wire Delay (UGWD) model is robust, where the 

delays of gates and the wires are undefined (any delay 

value), but finite [1]. The delay insensitive (DI) circuits 

satisfy the UGWD model. Martin [2] shows that this 

delay model is very restricted, that is, few circuits can be 

synthesized in this delay model. There are two less 

restricted variants of this delay model [1]. Firstly, the 

delay model in which the delay in the gates is undefined, 

but finite and the delay in the wires is zero (UGD). The 

speed-independent circuits work on UGD model, but the 

assumption of zero delay on wire is not real in DSM-

MOS technology [3]. Secondly, the UGWD delay model, 

but with the isochronic fork assumption. This assumption 

says that, in some wires with fan-out> 1 (fork), the delays 

should be equal [2]. Quasi-insensitive delay (QDI) circuits 

work on UGWD model with the isochronic fork 

assumption. QDI circuits interact with the environment in 

I/O mode. This mode says that when an output is 

activated, a specified input can be activated immediately. 

This class has important features that are interesting, such 

as: a) a potential to present better latency time; b) a higher 

robustness to variations in temperature, supply voltage 

and process (PVT); c) a higher robustness to delay and to 

Stuck-at faults (easily tested fault classes); d) a higher 

modularity, allowing reusability and design as intellectual 

property; e) a better performance in security systems 

design; and f) the timing analysis is highly simplified; g) 
operates in natural form with sub-threshold supply 

voltages. 

QDI Combinational circuits (QDI_CC) employ m-of-n 

DI codes to represent data, being the “4-phase” protocol 

the most common processing [1]. Different techniques 

and architectures have been proposed for the synthesis of 

QDI_CC [4-15]. Where [4] [7-15] are techniques that 

design QDI_CC at the basic gate level and C element [1], 

while the techniques of [5,6] design at the transistor level. 

The methods proposed in [8,9,11,14,15], despite being 

highly efficient in area, use some type of valid data and 

null data operation detector to satisfy QDI requirements, 

but the detector degrades latency. The methods [4,7, 

12,13] do not use any type of detector, where [12,13] are 

geared towards multipliers. Sparsø, et al. [4] proposed a 

very simple method called Delay-Insensitive Minterm 

Synthesis (DIMS) that starts from canonical functions, 

where each product term is implemented by C elements 

and the sum term with OR gates. Figure 1 illustrates the 

DIMS method implementing a 2x1 MUX. 
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 DIMS method with strong-indication: QDI MUX-2x1. Fig. 1.
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The problem with this DIMS method is the excessive 

use of C elements, which drastically increases the area 

and degrades latency. Ligthart, et al. [7] proposed a 

method called NCL_D (Null Convention Logic – DIMS) 

that starts from minimized functions where each term 

(AND,OR) is implemented as DIMS. This technique 

reduces the number of C elements, leading to reduced area 

and latency. Figure 2 illustrates the NCL_D method 

implementing a 2x1 MUX. 
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 NCL_D method with wak-indication: QDI MUX-2x1. Fig. 2.

Despite the reduction of C elements, obtained by the 

NCL_D method, the use of C elements is still excessive. 

This paper proposes a novel method for synthesis of 

QDI_CC which is an extension of the NCL_D method, 

where the terms (AND,OR) is implemented by optimized 

DIMS called DIMOS (Delay Insensitive Minterms 

Optimized Synthesis). This new method allows a further 

reduction in the use of C elements. Figure 3 illustrates two 

implementations of the C element, where the 

implementation of Fig. 3d is not QDI.  
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  C element: a) table of operations; b) symbol; c) Fig. 3.

semi-static version;  d) based on basic gates version. 

II. QUASI DELAY INSENSITIVE FUNCTION: 

CONCEPTS 

QDI Boolean functions are synthesized in DI codes. 

There are different DI codes and, in this paper, we 

adopted the dual-rail coding [11]. The QDI combinatorial 

circuits (QDI_CC) that will be synthesized operate behave 

the 4-phase handshake protocol [11]. In the dual-rail code, 

each variable is encoded with two bits. For the variable A, 

we have A1A0=00 (null - space), A1A0=01 (data 0), 

A1A0=10 (data 1) and A1A0=11 (never occurs).  The DI 

codes generate the operation conclusion signal without the 

need of a delay element and with a relatively simple 

circuit. The delay insensitive (DI) combinatorial circuits 

are subject to hazard. Hazardous circuit means there is a 

potential for glitches to occur, so it may lead to 

malfunctioning. The hazard manifests in DI circuits 

through gate orphan and wire orphan, i.e. a circuit is DI if 

it is free of gate orphan and wire orphan. QDI_CC are free 

of wire orphans because they satisfy the isochronic fork 

assumption. So the combinatorial circuit is QDI if it is 

free of gate orphan [13,14].   

A. Boolean function: QDI condition 

A QDI circuit has a gate orphan if a sequence of signal 

transitions across a path of one or more gates is not 

recognized by a transition signal on any primary output 

[13,14].  The indicability property indicates how robust 

the circuit in relation to timing analysis and ensures that 

the QDI_CC circuit is free of wire orphan. There are three 

types of indicability: a) strong-indication, the output 

signal transitions will only occur, after all the input 

signals are NULL or Valid; b) weak-indication, some 

transitions of output signals can occur, before all input 

signals are NULL or Valid, but in the last transition of the 

output signal, all input signals are NULL or Valid; c)  
early indication, if all transitions of the output signals are 

NULL or Valid, it does not mean that all input signals are 

NULL or Valid. 

III. METHOD FOR SYNTHESIS OF QDI_CC 

        The method DIMOS that synthesizes our QDI 

circuits, interact with the environment in weak-indication 

mode and is composed of three steps that uses 

synchronous synthesis tools:  

For each output variable Vs of the Boolean net, do: 

a) Perform the logic minimization using the 

ESPRESSO tool [16] in the sum-of-products style. 

b) Perform the technological mapping with the 

library (INV,AND2,OR2-3) using the  SIS 

tool[16]. 

c) Each product term and each sum term (when there 

is any non-canonical product term) of Vs to 

implement as DIMOS. 
 

 

A. Synthesis of DIMOS 

        Figure 4 shows the DIMS coverage and the circuits 

of the product term AB and the sum term A+B. For 

product AB, shown in Fig. 4a,b; the canonical (minterms) 

coverage is F=AB  as dual-rail is F1=A1B1 and the  

canonical (maxterms) coverage is F=A’B’ + AB’ + A’B 

 as dual-rail is F0=A0B0+ A1B0 + A0B1. For the sum 

A+B, shown in Fig.4c,d; the canonical (minterms) 

coverage is F=AB + AB’ + A’B  as dual-rail is 

F1=A1B1+A1B0+A0B1 and the canonical (maxterms) 

coverage is F=A’B’  as dual-rail is F0=A0B0. 

       Figure 5 shows the DIMOS coverage and the circuits 

of the product term AB and the sum term A+B. For 

product AB, shown in Fig. 5a,b; the dual-rail disjoint 



(minterms) minimized coverage is F1=A1B1 and the 

dual-rail disjoint (maxterms) minimized coverage is 

F0=B0 + A0B1 and is introduced the OR gate of the 

absent signal A, leaving F0=B0(A0+ A1 ) + A0B1. For 

the sum A+B, shown in Fig.5c,d; the dual-rail disjoint 

(minterms) minimized coverage is F1=A1+A0B1 and is 

introduced the OR gate with the absent signal B, leaving 

F1=A1(B0+B1) + A0B1 and the dual-rail minimized 

coverage disjoint (maxterms) is F0=A0B0. 
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  Project DIMS: a,b) AND;c,d) OR. Fig. 4.
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 Project DIMOS:a,b) AND; c,d) OR. Fig. 5.

 

IV. EXAMPLES DIMOS 

A. Example: QDI F(a,b,c)=(3,6,7) 

      The minimized F function is: FMIN=ab+bc. This 

function implemented as DIMS needs 16 C elements and 

2 OR4 gates. The implementation in the NCL_D method 

needs 12 C elements and 3 OR3 gates. The two product 

terms and the sum term are implemented as DIMS. Each 

DIMS term needs 4 C elements and an OR3 gate. The 

three terms of FMIN are implemented as DIMOS and Fig. 

6 shows the circuit. For term ab, as dual-rail, disjoint 

minimization is F11=a1b1 and F10=a1b0+a0 

F10=a1b0+a0(b0+b1); for the term bc, as dual-rail, 

the disjoint minimization is F21=b1c1 and 

F20=b1c0+b0 F20=b1c0+b0(c0+c1); for the term  

F1-10+F2-10F1-2, as dual-rail and disjoint 

minimization, we have: F1=F10F21 + F11  

F1=F110F21+F11(F20+F21) and F0=F10F20.  
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   Architecture with strong-indication: QDI F. Fig. 6.

B. Example: QDI MUX 2x1 

   Figure 7 shown the project of QDI MUX 2x1, where 

the minimized function is: Out=aSel’+bSel; for the term 

aSel’ as dual-rail, the disjoint minimization is           

F11=a1Sel0 and F10=a0Sel0+Sel1 F10=a0Sel0 + 
Sel1 (a0+a1); for the term bSel as dual-rail, disjoint 

minimization is:F21=b1Sel1 and F20=b1Sel0+b0 

F20=b1Sel0+b0(Sel1+Sel0); for the term F1+F2 as 

dual-rail, the disjoint minimization is:Out1=F20F11 + 

F21Out1=F20F11+F21(F11+F10)and 

Out0=F10F20.  
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  DIMOS with weak-indication: QDI MUX 2x1. Fig. 7.

C. Example: QDI Half Adder 

      Figure 8 shown the project of QDI half adder, where 

the dual-rail disjoint minimized functions are: S1=A1B0 

+ A0B1; S0=A0B0 + A1B1; Cout1=A1B1; Cout0=A0 + 

A1B0  Cout0=A0(B0+B1) + A1B0. 
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 Architecture with strong-indication: QDI Half Adder. Fig. 8.

D. Example: QDI 1-bit equality comparator 

      Figure 9 shown the project of QDI 1-bit equality 

comparator, where the dual-rail disjoint minimized 

function is: Eq1=A1B1 + A0B0; Eq0=A1B0 + A0B1. In 

this example there was no application of the optimization 

technique, because the canonical already minimal. 
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  Architecture with strong-indication: QDI 1-bit Fig. 9.

equality comparator. 



V. EXPERIMETAL RESULTS 

        In order to demonstrate our proposal viability, eight 

benchmarks {AND4, AND8, MUX2x1, MUX4x1, Half-

Adder, Full-Adder, Equality comparator of 1-bit, 4x2, 

Encoder of [8]} were synthesized, in the methods DIMS 

[4], NCL_D [7] and in our DIMOS proposal.  

     Table I shows the results of these eight benchmarks 

for the four methods, involving number of gates,  number 

of C elements, and estimated number of transistors. The 

estimation of the number of transistors occurred 

following the procedure of using a library of gates 

{AND2, OR2, NAND, NOR, C element}, where six 

transistors for AND2, OR2 gates, and NAND/NOR is 

2*Fan-in; twelve transistors for C element 

implementation, which is required in the static style.   
 

        Comparing our proposal with the NCL_D method, 

which is also a weak-indication, we had an average 

reduction of 12.6% and 22.4% respectively number of 

transistors and number of C elements. Making a 

comparison with the DIMS method that generates circuits 

with strong-indication, we had an average reduction of 

40.9% and 51.1% respectively number of components 

(gates + C elements) and number of transistors. 

TABLE I   RESULT OF EIGHT BENCHMARKS 

Example Method Number
of gates

Number of
C elements

Number of
transistors

NCL_D
 of [7]

DIMS
 of [4]

Proposal
DIMOS

AND4
dual-rail

3

620

168

1446

484

12

9

(a)

Example Method Number
of gates

Number of
C elements

Number of
transistors

NCL_D
 of [7]

DIMS
 of [4]

Proposal
DIMOS

AND8
dual-rail

7

1296

392

33614

1009

28

21

(b)

Example Method Number
of gates

Number of
C elements

Number of
transistors

NCL_D
 of [7]

DIMS
 of [4]

Proposal
DIMOS

MUX 2x1
dual-rail

3

212

168

1446

162

12

9

(c)

Example Method Number
of gates

Number of
C elements

Number of
transistors

NCL_D
 of [7]

DIMS
 of [4]

Proposal
DIMOS

MUX 4x1
dual-rail

11

636

614

52822

486

44

33

(d)

Example Method Number
of gates

Number of
C elements

Number of
transistors

NCL_D
 of [7]

DIMS
 of [4]

Proposal
DIMOS

Half
Adder

dual-rail

3

116

116

1084

83

8

7

(e)

Example Method Number
of gates

Number of
C elements

Number of
transistors

NCL_D
 of [7]

DIMS
 of [4]

Proposal
DIMOS

Full
Adder

dual-rail

7

232

288

26410

164

20

17

(f)

Example Method Number
of gates

Number of
C elements

Number of
transistors

NCL_D
 of [7]

DIMS
 of [4]

Proposal
DIMOS

Equality
Comparator

of 1-bit
dual-rail

2

60

60

602

42

4

4

(g)

Example Method Number
of gates

Number of
C elements

Number of
transistors

NCL_D
 of [7]

DIMS
 of [4]

Proposal
DIMOS

Encoder
Fig. 9 [8]
dual-rail

6

656

336

28812

4810

24

18

(h)  

VI. CONCLUSION 

Designs of combinatorial digital circuits in DSM-

MOS technologies must have characteristics that the QDI 

style is the most promising. There are different literature 

methods for the synthesis of QDI_CC, but they all use C 

elements. In this paper we proposed a novel method for 

synthesis of QDI_CC which is an extension of the 

NCL_D method, where the terms (AND,OR) is 

implemented by optimized DIMS called DIMOS. This 

new method allows a further reduction in the use of C 

elements. We show for eight examples, the performance 

of the proposed architecture, when compared to two 

methods of literature  46.4% average reduction of C 

elements. Further works to develop an automated method 

for synthesis of large QDI_CC in our DIMOS method.         
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