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Preface

This book follows from my first edition and is intended to provide a thor-
ough, up to date, treatment of wireless physical communications. The book is
derived from a compilation of course material that I have taught in a graduate-
level course on physical wireless communications at Georgia Tech over the past
decade. This textbook differs from others on the subject by stressing mathe-
matical modeling and analysis. My approach is to include detailed derivations
from first principles. The text is intended to provide enough background ma-
terial for the novice student enrolled in a graduate level course, while having
enough advanced material to prime the more serious graduate students that
would like to pursue research in the area. The book is intended to stress the
fundamentals of mobile communications engineering that are important to any
mobile communication system. I have therefore kept the description of existing
and proposed wireless standards and systems to a minimum. The emphasis on
fundamental issues should benefit not only to students taking formal instruc-
tion, but also practicing engineers who are likely to already have a detailed
familiarity with the standards and are seeking to deepen their knowledge of the
fundamentals and principles of this important field.

Chapter 1 begins with an overview that is intended to introduce a broad
array of issues relating to wireless communications. Included is a description
of various wireless systems and services, basic concepts of cellular frequency
reuse, and the link budget for cellular radio systems.

Chapter 2 treats propagation modeling and was inspired by the excellent
reference by Jakes. It begins with a summary of propagation models for
narrow-band and wide-band multipath channels, and provides a discussion
of channel simulation techniques that are useful for radio link analysis. It
concludes with a discussion of shadowing and path loss models. Chapter 3 is
a related chapter that provides a detailed treatment of co-channel interference,
the primary impairment in high capacity cellular systems.
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Chapter 4 covers the various types of modulation schemes that are used
in mobile communication systems along with their spectral characteristics.
Chapter 5 discusses the performance of digital signal on narrow-band flat
fading channels with a variety of receiver structures, while Chapter 6 includes
a treatment of antenna diversity techniques.

Chapter 7 provides an extensive treatment of digital signaling on the fading
ISI channels that are typical of mid-band land mobile radio systems. The
chapter begins with the characterization of ISI channels and goes on to discuss
techniques for combating ISI based on symbol-by-symbol equalization and
sequence estimation. The chapter concludes with a discussion of co-channel
demodulation and co-channel interference cancellation.

Chapter  8  covers  bandwidth efficient coding techniques. The chapter begins
with a discussion of basic block and convolutional coding. It then goes on to
a detailed discussion on the design and performance analysis of convolutional
and trellis codes for additive white Gaussian noise channels, and interleaved flat
fading channels. The chapter concludes with an introduction to Turbo coding.

Chapter 9 is devoted to spread spectrum techniques. The chapter begins
with an introduction to direct sequence and frequency hop spread spectrum.
This is followed by a detailed treatment of spreading sequences. Also included
is a discussion of the effects of tone interference on direct sequence spread
spectrum, and the RAKE receiver performance on wide-band channels. The
chapter wraps up with a discussion of the error probability of direct sequence
code division multiple access.

Chapter 10 considers TDMA cellular architectures. The chapter begins with
a discussion of conventional TDMA systems and how they are evolved to meet
traffic growth. This is followed by hierarchical overlay/underlay architectures.
Finally, the chapter wraps up with macrodiversity TDMA architectures. Chap-
ter 11 is the CDMA counterpart to Chapter 10 and considers issues that are
relevant to cellular CDMA, such as capacity estimation and power control.

Chapter 10 covers the important problem of link quality evaluation and
handoff initiation, and handoff performance, in cellular systems. Chapter 11
provides an overview of the various channel assignment techniques that have
been proposed for FDMA and TDMA cellular systems.

The book contains far too much detail to be taught in a one-semester course.
However, I believe that it can serve as a suitable text in most situations through
the appropriate selection of material. My own preference for a one-semester
course is to include the following in order: Chapter 1, Chapter 2, Sections 3.1
and 3.2, Chapter 4, Chapter 5, and Chapter 6. Then choose from Chapters 8
through 13 depending on my interest at the time.

I would like to acknowledge all those who have contributed to the preparation
of this book. The reviewers Vijay Bhargava at the University of Victoria
and Sanjiv Nanda at Lucent Technologies were very valuable in the early



Preface xv

stages of the first edition of this book. The subsequent review by Upamanyu
Madhow at the University of Illinois and in particular the detailed review by
Keith Chugg at the University of Southern California were highly useful for
improving this book. I am grateful to my doctoral students, past and present,
who have contributed significantly to this book. The contributions of Wern-Ho
Sheen, Khalid Hamied, Mark Austin, Jeff (Lihbor) Yiin, Ming-Ju Ho, Li-Chun
(Robert) Wang, Krishna Narayanan, Dukhyun Kim, Jinsoup Joung, and John
(Yongchae) Kim are particularly noteworthy. Finally, I would like to thank
BellSouth, GTE Labs, Motorola, Panasonic, Hitachi, Nortel, Korea Telecom,
WiLAN, and the National Science Foundation, for sustaining my research
efforts in wireless communications over the past 10 years. This research
experience has in many cases lead to material that I brought to the classroom
and have included in this book.

GORDON L. STÜBER
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Chapter 1

INTRODUCTION

Wireless systems and services have undergone a remarkable development,
since the first cellular and cordless telephone systems were introduced in the
early 1980s. First generation cellular and cordless telephone systems were
based on analog FM technology and designed to carry narrow-band circuit
switched voice services. Second generation cellular and cordless telephone
systems were introduced in the early 1990s that use digital modulation, and
offer improved spectral efficiency, and voice quality. However, these sec-
ond generation systems are still used for narrow-band voice and data services.
Third generation wireless systems, currently under development that offer sub-
stantially higher bit rates ranging from 9.6 kb/s for satellite users, 144 kb/s
for vehicular users, 384 kb/s for pedestrian users to 2.048 Mb/s for indoor
office environments. These systems are intended to provide voice, data, the
more bandwidth intensive multimedia services, while satisfying more stringent
availability and quality of service (QoS) requirements in all types environments.
Fourth generation systems are also on the horizon that will provide broadband
wireless access with asymmetric bit rates that approach 1 Gb/s.

Radio access systems are often distinguished by their coverage areas and bit
rates, as shown in Fig. 1.1. Mobile satellite systems provide global coverage
to mobile users, but with very low bit rates. Land mobile radio systems use
terrestrial cellular and microcellular networks to provide wide area coverage to
vehicular and pedestrian users. Fixed wireless access systems provide radio
connectivity over a campus or neighborhood area to stationary users. Finally,
wireless local area networks provide stationary in-building users with very
high speed services.
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1. WIRELESS SYSTEMS AND STANDARDS
1.1 FIRST GENERATION CELLULAR SYSTEMS

The early 1970s saw the emergence of the radio technology that was needed
for the deployment of mobile radio systems in the 800/900 MHz band at a
reasonable cost. In 1976, the World Allocation Radio Conference (WARC)
approved frequency allocations for cellular telephones in the 800/900 MHz
band, thus setting the stage for the commercial deployment of cellular systems.
In the early 1980s, many countries deployed first generation cellular systems
based on frequency division multiple access (FDMA) and analog FM technol-
ogy. With FDMA there is a single channel per carrier. When a MS accesses the
system two carriers (channels) are actually assigned, one for the forward (base-
to-mobile) link and one for the reverse (mobile-to-base) link. Separation of the
forward and reverse carrier frequencies is necessary to allow implementation
of a duplexer, a complicated arrangement of filters that isolates the forward
and reverse channels, thus preventing a radio transceiver from jamming itself.

In 1979, the first analog cellular system, the Nippon Telephone and Telegraph
(NTT) system, became operational. In 1981, Ericsson Radio Systems AB
fielded the Nordic Mobile Telephone (NMT) 900 system, and in 1983 AT&T
fielded the Advanced Mobile Phone Service (AMPS) as a trial in Chicago.
Several other first generation analog systems were also deployed in the early
1980s including TACS, ETACS, NMT 450, C-450, RTMS, and Radiocom 2000
in Europe, and JTACS/NTACS in Japan. The basic parameters of NTT, NMT,
and AMPS are shown in Table 1.1. The NMT 900 system uses frequency
interleaved carriers with a separation of 12.5 kHz such that overlapping carriers
cannot be used with the same base station. In the NTT, NMT, and AMPS
systems, a separation of 45 MHz is used between the transmit and receive
frequencies, so as to implement the duplexer.

1.2 SECOND GENERATION CELLULAR SYSTEMS
Second generation digital cellular systems have been developed throughout

the world. These include the GSM/DCS1800/PCS1900 standard in Europe, the
PDC standard in Japan, and the IS 54-/136 and IS-95 standards in the United
States. Parameters of the air interfaces of these standards are summarized in
Tabs. 1.2 and 1.3, and a brief description of each follows.

1.2.1 GSM/DCS1800/PCS1900
European countries seen the deployment of incompatible first generation

cellular systems that prevented roaming throughout Europe. As as result,
the Conference of European Postal and Telecommunications Administrations
(CEPT) established Groupe Speciale Mobile (GSM) in 1982 with the mandate
of defining standards for future Pan-European cellular radio systems. The GSM
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system (now “Global System for Mobile Communications”) was developed
to operate in a new frequency allocation, and made improved quality, Pan-
European roaming, and the support of data services its primary objectives.

GSM was deployed in late 1992 as the world’s first digital cellular system.
In its current version, GSM can support full-rate (8 slots/carrier) and half-rate
(16 slots/carrier) operation, and provide various synchronous and asynchronous
data services at 2.4, 4.8, and 9.6 kb/s that interface to voiceband modems (e.g.,
V.22bis or V.32) and ISDN. GSM uses TDMA with 200 kHz carrier spacings,
eight channels per carrier with a time slot (or burst) duration of 0.577 ms, and
Gaussian minimum shift keying (GMSK) with a raw bit rate of 270.8 kb/s. The
time slot format of the GSM traffic channels is shown in Fig. 1.2.
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Variants of GSM have also been developed to operate in higher frequency
bands. In Europe, the Digital Cellular System 1800 (DCS 1800) was developed
by ETSI as a standard for personal communication networks (PCNs). DCS 1800
is a derivative of the GSM system, but differs in a number of ways. First,
DCS1800 operates in the 1710-1785 MHz (MS transmit) and 1805-1880 MHz
(BS transmit) bands, whereas GSM operates in the 900 MHz band. Second,
DCS 1800 is optimized for two classes of hand held portable units (rather than
mobile units) with a peak power of 1 W and 250 mW, respectively. There are
also some changes in the DCS 1800 standard to support overlays of macrocells
and microcells.

GSM is deployed in North America as PCS 1900 and operates in the 1880-
1990 MHz PCS bands. PCS 1900 is similar to DCS 1800, but with a few
differences. One is the use of the ACELP EFR (Enhance Full Rate) vocoder that
was developed for the North American market. GSM has been a phenomenal
success. In late 1997, 66 million GSM subscribers were serviced by 256
network operators in 110 countries.

1.2.2 IS-54/136 AND IS-95
In North America the primary driver for second generation systems was the

capacity limit felt by some AMPS operators in the largest US markets, e.g.,
New York, Chicago, Los Angeles. One of the key objectives established by the
Cellular Telephone Industry Association (CTIA) was that any second genera-
tion cellular system must provide a 10-fold increase in capacity over AMPS.
Furthermore, since AMPS was already deployed extensively throughout North
America, it was desirable that any second generation cellular system be reverse
compatible with AMPS. This eventually lead to the development of dual-mode
transceivers.

While Europe seen the convergence to the GSM standard, North America
seen the emergence of two second generation digital cellular standards, IS-
54/136 and IS-95, based on time division multiple access (TDMA) and code
division multiple access (CDMA) technology, respectively. The IS-54 stan-
dard was adopted in 1990, and specifies a new digital signaling scheme based
on F/TDMA with 30 kHz carrier spacings and phase-shifted quadrature
differential phase shift keyed ( -DQPSK) modulation with a raw bit rate of
48.6 kb/s [95]. IS-54 and IS-136 differ in the control channel; IS-54 uses an
analog control channel, whereas IS-136 uses a digital control channel. The
IS-54/136 air interface specifies 6 slots (or bursts) per frame, yielding 3 full
rate channels or 6 half rate channels per carrier. The burst format for the
IS-54/136 traffic channel is shown in Fig. 1.3. A straight forward deployment
of IS-54/136 will offers 3 (6) times the cell capacity of AMPS for the full
(half) rate systems, respectively. Additional capacity gains are also possible.
IS-54/136 is now been deployed throughout North American and Indonesia.
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Just after the CTIA adopted IS-54 in 1990, another second generation digital
cellular system was proposed by Qualcomm based on CDMA technology.
In March 1992, CDMA was adopted as IS-95 [96]. With IS-95, the basic
user data rate is 9.6 kb/s, which is spread by using PN sequence with a chip
(clock) rate of 1.2288 Mchips/s (a processing gain of 128). The forward
channel supports coherent detection by using a pilot channel (code) for channel
estimation. Information on the forward link is encoded by using a rate-1/2
convolutional code, interleaved, spread by using one of 64 Walsh codes, and
transmitted in 20 ms bursts. Each MS in a cell is assigned a different Walsh
code, thus providing complete orthogonality under ideal channel conditions.
Final spreading with a base-specific PN code of length 215 is used to mitigate
the multiple access interference to and from other cells. One of the major
drawbacks of the IS-95 standard is that the coded downlink transmissions are
not interleaved across bursts and, therefore, the signal is susceptible to fading.

CDMA systems are susceptible to the near-far effect, a phenomenon where
MSs close into a BS will swamp out the signals from more distant MSs. For
CDMA systems to work well, all signals must be received with the same power,
a condition that is difficult to achieve in an erratic land mobile radio propagation
environment. To combat the near-far effect, the IS-95 reverse link uses fast
closed loop power control to compensate for fluctuations in received signal
power due to variations in the radio link. The information on the reverse link
is encoded by using a rate-1/3 convolutional code, interleaved, and mapped
onto one of 64 Walsh codes. Unlike the forward channel that uses the Walsh
codes for spreading, the reverse link uses the Walsh codes for 64-ary orthogonal
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modulation. The BS receiver uses non-coherent detection, since no pilot signal
is transmitted on the reverse link. Final spreading is achieved with a user-
specific PN sequence of length Both the BSs and the MSs use RAKE
receivers to provide multipath diversity. A requirement of the IS-95 system
is the need for soft handoffs, where the MS maintain can a radio link with
multiple BSs in the boundary area between cells.

Ever since the introduction of IS-95, there has been a continued debate over
the relative capacity of IS-54/136 and IS-95. Initial capacity claims for IS-95
were 40 times AMPS. However, current estimates are more conservative and
experience from commercial deployments show a capacity that is 6 to 10 times
AMPS.

1.2.3 PDC

In 1991, the Japanese Ministry of Posts and Telecommunications standard-
ized Personal Digital Cellular (PDC). The air interface of PDC is similar in
some respects to IS-54/136. PDC uses TDMA with 3 full rate (6 half rate)
channels per carrier, 25 kHz carrier spacings, and -DQPSK modulation
with a raw bit rate of 42 kb/s. The burst format for the PDC traffic channels
is shown in Fig. 1.4. Notice that the synchronization word is placed near the
center of the PDC burst, whereas it is placed near the beginning of the IS-
54/136 burst as shown in Fig. 1.3. This feature better enables the PDC receiver
to track channel variations over the time slot. Another key feature of PDC
standard is the inclusion MS antenna diversity. Like IS-54/136, PDC suffers
from degraded performance under conditions of low delay spread due to the
loss of multipath diversity. However, antenna diversity in the PDC MS receiver
maintains spatial diversity under these conditions. More details on the PDC
system can be found in the complete standard [280].

1.3 CORDLESS TELEPHONE SYSTEMS
Cordless telephones find several applications including domestic telephones,

telepoint (cordless phone booth), wireless PABX (private access business ex-
change), and wireless local loops or radio drops. Similar to cellular telephones,
first generation cordless telephones were based on analog FM technology. Since
their introduction, cordless telephones gained high popularity. However, first
generation cordless telephones have become victims of their own success; the
voice quality was/is unacceptable in high-density subscriber areas. This lead to
the development of second generation digital cordless telephones. In Europe
two digital cordless telephone standards have been developed, CT2 and Digital
European Cordless Telephone (DECT) [325]. In Canada a modification of
CT2, called CT2+, has been developed, that offers two-way calling, roaming,
and enhanced data service capabilities. In Japan, the Personal Handyphone
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System (PHS) has been developed. The air interface parameters of various
cordless phone standards are summarized in Tab. 1.4

1.4 THIRD GENERATION CELLULAR SYSTEMS
In March 1992, WARC approved a worldwide spectral allocation in sup-

port of IMT-2000 (International Mobile Telephone by the Year 2000) in the
1885-2200 MHz band. The IMT-2000 standard has been developed by the
International Telecommunications Union Radio Communications (ITU-R) and
Telecommunications (ITU-T) sectors. Various standards bodies around the
world have provided inputs to the IMT-2000 standard definition. The vision
of IMT-2000 is to provide ubiquitous wireless network that can support voice,
multimedia and high-speed data communication. One of the main attributes
of IMT-2000 is the introduction of wireless wide-band packet-switched data
services for wireless access to Internet with speeds up to 2 Mb/s. The key
principles of IMT-2000 are:

  Terminal and personal mobility with universal access and worldwide roam-
ing through the use of portable terminals. Personal mobility will be facil-
itated through the use of personalized telephone numbers. The success of
using a wireline telephone depends upon the knowledge of where a called
party is located. As a result, 80% of the calls never reach the intended party.
With personal communication services (PCS), intelligent networks (INs)
will be employed to assume the burden of locating a called party, leaving
the subscribers free to roam anywhere in the world.
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Expanded range of services as implemented in two phases. Phase 1 will
support circuit and packet switched multimedia with asymmetric user data
rates up to 2 Mb/s. Phase 2 will provide user data rates up to 20 Mb/s. These
capabilities will enable applications such as web browsing, file transfer, e-
mail, and traveler information services, and multimedia services such as
video conferencing. The minimum requirements on user data rate for both
circuit and packet switched data in four different environments is as follows:

Vehicular: 144 kb/s
Pedestrian: 384 kb/s
Indoor office: 2 Mb/s
Satellite: 9.6 kb/s

Supplementary services such as call waiting, caller ID, store and forward,
etc.. Call management will become a necessity to ensure that PCS does not
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become a nuisance. That is, the subscribers must be able to control their
availability for receiving calls.

Unified, seamless, infrastructure that will unify diverse infrastructures such
as paging, cellular, and satellite networks. In particular, the use of a common
band for terrestrial and satellite networks.

Integration of mobile and wire-line networks in attempt to achieve the strict
QoS controls wire-line networks. Toll line voice quality is one example.

Service transparency to provide the same services everywhere but with
different data rates. International roaming is also desirable with a virtual
home environment.

Spectral efficiency, quality, flexibility, and overall cost improvement as a
result of the utilization of advanced technologies.

The migration to third generation wireless systems presents some difficult
challenges for wireless service providers including the following:
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System revolution versus evolution. A revolutionary approach provides the
greatest flexibility. However, an evolutionary approach is more desirable
because there are enormous infrastructure investments in legacy systems,
and the maintenance of a large existing subscriber base requires a third gen-
eration system that is reverse compatible with the existing second generation
systems.

Rapid and unpredictable growth leads to difficulty in system planning. High
spectral efficiency is essential to support large subscriber bases. Developing
countries in particular are experiencing explosive growth due to the lack of
a wired infrastructure.

Changing customer needs requires a flexible solution.

Network management for effective radio resource and mobility management
with mixed services, billing, security, fraud prevention.

Mobile satellite systems can make global spectral coordination very difficult.

Ten different multiple access schemes were originally proposed for IMT-
2000. Two of these schemes are based on TDMA approaches, namely DECT
and UWC-136. The remaining 8 proposals are based on wide-band CDMA,
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referring to a CDMA system having a bandwidth of 5 MHz or more. The
UWC-136 proposal is the 3G evolution of the IS-136 family of standards.
Some parameters of the UWC-136 proposal are shown in Tab. 1.5. UWC-136
meets IMT-2000 requirements by using enhanced modulation techniques (IS-
136+) and using a wider band 200 kHz carrier (UWC-136HS) for services that
are not possible on the 30 kHz carrier. The UWC-136HS proposal is the same
as EDGE (Enhanced Data for Global Evolution) which is an enhanced GSM
air interface. EDGE is a system that is the convergence of the GSM and IS-136
family of standards.

Table 1.6 summarizes the parameters for the two remaining wide-band
CDMA proposals to IMT-2000, namely W-CDMA and cdma2000. The com-
mon attributes of wide-band CDMA systems include the following:

• provision of multirate services
• packet data services
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• complex spreading
• a coherent uplink using a user dedicated pilot
• additional pilot channel in the downlink for beam forming
• seamless interfrequency handoff
• fast forward link power control
• optional multiuser detection

The major differences between the different system proposals center around
the chip rate that is used, and synchronous (cdma2000) vs. asynchronous
(W-CDMA) network operation.

Global spectral co-ordination is essential for the IMT-2000 concept. The
spectral allocations of the regulatory agencies in major world markets are
shown in Fig. 1.5. In the United States, the 1885-2200 MHz band allocated
for IMT-2000 overlaps significantly with the 1850-1990 MHz band used to
support PCS services, as shown in Fig. 1.6. Blocks A and B correspond to
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major trading areas (MTAs) while blocks C through F correspond to basic
trading areas (BTAs). There are 51 MTAs and 492 BTAs in the United States.
In addition, 20 MHz of spectrum was reserved for unlicensed use according to
FCC Part 15 rules. Of this 20 MHz, 10 MHz is for packet switched applications
while 10 MHz is for circuit switched applications.

1.5 WIRELESS LANS AND AND PANS
A variety of wireless local area network (WLAN) and personal area network

(WPAN) systems have been developed to operate in unlicensed bands. Tab. 1.7
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lists the unlicensed bands that are used in various parts of the world. Until a
few years ago, most of the WLAN systems that operated in unlicensed bands
were based upon proprietary air interfaces and MAC protocols, without an open
standard.

In 1997, the IEEE 802.11 standardization group established the first WLAN
standard based to provide 1 and 2 Mb/s aggregate rates. IEEE 802.11 uses
direct sequence spread spectrum modulation, an 11-bit Barker sequence for
spreading, and either BPSK (1 Mb/s) or QPSK (2 Mb/s). Barker sequences are
discussed in further detail in Chapter 8. In 1998, the IEEE 802.11b working
group defined an enhanced air interface to provide 5.5 and 11 Mb/s aggre-
gate data rates. The IEEE 802.11b air interface uses complementary code
keying (CCK), which is described in further detail in Chapter 8. In 1998,
IEEE 802.11a adopted orthogonal frequency division (OFDM) as the basis for
their new 5 GHz standard, targeting a range of data rates ranging from 6 to
54 Mb/s. The principles of OFDM are discussed in Chapters 4 and 5. Fol-
lowing IEEE 802.11 a, High-Performance LAN (HiperLAN/2) (Europe) and
Multimedia Mobile Access Communication (MMAC) (Japan) adopted OFDM
in their physical layer specifications. The parameters of the IEEE 802. 11a
OFDM standard are summarized in Tab. 1.8.

In 1999, the IEEE802.15 Working Group was created to develop a Wireless
Personal Area Network (WPAN) standard. The Bluetooth specification has
been proposed as one such WPAN standard [153]. Bluetooth is an ad hoc
network that is based on Frequency Hop CDMA (FH-CDMA) and Gaussian
frequency shift keying (GFSK) with a modulation index of 0.3. Bluetooth uses
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a set of 79 hop carriers with a spacing of 1 MHz and a hop dwell time of
A single FH channel supports a data rate of 1 Mb/s. Bluetooth uses

either a very simple rate-1/3 3-bit repetition code or a simple rate-2/3 shortened
Hamming code.

2. FREQUENCY REUSE AND THE CELLULAR
CONCEPT

A cellular telephone system has two basic functions; it must locate and track
both active and inactive mobile stations (MSs), and it must always attempt to
connect the active MSs to the best available base station(s) (BS(s)). The former
task is the subject of user location updating and paging. The latter task requires
the continuous evaluation of the radio link quality with the serving BS(s), and
the radio link quality with alternate BSs. This monitoring is performed by a
computer system that uses knowledge of the link quality evaluations, in addition
to the system topology and traffic flow, to decide upon the best BS(s) to serve
a particular MS.

A cellular telephone system uses low power (less than 1 watt) radio commu-
nication between a MS and a grid of BSs [213]. Movement of the MS, however,
leads to highly erratic radio link quality, and careful monitoring and control are
required to keep it acceptable. Evaluation of radio link quality is based upon
a large number of criteria, but at the core is a statistical measurement process
based on a priori knowledge of the expected radio channel characteristics. The
time required to measure the radio link quality and the accuracy of the mea-
surement depends on the local propagation characteristics. Time consuming
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link quality measurements will limit the ability of the cellular system to react
to degradations in link quality and compensate by changing the allocation of
power and bandwidth resources. Conversely, if the link quality measurements
can be made quickly, then the time required for the cellular system to process
the link quality measurements, make decisions, and transmit desired changes
to the network entities, including the MSs, will limit the adaptability of the
cellular system. Limitations on the speed of measurement and control essen-
tially determine overall link quality and the size and distribution of cells in
modern cellular systems. The cell sizes, the ability radio links to withstand
interference, and the ability of the cellular system to react to variations in traffic
are the main factors that determine the spectral efficiency of a cellular system.

In cellular systems, the available spectrum is partitioned among the BSs, and
a given frequency is reused at the closest possible distance that the radio link
will allow. Smaller cells have a shorter distance between reused frequencies,
and this results in an increased spectral efficiency and traffic carrying capacity.
Dramatic improvement in spectral efficiency is the main reason for the interest
in microcells. However, the microcellular propagation environment is highly
erratic. Distributed resource allocation algorithms must be used to maintain
high link quality.

The current trend is toward cellular systems that have high spectral efficiency
and offer ubiquitous service coverage. These systems will require i) effective
cellular architectures, ii) fast and accurate link quality measurements, iii) rapid
control in all types of environments, iv) installation of BSs to provide radio
coverage virtually everywhere, and v) power and bandwidth efficient air inter-
face schemes that can mitigate the harsh effects of the propagation environment
and tolerate high levels of noise and interference.

Cellular mobile radio systems that use TDMA and FDMA rely upon fre-
quency reuse, where users in geographically separated cells simultaneously
use the same carrier frequency. The cellular layout of a conventional macro-
cellular system is quite often described by a uniform grid of hexagonal cells
or radio coverage zones. In practice the cells are not regular hexagons, but
instead are distorted and overlapping areas. The hexagon is an ideal choice for
representing macrocellular coverage areas, because it closely approximates a
circle and offers a wide range of tesellating reuse cluster sizes. A tesellating
reuse cluster of size N can be constructed if [258]

where i and j are non-negative integers, and It follows that the allowable
cluster sizes are Examples of 3-, 4-, and 7-cell
reuse clusters are shown in Fig. 1.7. The reuse clusters are tesellated to form a
frequency plan. A simplified 7-cell frequency reuse plan is shown in Fig. 1.8,
where similarly marked cells use identical sets of carrier frequencies.
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The co-channel reuse factor D / R, is defined as the ratio of the co-channel
reuse distance D between cells using the same set of carrier frequencies and
the radius of the cells R1. For hexagonal cells, the reuse cluster size N and the
co-channel reuse factor D/R are related by (see Problem 1.2)

For microcellular systems with lower BS antenna heights, regular hexagons
are no longer appropriate for approximating the radio coverage zones. Typical
microcell BSs use an antenna height of about 15 m, well below the skyline of
any buildings that might be present, and acceptable link quality can be obtained
anywhere within 200-500 m of the BS. For microcells, the choice of cell shape

1 For hexagonal cells, R is the distance from the center to the corner of a cell.
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depends greatly upon the particular deployment. For example, the linear cells
shown in Fig. 1.9 may provide a more accurate model of highway microcells
that are deployed along a highway with directional antennas. In an area with
urban canyons, the buildings act as wave guides to channel the signal energy
along the street corridors. Fig. 1.10 shows a typical Manhattan microcell
deployment that is often used to model microcells that are deployed in city
centers.

3. MOBILE RADIO PROPAGATION ENVIRONMENT
Radio signals generally propagate according to three mechanisms; reflec-

tion, diffraction, and scattering. Reflections arise when the plane waves are
incident upon a surface with dimensions that are very large compared to the
wavelength. Diffraction occurs according to Huygen’s principle when there is
an obstruction between the transmitter and receiver antennas, and secondary
waves are generated behind the obstructing body. Scattering occurs when the
plane waves are incident upon an object whose dimensions are on the order of
a wavelength or less, and causes the energy to be redirected in many directions.
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The relative importance of these three propagation mechanisms depends on the
particular propagation scenario.

As a result of the above three mechanisms, macrocellular radio propagation
can be roughly characterized by three nearly independent phenomenon; path
loss variation with distance, slow log-normal shadowing, and fast multipath-
fading. Each of these phenomenon is caused by a different underlying physical
principle and each must be accounted for when designing and evaluating the
performance of a cellular system. Multipath-fading results in rapid variations
in the envelope of the received signal and is caused when plane waves arrive
from many different directions with random phases and combine vectorially at
the receiver antenna. Typically, the received envelope can vary by as much as
30 to 40 dB over a fraction of a wavelength due to constructive and destructive
addition. Multipath also causes time dispersion, because the multiple replicas
of the transmitted signal propagate over different transmission paths and reach
the receiver antenna with different time delays. Time dispersion may require
equalization in TDMA systems and RAKE reception in CDMA systems.

It is well known that the intensity of an electromagnetic wave in free space
decays with the square of the radio path length, d, such that the received power
at distance d is

where is the transmitted power, is the wavelength, and k is a constant of
proportionality. Although it may seem counter-intuitive, path loss is essential
in high capacity cellular systems, the reason being that a rapid attenuation of
signal strength with distance permits a small co-channel reuse distance and,
therefore, a high spectral efficiency. The 800-900 MHz UHF band was chosen
for first generation cellular systems, partly because of its relatively short range
radio propagation characteristics. Of course if a large radio coverage area is
desired, as is the case with low capacity emergency and dispatch communication
systems (police, fire, etc..), then a small path loss is preferred. For this reason
the VHF band is preferred for these applications which results in a smaller
attenuation with distance.

Free space propagation does not apply in a mobile radio environment and
the propagation path loss depends not only on the distance and wavelength,
but also on the antenna heights of the MSs and the BSs, and the local terrain
characteristics such as buildings and hills (in macrocells). The site specific
nature of radio propagation makes the theoretical prediction of path loss difficult
and there are no easy solutions. The simplest path loss model assumes that the
received power is
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where is the average received signal power
(in dBm) at a known reference distance that is in the far field of the transmitting
antenna. Typically, is 1 km for macrocells, 100 m for outdoor microcells,
and 1 m for indoor picocells. The value of will depend on the
frequency, antenna heights and gains, and other factors. The parameter is
called the path loss exponent and is a key parameter that affects the spectral
efficiency of a cellular system. This parameter is strongly dependent on the
cell size and local terrain characteristics. The path loss exponent ranges from
3 to 4 for a typical urban macrocellular environment, and from 2 to 8 for a
microcellular environment. Usually, the path loss exponents are determined by
empirical measurements.

The parameter in (1.4) is a zero-mean Gaussian random variable (in
dB) that represents the error between the actual and estimated path loss. This
statistical variation in is caused by shadowing. Shadows are gen-
erally modeled as being log-normally distributed, meaning that the probability
density function of is

where

The parameter is the shadow standard deviation. A more accurate path
loss model results in a smaller For macrocells, typically ranges from
5 to 12 dB, with dB being a typical value. Furthermore, has been
observed to be nearly independent of the radio path length d. The received
signal power in the absence of shadowing as defined by (1.6) is called the area
mean, while the received signal power in the presence of shadowing as defined
by (1.4) is called the local mean. Fig. 1.11 illustrates the above concepts by
plotting the received signal strength as a function of the radio path length for
both free space and a typical urban macrocellular environment.

4. CO-CHANNEL INTERFERENCE AND NOISE
Frequency reuse in FDMA/TDMA cellular systems introduces co-channel

interference, one of the major factors that limits the capacity of cellular sys-
tems. Co-channel interference arises when the same carrier frequency is used
in different cells. In this case, the power density spectra of the desired and
interfering signals completely overlap. Frequency reuse also introduces adja-
cent channel interference. This type of interference arises when neighboring
cells use carrier frequencies that are spectrally adjacent to each other. In this
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case the power density spectrum of the desired and interfering signals partially
overlap.

Wireless radio links quite often exhibit a threshold effect, where the link
quality is acceptable when both the carrier-to-noise ratio and the carrier-
to-interference ratio exceed certain thresholds, denoted by and
respectively Otherwise, the link quality is unacceptable and an outage
is said to occur. The thresholds and depend on many parameters of
the radio link, including the particular modulation and coding scheme that is
employed, the receiver structure, the measure of link quality, the propagation
environment, the MS velocity, and other factors. Once the air interface is
specified, the propagation environment determines whether or not an outage
occurs. For fast moving MSs, path loss and shadowing determine the link
quality once and have been specified. Conversely, for slow moving
MSs, the link quality may also become unacceptable when the received signal
envelope exhibits a deep fade due to multipath fading.

Here we introduce two types of outages. The first is the thermal noise
outage, defined as

and the second is the co-channel interference outage, defined as

2For the time being, the effect of adjacent channel interference will be neglected.
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The overall outage due to both thermal noise and co-channel interference is

For lightly loaded cellular systems, thermal noise will dominate the perfor-
mance. However, for heavily loaded cellular systems, thermal noise can be
neglected in difference to the typically dominant effect of the co-channel inter-
ference.

5. RECEIVER SENSITIVITY AND LINK BUDGET
Receiver sensitivity refers to the ability of the receiver to detect radio signals

in the presence of noise. This noise can arise from a variety of sources that are
external to the system, such as atmospheric noise like lightning strikes, galactic
noise, man made noise like automobile ignition noise, and thermal noise that
is internal to the system.

The ratio of the desired carrier power to thermal noise power before detec-
tion is commonly called the carrier-to-noise ratio, The parameter is a
function of the communication link parameters, such as the transmitted power
(or effective isotropic radiated power (EIRP)), path loss, receiver antenna gain,
and the effective input-noise temperature of the receiving system. The formula
that relates to the link parameters is called the link budget. The link budget
can be expressed in terms of the following parameters:

= transmitted carrier power

= transmitter antenna gain
= path loss

= receiver antenna gain
= received signal power
= received energy per modulated symbol
= receiving system noise temperature in degrees Kelvin
=    receiver noise bandwidth

= white noise power spectral density

= modulated symbol rate
Ws/K = Boltzmann’s constant

F = noise figure, typically 5 to 6 dB
= receiver implementation losses

= losses due to system load (interference)
= shadow margin

= handoff gain
= receiver sensitivity
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The effective received carrier power is

The total input noise power to the receiver is [116]

The value of at room temperature of 17 °C (290 °K) is
The received carrier-to-noise ratio defines the link budget

The carrier-to-noise ratio, and modulated symbol energy-to-noise ratio,
are related as follows [116]

Hence, we can rewrite the link budget as

Converting to decibel units gives

The receiver sensitivity is defined as

or converting to decibel units

In (1.17), all parameters are usually fixed except for To determined
the receiver sensitivity we first find the minimum that will yield
an acceptable link quality, and then substitute this value into (1.17). Then
by substituting the resulting value for into (1.15) and solving for

we obtain the maximum allowable path loss
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Because we are interested in the link budget for cellular radio systems, there
are three other very important link budget parameters; (i) the margin for system
loading or interference loading, (ii) the shadow margin, and (iii) the handoff
gain. The first two quantities will reduce the maximum allowable path loss,
while the third increases it. There may be other factors, but they will apply
equally to the various systems under consideration, so they are irrelevant when
making relative comparisons between systems. However, they are important if
we want to determine the absolute allowable path loss.

Interference Loading:.

System loading causes co-channel and adjacent channel interference. Hence,
the cell radii in any cellular system will shrink and expand as the traffic load
increases and decreases, respectively. This phenomenon is sometimes called
cell breathing. If we wish to compare the relative coverage of different cellular
systems as the subscriber load increases, then we must account for the increased
traffic load by including an interference degradation margin in the link budget;
otherwise, there will be very poor coverage near the planned cell boundaries.
If the co-channel and adjacent channel interference is treated as white noise to
a first approximation, then the effect is to increase the total input noise power
to the receiver by a multiplicative factor of To account for the system
loading interference degradation, we reduce the maximum allowable path loss
in (1.18) by an amount equal to the interference margin. The required

depends on the type of cellular system under consideration and the cell
loading. CDMA systems typically require a higher interference margin than
TDMA systems, because the signals of all users occupy the same bandwidth.

Shadow Margin and Handoff Gain:.

Suppose that a noise outage occurs whenever the received carrier-to-noise
ratio or, equivalently, The
edge noise outage probability is defined as the probability that

where for a MS located on the cell edge. The area noise
outage probability is defined as the probability that
when averaged over the entire cell area. To ensure a given edge or area outage
probability we must introduce a shadow margin,  into the link budget.

The edge noise outage probability is
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where

and

is the shadow margin. The edge noise outage probability, is plotted
against in Fig. 1.12 for various shadow standard deviations.
Example 1.1

Suppose that we wish to have To determine the required
shadow margin, we choose so that the shaded area under the Gaussian
density function in Fig. 1.13 is equal to 0.1. Hence, we solve

We have

For the required shadow margin is
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To obtain a relationship between the edge and area noise outage probabilities,
we need models for the propagation path loss and spatial distribution of MSs.
For macrocells it is reasonable to assume that the MSs are uniformly distributed
throughout the cell area. This assumption along with the path loss model in
(1.6) yields an area noise outage probability [115]

where

where The first term of this expression is equal to the edge noise
outage probability, while the second term is a correction factor.

The above argument applies to the case of a single isolated cell. For cellular
systems where the geographical area is covered by multiple cells, the situation
is more complex. As a MS moves from one cell to the next handoffs will
be executed to maintain call continuity. Consider a MS that is located in
the boundary area between two cells. Although the link to the serving BS
may be shadowed and experience and outage, the link to an alternate BS may
provide acceptable quality. Hence, at the boundary area between two cells, we
obtain a diversity effect called macrodiversity. Handoffs take advantage of
macrodiversity, and increase the maximum allowable path loss over the single
cell case by an amount equal to the handoff gain, There are a variety of
handoff algorithms that are used in cellular systems. CDMA cellular systems
such as IS-95 use soft handoff, while TDMA cellular systems such as GSM
and DAMPS typically use hard handoff.

To illustrate the principle of handoff gain, consider a cluster of 7 cells;
the target cell is in the center and surrounded by 6 other cells. By using



28

Monte Carlo simulation, we have calculated the area averaged noise outage
probability for the target cell, assuming that the mobile station is uniformly
distributed over the cell area. Our results assume correlated shadowing, where
each of the six BSs surrounding target BS have a shadow correlation of 0.5 with
the target BS, but the shadows are independent amongst the six surrounding
BSs. Let denote the received signal strength for the
target and the six surrounding Three cases are
considered; a single cell, soft handoffs and hard handoffs. For the single cell
performance, no handoffs are used. With soft handoffs, the BS that provides
the best link is always selected as the serving BS. If any BS results in a received
signal power that is above the receiver threshold, then link quality
is acceptable; otherwise an outage occurs.

With our hard handoff algorithm, the received signal power from the target
BS is first determined. If it exceeds the receiver threshold, then the
link quality is acceptable. Otherwise, the six surrounding BSs are tested for
handoff candidacy. In order for a BS to be a handoff candidate, we must have

is the handoff hysteresis. If any
BS out of the handoff candidates results in a received signal power that is above
the receiver threshold, then link quality is acceptable; otherwise an
outage occurs.

The results are shown in Fig. 1.14, for Note that a 10% area
noise outage probability (90% coverage) requires a shadow margin of 5.6 dB.
With soft handoffs, the required shadow margin is 1.8 dB. The difference of
3.8 dB represents the soft handoff gain. The corresponding hard handoff gain
is about 2.8 dB. Note that the soft handoff will always be greater than the hard
handoff gain.

In summary, the maximum allowable path loss with the inclusion of the
margins for shadowing and interference loading is

6. COVERAGE
Coverage refers to the number of base stations or cell sites that are required to

“cover” or provide service to a given area with an acceptable grade of service.
This is an important consideration when a cellular system is first deployed.
Clearly the cellular system that requires the fewest number of cell sites to cover
a given geographic area has an infrastructure cost advantage.

The number of cell sites that are required to cover a given area is determined
by the maximum allowable path loss and the path loss characteristic. To
compare the coverage of different cellular systems, we first determine the
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maximum allowable path loss for the different systems by using a common
quality criterion, i.e., the area averaged outage probability.

From (1.11), it is apparent that

where  is the radio path length that corresponds to the maximum allowable
path loss and C is some constant. The quantity is equal to the radius of the
cell. To provide good coverage it is desirable that be as large as possible.

Once Lmax has been determined for the various systems under considera-
tion, the relative coverage advantages of different systems can be compared,
assuming that all other factors are equal. As an example of how this is done,
suppose that System 1 has and System 2 has
with corresponding radio path lengths of and , respectively. The differ-
ence in the maximum allowable path loss is related to the cell radii through the
following relationship
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Looking at things another way

Since the area of a cell is equal to (assuming a circular cell) the ratio
of the cell areas is

and, hence,

Suppose that is the total geographical area to be covered. Then the ratio
of the required number of cell sites for Systems 1 and 2 is

As an example, suppose that and Then
Hence, System 2 requires 30% more base stations to cover the same

geographical area. In conclusion, a seemingly small difference in link budget
translates into a large difference in infrastructure cost.

7. SPECTRAL EFFICIENCY AND CAPACITY
Spectral efficiency is of paramount concern to cellular system operators.

There are a variety of definitions for spectral efficiency, but an appropriate
definition measures spectral efficiency in terms of the spatial traffic density
per unit bandwidth. For a cellular system that consists of a deployment of
uniform cells, the spectral efficiency can be expressed in terms of the following
parameters:

= offered traffic per channel (Erlangs/channel)

= number of channels per cell
= total system bandwidth (Hz)

A = area per cell

One Erlang is the traffic intensity in a channel that is continuously occupied,
so that a channel occupied for x% of the time carriers x/100 Erlangs. The
spectral efficiency is defined as
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Suppose that the cellular deployment consists of  N-cell reuse clusters. Then
the number of channels per cell with FDMA is

where is the bandwidth per channel. If TDMA is used, then is the
bandwidth per carrier divided by the number of channels per carrier. The
spectral efficiency can be written as the product of three efficiencies, viz.,

where

= bandwidth efficiency
= spatial efficiency
= trunking efficiency

High bandwidth efficiency can be achieved by using low bit rate voice coding
and bandwidth efficient signaling techniques.

Spatial Efficiency:.

High spatial efficiency can be achieved by i) minimizing the area per cell,
and ii) minimizing the co-channel reuse distance. The first of these explains
the intense interest in microcellular systems, where cell radii on the order of
200-500 m are used. The co-channel reuse distance D / R is minimized by i)
controlling the generation of co-channel interference within the cellular system
in the first place and, ii) minimizing the effect of the co-channel interference that
is generated. The generated levels of co-channel interference can be controlled
by using techniques such as cell sectoring, smart antennas, power control,
discontinuous transmission, effective hand-off algorithms, macroscopic BS
diversity, and others. The impact of co-channel interference on the radio link
can be mitigated by using techniques such as interference cancellation, error
control coding, antenna diversity, and others.

Consider the situation shown in Fig. 1.15, depicting the forward channel co-
channel interference environment. The MS is at distance from the serving BS
and at distances from the first tier of interfering
co-channel BSs. If we let denote the vector of distances
at a particular MS location, then the downlink carrier-to-interference ratio as a
function of d is
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At this point, we must account for the effect of handoffs. Consider, for example,
soft handoffs. Let denote the carrier-to-interference
ratio for serving BS and M surrounding BSs. Note that the vector d is different
for each BS. With soft handoffs, the BS that provides the most robust link is
always used so that the resulting carrier-to-interference ratio is

The area averaged probability co-channel interference outage is

where the calculation is performed by averaging the probability of co-channel
interference outage over the random location of the MS within a reference cell.

Finally, Fig. 1.16 depicts the co-channel interference on the reverse channel
at the serving BS. Note that the co-channel interference may not be exactly the
same on the forward and reverse channels, because the vector d is different in
each direction. This phenomenon is known as link imbalance.

Trunking Efficiency:.

High trunking efficiency can be achieved by using channel assignment
schemes that maximize channel utilization. There is usually a trade-off be-
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tween trunking efficiency (or offered traffic per channel) and grade of service
in terms of new call and handoff blocking probabilities. Various fundamen-
tal formula were developed by Erlang, who laid the foundations of modern
teletraffic theory. One of his most famous results is the Erlang-B formula,
first derived in 1917, that gives the probability that a new call attempt will not
find an available channel in a trunk of channels and is lost. Sometimes this
policy is called the blocked calls cleared queueing discipline and it is widely
used to model wireline telephone traffic. The Erlang-B formula is not really
applicable to cellular systems, because it does not account for handoff traffic.
Furthermore, the total offered traffic per cell is time-varying due to the spatial
movement of the subscribers, whereas the offered traffic in the Erlang-B for-
mula is assumed to be constant. Nevertheless, it provides useful insight. The
Erlang-B formula is

where m is the total number of channels in the trunk and is the total
offered traffic ( is the call arrival rate and is the mean call duration). The
Erlang-B formula is derived under the assumption of an infinite subscriber pop-
ulation, Poisson call arrivals with rate and exponentially distributed
call durations with a mean call duration

Fig. 1.17 plots the blocking probability as a function of the offered
traffic per channel The benefit from trunking is obvious, since
the offered traffic per channel, increases as the number of trunked channels
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increases, for any blocking probability. However, diminishing returns are
obtained as the number of trunked channels becomes larger.

Capacity.

The capacity of a cellular system is often measured in terms of two quantities

1. the  cell capacity or  sector capacity is equal to the number of available
voice channels per cell or cell sector.

2. the  cell Erlang capacity is equal to the traffic carrying capacity of a cell (in
Erlangs) for a specified call blocking probability.

Note that difference between spectral efficiency and Erlang capacity is that
spectral efficiency accounts for the area per cell, A. If the area per cell is the
same in two different cellular systems, then their relative spectral efficiencies
and capacities will be the same.

Capacity comparisons between different cellular systems can be difficult,
because the systems are often compared in different stages of their evolution
and different deployment constraints. However, a fair comparison between
suitably optimized digital cellular systems with out deployment constraints
will probably show roughly equal capacities.
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The cell capacity of FDMA (AMPS) and TDMA (PCS 1900, IS-54) cellular
systems can be calculated in a fairly straight forward fashion once the allowable
reuse cluster has been determined.
AMPS  Capacity

Very often the capacity of 2nd and 3rd generation digital cellular systems
(IS-54, IS-95, PCS 1900) are compared with the capacity of the analog AMPS
system that is used in North America. Analog AMPS uses frequency division
duplexing (FDD) with 30 kHz channels. In a bandwidth of 1.25 MHz (uplink or
downlink only) there are channels. Analog AMPS systems are
typically deployed according to a 7/21 reuse pattern, i.e., there are 21 sectors
in a reuse cluster. Hence, with analog AMPS there are 2 channels per sector.
The corresponding cell capacity is 6.0 channels/cell. Likewise, in a bandwidth
of 15 MHz, the sector capacity is 24 channels/sector.

PCS1900 Capacity
GSM systems in Europe were originally deployed without frequency hop-

ping. A 4/12 reuse pattern was very common. For PCS 1900 with frequency
hopping, a 3/9 reuse pattern may be possible. PCS 1900 has 8 channels that
are time division multiplexed onto each carrier, and the carrier spacings are
200 kHz. Therefore, the bandwidth per channel is 25 kHz. In a bandwidth of
1.25 MHz (uplink or downlink only) there are channels. Hence,
there are channels per sector or channels/cell. Therefore,
the cell capacity of PCS 1900 with a 3/9 reuse pattern is times the
AMPS cell capacity.

IS-95 Capacity
The cell capacity of IS-95 has been the topic of debate for many years,

because it cannot be determined in a straight forward manner. The capacity
depends on a variety of complicated factors like (i) the propagation path loss
exponent, (ii) the accuracy of the power control loop, and (iii) the geographical
distribution of mobiles within a cell. To illustrate the difficulty in evaluating
IS-95 CDMA capacity, consider the following simple example. Suppose there
are N users in a cell; one desired user and N  – 1 interfering users. Treating
the co-channel signals as white Gaussian noise, the carrier-to-noise ratio is

and the modulated symbol energy-to-noise ratio is
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where For a required the number of users that can
be accommodated is

This figure is just the cell capacity. Now if is reduced by only 1 dB,
i.e., a factor of 1.25 there is a 30% change in N, the cell capacity. Hence, the
capacity of CDMA cellular systems is highly sensitive to the receiver sensitivity.

Problems
1.1. Show that the area noise outage probability is given by (1.25).

1.2. By using geometric arguments, show that the co-channel reuse factor for
cellular deployments based on hexagonal cells is given by (1.2).

1.3. Consider a regular hexagonal cell deployment, where the MSs and BSs
use omnidirectional antennas. Suppose that we are interested in the forward
channel performance and consider only the first tier of co-channel interferers
as shown in Fig. 1.15. Ignore the effects of shadowing and multipath fading,
and assume that the propagation path loss is described by the inverse law
in (1.6).

a) Determine the worst case carrier-to-interference ratio, as a function
of the reuse cluster size N, for  and 4.

b) What is the minimum cluster size that is needed if the radio receivers
have

c) Referring to Fig. 1.16, repeat a) and b) for the reverse channel.

1.4. Whenever a mobile station crosses a cell boundary a handoff occurs to the
target cell. However, a handoff will sometimes “fail” because there are no
channels available in the target cell. One method to decrease the probability
of handoff failure is to queue the handoff calls. A handoff call that does not
find an idle channel in the target cell is allowed to remain in a queue for
seconds and is dropped from the queue, i.e., experience a handoff failure,
if no channel becomes available in that time.

Suppose the queue is serviced using a “first come first served” discipline.
If m is the total number of channels in the trunk and is the total offered
traffic, then the probability of queueing is given by the famous Erlang-C
formula
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The probability that a queued call will have to wait more than seconds in
the queue is

where is the mean call duration. Assuming that and
5 s, plot the blocking probability against the normalized offered traffic per
channel for

1.5. Consider the worst case forward channel co-channel interference situation
shown in Fig. 1.18 The path loss is described by the following simple model

where

= received power
= transmitted power

= base station antenna height
= mobile station antenna height
= radio path length

a) Assuming that and all BS transmit powers
are the same what is the worst case for a cluster size
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b) Now suppose that the antenna height of the serving BS (in the center)
is increased to 40 m while the other BS antenna heights remain at 30 m.
This has the effect of enlarging the center cell. Assuming that we wish
to maintain the same worst case value obtained in part a), what is the
new radius of the center cell?

c) Now suppose that the antenna height of one of the co-channel BSs is
increased to 40 m while the antenna heights of the other BSs antenna
heights, including the serving BS, remain at 30 m. This has the effect
of shrinking the center cell and making it a non-regular hexagon. As-
suming, again, that we wish to maintain the same worst case value
obtained in part a), what are the new dimensions of the center cell?

1.6. A cellular service provider uses a digital modulation scheme which can
tolerate a worst-case signal-to-interference ratio of 15 dB.

a) Find the optimal cluster size N for the following cases;

(i) omni-directional antennas
(ii) 120° sectoring

(iii) 60° sectoring

Use path loss exponents of and

b) Assume that there are 200 traffic channels in the cellular system and
that a blocked calls cleared queueing discipline is used with a target
blocking probability of 1%. Further assume that each cell or sector has
approximately the same number of channels, and the cells have uniform
traffic loading. Ignore any handoff traffic. Determine the offered traffic
load (per cell) in units of Erlangs and calls per hour for each of the
cases in part (a).

1.7. Suppose that an urban area has three competing trunked mobile networks
(systems A, B, and C) to provide cellular service. System A has 400 cells
with 15 channels/cell, System B has 50 cells with 100 channels/cell, and
System C has 100 cells with 60 channels/cell. Ignore handoff traffic and
assume uniform cell traffic loading.

a) Plot the (Erlang-B) blocking probability, for each system
versus

b) Find the number of users that can be accommodated by each system for
a blocking probability of 2% if the traffic loading offered by each user
is 0.1 Erlangs.



Chapter 2

PROPAGATION MODELING

The design of spectrally efficient wireless communication systems requires
a detailed understanding of the radio propagation environment. The character-
istics of the radio channel vary greatly with the operating frequency, and the
mode of propagation, e.g., line-of-sight (LoS) radio links, diffraction/scatter,
and satellite links. In this book the emphasis is on land mobile radio channels
that are typical of terrestrial cellular mobile radio systems, although many of
the concepts will apply to other types of channels as well.

A typical cellular radio system consists of a collection of fixed base stations
(BSs) that define the radio coverage areas or cells1. The height and placement
of the BS antennas affects the proximity of local scatterers at the BS. In a
macrocellular environment, the BS antennas are usually well elevated above
the local terrain and relatively free of local scatterers. Typically, a non-line-of-
sight (NLoS) radio propagation path will exist between a BS and mobile station
(MS), because of natural and man-made objects that are situated between the
BS and MS. As a consequence the radio waves must propagate via reflections,
diffraction and scattering. At the MS, plane waves arrive from many different
directions and with different delays, as shown in Fig. 2.1. This property is
called multipath propagation. The multiple plane waves combine vectorially
at the receiver antenna to produce a composite received signal.

The carrier wavelength used in UHF mobile radio applications typically
ranges from 15 to 60 cm. Therefore, small changes in the differential propa-
gation delays due to MS mobility will cause large changes in the phases of the
individually arriving plane waves. Hence, the arriving plane waves arriving at
the MS and BS antennas will experience constructive and destructive addition

1In military applications the BSs may be moving.
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depending on the location of the MS. If the MS is moving or there are changes
in the scattering environment, then the spatial variations in the amplitude and
phase of the composite received signal will manifest themselves as time vari-
ations, a phenomenon called envelope fading. As we will see later, the time
rate of envelope fading depends on the velocity of the MS.

Radio channels are reciprocal in the sense that if a propagation path exists, it
carries energy equally well in both directions. However, the spatial distribution
of arriving plane waves may be significantly different in each direction. A MS
in a typical macrocellular environment is usually surrounded by local scatterers
so that the plane waves will arrive from many directions without a direct LoS
component. Two-dimensional isotropic scattering where the arriving plane
waves arrive in from all directions with equal probability is a very commonly
used scattering model for the forward channel in a macrocellular system. For
this type of scattering environment the received envelope is Rayleigh distributed
at any time, and is said to exhibit Rayleigh fading.

The BSs in macrocells are relatively free from local scatterers so that the
plane waves tend to arrive from one direction with a fairly small angle of arrival
(AoA) spread as shown in Fig. 2.1. We will see later that these differences in the
scattering environment for the forward and reverse channels cause differences
in the spatial correlation properties of their respective faded envelopes.

In a microcellular environment, the BS antennas are often placed below the
skyline of buildings and are surrounded by local scatterers, such that the plane
waves will arrive at the BS with a larger AoA spread. Furthermore, a LoS path
will sometimes exist between the MS and BS, while at others times there is
no LoS path. Even in the absence of LoS propagation conditions, there often
exists a dominant reflected or diffracted path between the MS and BS. The LoS
or dominant reflected or diffracted path produces the specular component and
the multitude of weaker secondary paths contribute to the scatter component
of the received envelope. In this type of propagation environment, the received
signal envelope still experiences fading. However, the presence of the specular
component changes the received envelope distribution, and very often a Ricean
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distributed envelope is assumed [148, 369, 359]. In this case the received
envelope is said to exhibit Ricean fading.

If the envelope or squared-envelope is measured and averaged over a spatial
distance of 20 to 30 wavelengths, the mean envelope or mean squared-envelope
can be obtained. Sometimes, this quantity is called the local mean because it
corresponds to the mean value a particular locality. Usually, the local mean will
also experience slow variations over distances of several tens of wavelengths
due to the presence of large terrain features such as buildings and hills. This
phenomenon is known as shadow fading or shadowing. Experimental observa-
tions have confirmed that the shadow fades follow a log-normal distribution as
in (1.5). This log-normal distribution applies to both macrocellular [188, 173]
and microcellular environments [224, 226, 149].

If the local mean is averaged over sufficiently large spatial distances (to
average over the shadows), the area mean is obtained. The area mean is
the average signal strength that is received to/from a MS over a large area
that lies at (approximately) the same distance from the BS. The area mean
is directly related to the path loss, which predicts how the area mean varies
with the distance between the BS and MS. Early studies by Okumura [253]
and Hata [162] yielded empirical path loss models for urban, suburban, and
rural areas that are accurate to within 1 dB for distances ranging from 1 to
20 km. These studies concentrated on macrocellular systems. More recent
work has considered path loss prediction in microcells. The COST231 study
[69] resulted in the COST231-Hata and COST231-Walfish-Ikegami models for
urban microcellular path loss prediction.

The remainder of this chapter presents the fundamentals of radio propaga-
tion modeling and characterization. Section 1. introduces the mechanism of
multipath-fading. Various properties of the faded envelope are then derived
in Sections 1.1 through 1.5. Section 2. treats the statistical characterization of
wide-band multipath-fading channels. Laboratory simulation of fading chan-
nels is covered in Section 3.. Shadowing models and simulation techniques
are discussed in Section 4.. Finally, Section 5. treats theoretical and empirical
models for path loss in macrocellular and microcellular systems.

1. FREQUENCY-NON-SELECTIVE (FLAT)
MULTIPATH-FADING

In terrestrial cellular radio systems, the radio signals propagate in three
dimensions. The signals that are transmitted by the BSs usually have vertical
polarization. For vehicular applications, the MS antennas are also vertically
polarized, while for portable applications tilting of the transmitter (or handset)
antenna results in non-vertical polarization. Although it is important to account
for polarization effects, we will assume that the transmitted signals are vertically
polarized. Furthermore, we assume that the distance between the BS and MS
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is sufficiently large so that the radio propagation environment can be modeled
as two-dimensional.

Fig. 2.2 depicts a horizontal x — y plane, where a MS is moving along the
x-axis with velocity Vertical polarization is assumed throughout so that the
electric field vector is aligned with the z-axis. The nth plane wave arrives at
the MS antenna with an angle of incidence The MS movement introduces
a Doppler shift, or frequency shift, into the incident plane wave. The Doppler
shift is given by

where and is the wavelength of the arriving plane wave, and
is the maximum Doppler frequency occurring when Plane waves

arriving from the direction of motion will experience a positive Doppler shift,
while those arriving opposite the direction of motion will experience a negative
Doppler shift.

Consider the transmission of the band-pass signal

where is the complex envelope of the transmitted signal, is the carrier
frequency, and denotes the real part of z. If the channel is comprised of
N propagation paths, then the noiseless received band-pass waveform is

where and are the amplitude and time delay, respectively, associated with
the nth propagation path. The magnitude depends on the cross sectional
area of the nth reflecting surface or the length of the nth diffracting edge.
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Similar to (2.2), the received band-pass signal r(t) has the form

where the received complex envelope is

and

is the phase associated with the nth path. From (2.5), the channel can be
modeled by a linear time-variant filter having the complex low-pass impulse
response

where is the channel response at time t due to an impulse applied at time
and is the dirac delta function.

From (2.5) and (2.6), several interesting observations can be made. Since the
carrier frequency is very large, very small changes in the path delays will
cause a large changes in the phases due to the term For example,
a 900 MHz sinusoid has a wavelength of about 30 cm. Since, radio waves
propagate at about 30 cm per nanosecond (ns), a path delay change of just 1 ns
corresponds to one full wavelength (or radians phase shift) in the 900 MHz
sinusoid. At any time t, the random phases may result in the constructive
or destructive addition of the N multipath components. Multipath fading is
primarily due to small variations in the path delays and, hence the received
phases, of the multipath components that occur over small spatial distances.

If the differential path delays are small compared to the duration of
a modulated symbol, then the in (2.7) are all approximately equal to In
this case, the channel impulse response has the form

However, since the carrier frequency is very high, small differences in the path
delays will still correspond to large differences in the received phases
Therefore, the received signal still experiences fading. The corresponding
channel transfer function is obtained by taking the Fourier transform of (2.8),
giving
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Since the amplitude response is all frequency components in
the received signal are subject to the same complex gain g(t). In this case the
received signal is said to exhibit flat fading.

1.1 RECEIVED SIGNAL CORRELATION AND
SPECTRUM

A flat fading channel can be characterized by assuming the transmission of
an unmodulated carrier. Since in (2.5), the received band-pass signal
in (2.4) can be expressed in the quadrature form

where

are the inphase and quadrature components of the received band-pass signal.
For large N, the central limit theorem can be invoked and and can
be treated as Gaussian random processes. Assuming that the band-pass process
r(t) is wide sense stationary, the autocorrelation of r(t) is

where

It is reasonable to assume that the phases and are independent
for since their associated delays and Doppler shifts are independent.
Furthermore, the phases can be assumed to be uniformly distributed over

since By using these properties, it is straightforward to
obtain the autocorrelation from (2.1), (2.11) and (2.6) as follows:
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where

and is the total received envelope power. Note that the power in the band-
pass waveform r(t) is

Similarly, the crosscorrelation is

Evaluation of the expectations in (2.16) and (2.20) requires the distribution of
incident power on the receiver antenna, and the receiver antenna gain

as a function of the AoA, For macrocellular applications where the
radio path lengths are long compared to the antenna heights, one simple model
assumes that the plane waves propagate in a 2-D (x, y) plane and arrive at the
MS from all directions with equal probability, i.e.,
This model was first suggested by Clarke [64], and is commonly referred to
as Clarke’s 2-D isotropic scattering model. With 2-D isotropic scattering and
an isotropic receiver antenna with gain the expectation in (2.16)
becomes

where is the zero-order Bessel function of the first kind. The normal-
ized autocorrelation function in (2.21) is plotted against the
normalized time delay in Fig. 2.3.

Likewise, for 2-D isotropic scattering and an isotropic antenna, the cross-
correlation in (2.20) becomes
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This means that and are uncorrelated and, since they are Gaussian,
independent random processes. The fact that and are independent is
a direct result of the symmetry of the 2-D isotropic scattering environment and
the isotropic antenna gain pattern. Some scattering environments and antenna
gain patterns will lead to independent and processes, while others
will not.

The power density spectrum (psd) of and is the Fourier transform
of  or For the autocorrelation in (2.21), the corresponding
psd is [147, 6.671.7]

The autocorrelation of the received complex envelope
is

and its power spectral density is
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Sometimes is called the Doppler power spectrum. From (2.13) we
have

By using the identity

and the property it follows that the band-pass Doppler
power spectrum is

With 2-D isotropic scattering and an isotropic antenna and
(which is real and even), so that

The psd in (2.29) can be derived by using a different approach that is
sometimes more useful. As the incident power on the receiver
antenna as a function of the angle of incidence approaches a continuous
distribution, denoted by The fraction of the total incoming power that
arrives between and is If the antenna has a gain of at
angle then the corresponding received power is Therefore, the
psd of the received signal can be expressed as

From Fig. 2.2, the frequency of the incident plane wave arriving at angle is

where is the maximum Doppler shift and, hence,

Therefore,

where
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Once again, with 2-D isotropic scattering and an isotropic antenna
so that

The same result was obtained in (2.29).
The normalized psd in (2.23) is plotted against the

normalized Doppler frequency in Fig. 2.4. Notice that is limited
to the range of frequencies and at In reality
the Doppler psd can never goto infinity, and the reason for this behavior is that
the plane waves were assumed to propagate in a 2-D plane, whereas in reality
the propagation is actually three dimensional. Aulin [16] modified Clarke’s
2-D model to account for 3-D propagation. The psd that Aulin obtained is very
similar to Fig. 2.4, except that it remains finite at

In some cases, it is appropriate to model the propagation environment as
consisting of a strong specular component plus a scatter component. In this
case, the AoA distribution might have the form
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where is the continuous AoA distribution of the scatter component, is
the AoA of the specular component, and K is the ratio of the received specular
to scattered power. Fig. 2.5 shows a polar plot of for such a scattering
environment, where The correlation functions

and corresponding to (2.36) can be readily obtained from
(2.16) and (2.20) as

The AoA distribution in (2.36) yields a complex envelope having a psd of
the form

where is the discrete portion due to the specular component and
is the continuous portion due to the scatter component. For the case when

with the resulting correlation functions in (2.37)
and (2.38), we have

The corresponding band-pass psd has the same form as Fig. 2.4, except
for a discrete tone at frequency

For microcells that are deployed in dense urban areas, the plane waves may
be channeled by the buildings along the streets and arrive at the receiver antenna
from just one direction, as shown in Fig. 2.6. Clearly, the scattering is non-
isotropic. In this case, a variety of models may be used for distribution of
arriving plane waves. One plausible distribution is

The parameter determines the directivity of the incoming waves. Fig. 2.7
shows a plot of for and Note that the pdf is symmetric
about

The correlation functions and can be readily obtained by
evaluating the expectations in (2.16) and (2.20), respectively, with the density in
(2.41). Again, the psd of the received band-pass signal can be obtained
by using (2.24), taking Fourier transforms, and substituting into (2.28).



50

1.2 RECEIVED ENVELOPE AND PHASE
DISTRIBUTION

1.2.1 RAYLEIGH FADING
When the composite received signal consists of a large number of plane

waves, the received complex envelope can be treated
as a wide-sense stationary complex Gaussian random process. For some types
of scattering environments, e.g., 2-D isotropic scattering, and are
independent identically distributed zero-mean Gaussian random variables at
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any time with variance Under these conditions the magnitude of the
received complex envelope has a Rayleigh distribution at any
time as shown in (A.26) i.e.,

The average envelope power is so that

This type of fading is called Rayleigh fading. The corresponding squared-
envelope is exponentially distributed at any time with density

The squared-envelope at time t is significant because it is proportional to the
instantaneously received signal power at time t.

1.2.2 RICEAN FADING
Some types of scattering environments have a specular or LoS component.

In this case, and are Gaussian random processes with non-zero
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means and respectively. If we again assume that these processes
are uncorrelated and the random variables and have the same
variance then the magnitude of the received complex envelope at time
has a Ricean distribution as shown in (A.32), i.e.,

where

is called the non-centrality parameter. This type of fading is called Ricean
fading and is very often observed in microcellular and mobile satellite appli-
cations.

A very simple Ricean fading model assumes that the means  and
are constants, i.e., and Such an approach will
certainly yield a Ricean distributed envelope, but will not realistically model the
higher order envelope statistics for a particular scattering environment. A better
approach has been suggested by Aulin [16], where is defined in (2.36) and
shown in Fig. 2.5. In this case, the means and corresponding to
the in phase and quadrature components of the LoS signal are given by

where and are the Doppler shift and random phase off set associated
with the LoS or specular component, respectively.

The Rice factor, K, is defined as the ratio of the specular power to
scattered power i.e., When the channel exhibits
Rayleigh fading, and when the channel does not exhibit any fading at
all. The envelope distribution can be rewritten in terms of the Rice factor and
the average envelope power by first noting that

It then follows

(2.50)
Fig. 2.8 shows the Rice pdf for several values of K. The curve for is
the Rayleigh pdf.
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The squared-envelope has the following non-central chi-square distribution
with two degrees of freedom

1.2.3 NAKAGAMI FADING
The Nakagami distribution was introduced by Nakagami in the early 1940’s

to characterize rapid fading in long distance HF channels [243]. The Nakagami
distribution was selected to fit empirical data, and is known to provide a closer
match to some experimental data than either the Rayleigh, Ricean, or log-
normal distributions [47].

The Nakagami distribution describes the magnitude of the received envelope
by the distribution

where Fig. 2.9 shows the Nakagami distribution for several values
of m. Beyond its empirical justification, the Nakagami distribution is often used
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for the following reasons. First, the Nakagami distribution can model fading
conditions that are either more or less severe than Rayleigh fading. When

the Nakagami distribution becomes the Rayleigh distribution, when
it becomes a one-sided Gaussian distribution, and when

the distribution becomes an impulse (no fading). Second, the Rice distribution
can be closely approximated by using the following relation between the Rice
factor K and the Nakagami shape factor m [243];

Since the Rice distribution contains a Bessel function while the Nakagami
distribution does not, the Nakagami distribution often leads to convenient closed
form analytical expressions that are otherwise unattainable.

The squared-envelope has the Gamma density

By using the relationship between the K factor and the shape factor m in
(2.53), the cumulative distribution function (cdf),  of the
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squared-envelope with Nakagami and Ricean fading is plotted in Fig. 2.10. It
is apparent from Fig. 2.10 that a Gamma distribution can approximate a non-
central chi-square distribution to a reasonable degree. However, the reader is
cautioned that the tails of the pdf are often the most important. Fig. 2.10 does
not show how well tails of a Ricean pdf are approximated by a Nakagami pdf.

1.2.4 ENVELOPE PHASE
The phase of the received complex envelope  is

For Rayleigh fading, and are independent identically distributed
zero-mean Gaussian random variables at any time It follows (see Ap-
pendix A.3.2) that the phase at time is uniformly distributed over the interval

i.e.,

For Ricean fading channels, the phase is not uniformly distributed and takes on
a more complicated form.
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1.3 ENVELOPE CORRELATION AND SPECTRA
The autocorrelation of the envelope of a complex Gaussian

random process can be expressed in terms of the hypergeometric function
as [78]

where

Note that since
The above expression is analytically cumbersome, but fortunately a useful

approximation can be obtained by expanding the hypergeometric function into
the following infinite series:

Neglecting the terms beyond second order yields the approximation

At the approximation gives whereas the true value
is Hence, the relative error in the signal power is only 1.86%,
leading us to believe that the approximation is probably very good.

The psd of the received envelope can be obtained by taking the Fourier
transform of The psd will include a discrete spectral component at

due to the dc component of the received envelope. Since we are
primarily interested in the continuous portion of the psd, the autocovariance
function is of interest, where

With 2-D isotropic scattering  and, therefore,
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Fig. 2.11 plots the normalized envelope auto-covariance
against the normalized time delay for the case of 2-D isotropic scattering.

The Fourier transform of can be calculated by using the identities
and to write

Note that is always real, positive, and even. It is centered about
with a spectral width of where is the maximum Doppler

frequency. To proceed further, we need to specify With 2-D isotropic
scattering so that where is
given by (2.23). The result from evaluating (2.64) is (see Problem 2.4)
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where is the complete elliptic integral of the first kind, defined by

The normalized psd is plotted against the frequency
in Fig. 2.12. The psd of the complex envelope for a non-isotropic

scattering channel can be obtained with some minor modifications to the above
development. For example, consider the particular scattering environment
shown in Fig. 2.5. In this case, the psd of g(t) can be obtained from (2.24),
(2.37), and (2.38) as (see Problem 2.5)
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where K is the Rice factor. Note that the psd of the received complex envelope
g(t) is asymmetrical. To obtain the psd of the received envelope we
substitute (2.67) into (2.64) to obtain (see Problem 2.5)

Fig. 2.13 plots the continuous part of the normalized envelope psd
against the normalized frequency
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1.3.1 SQUARED-ENVELOPE CORRELATION AND SPECTRA

The autocorrelation of the squared-envelope is

Since it follows that

First consider the case where the propagation environment is such that
and have zero mean. Then the squared-envelope autocorrelation is (see
Problem 2.6)

Finally, the squared-envelope autocovariance is

With isotropic scattering the above expression reduces to

By comparing (2.62) and (2.72), we observe that the approximate autocorrela-
tion of the envelope and the exact autocorrelation of the squared-envelope are
identical, except for a multiplicative constant. If the propagation environment is
characterized by a specular or LoS component (e.g., Ricean fading), then
and have non-zero means and the autocovariance of the squared-envelope
assumes a more complicated form. Let

where and are the means of  and  respectively. From
Problem 2.7,

where

The squared-envelope autocovariance is
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Consider the scattering environment shown in Fig. 2.5. The corresponding
correlation functions and are given by (2.37) and (2.38),
respectively, and the means and are defined in (2.47) and (2.48).
It can be shown that

and

where K is the Rice factor and is the angle that the specular component
makes with the MS direction of motion. Using these results in (2.79) gives

The corresponding normalized squared-envelope autocovariance

is plotted in Fig. 2.14 as a function of the normalized time delay for
various values of K and

1.4 LEVEL CROSSING RATES AND FADE
DURATIONS

Two important second order statistics associated with envelope fading are
the level crossing rate (how often the envelope crosses a specified level) and
the average fade duration (how long the envelope remains below a specified
level). These quantities are second order statistics, because they are not only
affected by the scattering environment but also by the velocity of the MS.
For the case of Ricean (and Rayleigh) fading, closed form expressions can be
derived for these parameters.

1.4.1 ENVELOPE LEVEL CROSSING RATE
The envelope level crossing rate at a specified level R, is defined as the

rate at which the envelope crosses level R in the positive (or negative) going
direction. Obtaining the level crossing rate requires the joint pdf, of
the envelope level and the envelope slope In terms of the joint
pdf the expected amount of time spent in the interval for
a given envelope slope and time duration dt is
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The time required to cross the level once for a given envelope slope in the
interval is

The ratio of these two quantities is the expected number of crossings of the
envelope within the interval for a given envelope slope and
time duration dt, i.e.,

The expected number of crossings of the envelope level R for a given envelope
slope in a time interval of duration T is

The expected number of crossings of the envelope level R with a positive slope
is

Finally, the expected number of crossings of the envelope level R per second,
or the level crossing rate, is

This is a general result that applies to any random process.



Propagation Modeling 63

Rice has derived the joint pdf for a sine wave plus narrow-band
Gaussian noise. For this case [282]

where s is the non-centrality parameter in the Rice distribution, and
where and are constants that are derived from the psd of

the narrow-band noise. For the scattering environment described by (2.36) and
Fig. 2.5, the sine wave corresponds to the specular component arriving at angle

while the narrow-band noise is due to the scatter component with AoA
distribution Note that Rice’s result in (2.91) is general enough
to apply to scattering environments with other as well.

Suppose that the frequency of the specular or LoS component is
where In this case [173]

where is the continuous AoA distribution of the scatter component and
is the corresponding continuous portion of the psd of the received

complex envelope. Equivalence between (2.92) and (2.93) can be established
by using (2.28) and (2.33). Note that is given by the Fourier transform
of

where

In some cases, the psd is symmetrical about the sine wave frequency
This condition occurs, for example, when and there is 2-D isotropic

scattering. In this case, for all odd values of n (and in particular )
so that (2.91) reduces to the convenient product form

Since in (2.97), it follows that and are independent.
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When   and    a closed form expression can be obtained
for the envelope level crossing rate. Substituting (2.35) into (2.92) gives

Therefore, and where is the power in the scatter
component of the received band-pass signal given by (2.49). Substituting the
joint density in (2.97) into (2.90) gives the envelope level crossing rate

where

and is the rms envelope level. For Rayleigh fading and
isotropic scattering, the above expression simplifies to

The normalized envelope level crossing rate is plotted in Fig. 2.15 as a
function of and K. The maximum LCR can be found by taking the derivative
of (2.99) with respect to and solving

for as a function of K. Fig. 2.16 plots the maximum envelope level crossing
rate as a function of K. Finally, we note that the envelope level crossing rate
around is nearly independent of K. This attractive property will
be exploited in Chapter 10 when we use the envelope level crossing rate to
estimate the MS velocity. The simulation results in Fig. 2.15 were obtained
with a fading simulator that will be described in Section 3..
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1.4.2 ZERO CROSSING RATE
Recall that received complex envelope is a complex

Gaussian random process. If the channel is characterized by a specular com-
ponent then and have mean values and  respectively.
Here we are interested in the zero crossing rate of the zero-mean Gaussian
random processes  and Rice [282] has derived
this zero crossing rate as

When the scatter component is due to 2-D isotropic scattering, the zero crossing
rate is

1.4.3 AVERAGE ENVELOPE FADE DURATION
Another quantity of interest is the average duration that the envelope level

remains below a specified level R. Although the pdf of the envelope fade
duration is unknown, the average fade duration can be calculated. Consider a
very long time interval of length T and let be the duration of the ith fade
below the level R. The probability of the received envelope level being less
than R is

The average envelope fade duration is equal to

If the envelope has the Rice distribution in (2.45), then

where Q(a, b) is the Marcum Q function. Therefore,

If the envelope is Rayleigh distributed, then

and, therefore,
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The normalized average envelope fade duration is plotted in Fig. 2.17
as a function of

Note that the level crossing rate, zero crossing rate, and the average fade
duration all depend on the velocity of the MS Very deep
fades tend to occur infrequently and do not last very long. For example, at
60 mi/hr and 900 MHz, the maximum Doppler frequency is
Therefore, with isotropic scattering and Rayleigh fading there are

fades/s at with an average fade duration of 7.8 ms.
However, at there are only 2.2 fades/s with an average fade
duration of Observe from Fig. 2.15 that the fades are shallower when
the Rice factor, K, is larger. Furthermore, we see from Fig. 2.17 that the
average fade duration tends to be larger with larger Rice factors.

1.5 SPATIAL CORRELATIONS
Many mobile radio systems employ antenna diversity, where spatially sep-

arated antennas are used to provide multiple faded replicas of the same in-
formation bearing signal. A fundamental question that arises is the antenna
separation needed to provide uncorrelated antenna diversity branches. This
question can be answered by using our previously derived results along with
the distance-time transformation where is the MS velocity. This
transformation results in For the case of isotropic scattering
(2.21) and (2.63) become, respectively
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where

is the maximum AoA at the BS for a given distance d and scattering radius
Note that for a small angle approximation can be invoked, with the

result that  and
To proceed further, we artificially assume that the MS is stationary and the

BS is moving along the x-axis in Fig 2.18 with velocity To obtain the enve-
lope and squared-envelope spatial crosscovariance at the BS, we first compute

and in (2.16) and (2.20), respectively. Then compute
from (2.59) and, finally, use (2.62) and (2.72) to obtain the envelope autoco-
variance, and squared-envelope autocovariance,  respectively.
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This can be accomplished by using numerical integration. Now dispense with
the artificial assumption of a moving BS and fixed MS, and assume that the
BS is fixed while the MS moves parallel to the x-axis with velocity Fi-
nally, by using the time-distance transformation we can obtain
the spatial crosscovariance functions and Fig. 2.19 plots the
envelope spatial crosscovariance for and various arrival angles c
Likewise, Fig. 2.20 plots the envelope spatial crosscovariance for
and various scattering radii. In general, we observe that a much greater spatial
separation is required to achieve a given degree of envelope decorrelation at the
BS as compared to the MS. Also, the correlation increases as the arrival angle
and scattering radius decrease.

2. FREQUENCY-SELECTIVE MULTIPATH-FADING
To this point we have considered channel models that are appropriate for

narrow-band transmission, where the inverse signal bandwidth is much greater
than the time spread of the propagation path delays. For digital communication
systems this means that the duration of a modulated symbol is much greater
than the time spread of the propagation path delays. Under this condition all
frequencies in the transmitted signal will experience the same random

2Note that the relative velocities of the MS and BS are opposite in sign.
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attenuation and phase shift due to multipath-fading. Such a channel introduces
very little or no distortion into the received signal and is said to exhibit flat
fading. If the range in the propagation path delays is large compared to the
inverse signal bandwidth, then the frequency components in the transmitted
signal will experience different phase shifts along the different paths. As the
differential path delays become large, even closely separated frequencies in the
transmitted signal can experience significantly different phase shifts. Under
this condition the channel introduces amplitude and phase distortion into the
message waveform. Such a channel is said to exhibit frequency-selective
fading. The path geometry for a multipath-fading channel is shown in Fig. 2.21.
Considering only single reflections, all scatterers that are associated with a
particular path length are located on an ellipse with the transmitter and receiver
located at the foci. Different delays correspond to different confocal ellipses.
Flat fading channels have their scatterers located on ellipses corresponding
to differential delays that are small compared to the duration of a modulated
symbol. Frequency selective channels have strong scatterers that are located
on several ellipses that correspond to differential delays that are significant
compared to a symbol duration. In urban and suburban macrocellular systems,
these strong scatterers usually correspond to high-rise buildings or perhaps
large distant terrain features such as mountains.

Multipath-fading channels can be modeled as time-variant linear filters,
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whose inputs and outputs can be described in both the time and frequency
domains. This leads to four possible transmission functions [30]; the input
delay-spread  function the output Doppler-spread function H(f,v), the
time-variant transfer function T ( f , t ) , and the delay Doppler-spread function

The complex low-pass impulse response relates the complex low-
pass input and output time waveforms, and respectively, through the
convolution

Bello called the low-pass impulse response the input delay-spread
function [30]. In physical terms, can be interpreted as the channel
response at time t due to an impulse applied at time Since a physical
channel cannot have an output before an input is applied  for
and therefore the lower limit of integration in (2.117) is zero. If the convolution
in (2.117) is written as a discrete sum, then

This representation allows us to visualize the channel as a transversal filter with
tap spacing and time-varying tap gains as shown in Fig. 2.22.

The second transmission function relates the input and output spectra,
and respectively, through the integral equation

Bello called the function the output Doppler-spread function [30].
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This function explicitly shows the effect of Doppler shift or spectral broadening
on the output spectrum. In physical terms, the frequency-shift variable  can be
interpreted as the Doppler shift that is introduced by the channel. Once again,
the integral in (2.119) can be approximated by the discrete sum

This allows the channel to be represented by a bank of filters with transfer func-
tions followed by a frequency conversion chain that produces
the Doppler shifts.

The third transmission function relates the output time waveform to the input
spectrum through the integral equation

Zadeh called the function T(f, t) the time-variant transfer function [377].
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The final description relates the input and output time waveforms through
the double integral

The function is called the delay Doppler-spread function [30], and
provides a measure of the scattering amplitude of the channel in terms of the
time delay and Doppler frequency The four transmission functions are
related to each other through Fourier transform pairs as shown in Fig. 2.24.
In each transform pair there is always a fixed variable, so that the transform
involves the other two variables.

2.1 STATISTICAL CHANNEL CORRELATION
FUNCTIONS

Recall the channel impulse response can
be modeled as a complex Gaussian random process, where the quadrature
components and are correlated Gaussian random processes.
Hence, all of the transmission functions defined in the last section are random
processes. A thorough characterization of a channel requires knowledge of the
joint pdf of all the transmission functions. Since this is rather formidable, a
more reasonable approach is to obtain statistical correlation functions for the
individual transmission functions. If the underlying process is Gaussian, then
a complete statistical description is provided by the means and autocorrelation
functions. In the following discussion, we assume zero-mean Gaussian random
processes so that only the autocorrelation functions are of interest. Since there
are four transmission functions, four autocorrelation functions can be defined
as follows [257, 270]:
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These autocorrelation functions are related to each other through double
Fourier transform pairs. For example,

The complete set of such relationships is summarized in Fig. 2.25.

2.2 CLASSIFICATION OF CHANNELS
Wide sense stationary (WSS) channels have fading statistics that remain

constant over short periods of time. This implies that the channel correlation
functions depend on the time variables t and s only through the time difference

It can be demonstrated (see Problem 2.13) that WSS channels
give rise to scattering with uncorrelated Doppler shifts. This behavior suggests
that the attenuations and phase shifts associated with signal components hav-
ing different Doppler shifts are uncorrelated. Hence for WSS channels, the
correlation functions become
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where

are Fourier transform pairs.
Uncorrelated scattering (US) channels are characterized by an uncorrelated
attenuation and phase shift with paths of different delays. Bello showed that
US channels are wide sense stationary in the frequency variable so that the
correlation functions depend on the frequency variables f and m only through
the frequency difference Analogous to (2.131) and (2.132),
the channel correlation functions can be shown (see Problem 2.14) to be singular
in the time-delay variable. For US channels, the channel correlation functions
become

where

Wide sense stationary uncorrelated scattering (WSSUS) channels are a very
special type of multipath-fading channel. These channel display uncorrelated
scattering in both the time-delay and Doppler shift. Fortunately, many radio
channels can be accurately modeled as WSSUS channels. For WSSUS chan-
nels, the correlation functions have singular behavior in both the time delay
and Doppler shift variables, and reduce to the following simple forms:
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These correlation functions are related through the Fourier transform pairs
shown in Fig. 2.26.

The function is called the multipath intensity profile
or power delay profile and gives the average power at the channel output as
a function of the time delay It can be viewed as the scattering function
averaged over all Doppler shifts. A typical power delay profile is shown in
Fig. 2.27. One quantity of interest is the average delay, defined as

Note that the normalization is applied because is not a pdf.
Another quantity of interest is the rms delay spread, defined as

There are other quantities that can also be used to describe the power delay
profile. One is the width, of the middle portion of the power delay profile
that contains x% of the total power in the profile. Referring to Fig. 2.27

where and are chosen so that
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Power Density (dB)

and

Another quantity is the difference in delays where the delay profile rises to
a value P dB below its maximum value and where the delay profile drops
to a value P dB below its maximum value for the last time. This quantity
is denoted by and is also illustrated in Fig. 2.27, where
Power delay profiles play a key role in determining whether or not an adaptive
equalizer is required at the receiver. If the excess delay spread exceeds 10%
to 20% of the symbol duration, then an adaptive equalizer may be required. In
general, the average delay and delay spread of the channel will diminish with
decreasing cell size, the reason being that the radio path lengths are shorter.
While the delay spread in a typical macrocellular application may be on the
order of 1 to the delay spreads in a typical microcellular applications
are much less. Delay spreads within buildings range can anywhere from 30 to
60 ns in buildings with interior walls and little metal, to 300 ns in buildings
with open plans and a significant amount of metal. The function
is called the spaced-frequency spaced-time correlation function. The function

measures the frequency correlation of the channel. The
coherence bandwidth, of the channel is defined as the smallest value of

for which equals some suitable correlation coefficient such as 0.5.
As a result of the Fourier transform relation between and the
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reciprocal of either the average delay or the delay spread is a measure of the
coherence bandwidth of the channel. i.e.,

or

The function is called the Doppler psd and gives the
average power at the channel output as a function of the Doppler frequency

The range of values over which is significant is called the Doppler
spread and is denoted by Since and are a Fourier transform
pair, it follows that the inverse of the Doppler spread gives a measure of the
coherence time, of the channel, i.e.,

The coherence time of the channel is important for evaluating the performance
of coding and interleaving techniques that try to exploit the inherent time
diversity of the channel. Note that the Doppler spread and, hence, the coherence
time depend directly on the velocity of a moving MS. Therefore, any scheme
that exploits the time diversity of the channel must be evaluated over the
complete range of expected MS velocities. The function is called the
scattering function and gives the average power output of the channel as a
function of the time delay and the Doppler shift The scattering function is
widely used as a compact characterization of multipath-fading channels.

2.3 CHANNEL OUTPUT AUTOCORRELATION
The autocorrelation of the channel output can be expressed in terms of the

transmission functions. For example, from (2.117) we have

For WSSUS channels, the above expression reduces to

The channel output autocorrelation can also be expressed in terms of the
scattering function by substituting the double inverse Fourier transform in
(2.128) into (2.151). For WSSUS channels, we can use (2.144) to write
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3. LABORATORY SIMULATION OF
MULTIPATH-FADING CHANNELS

3.1 FILTERED GAUSSIAN NOISE
A straightforward method of constructing a fading simulator is to filter two

independent white Gaussian noise sources with low-pass filters, as shown in
Fig. 2.28. The psd of  and are determined by the squared amplitude
response of the low-pass filters. If the noise sources have power spectral
densities of watts/Hz and the low-pass filters have transfer function
H(f), then

The two different noise sources must have the same psd to produce a Rayleigh
faded envelope. The main limitation with this approach is that only rational
forms of the Doppler spectrum can be produced, whereas the Doppler spectrum
is typically non-rational as shown in Fig. 2.4. To approximate the non-rational
Doppler spectrum in Fig. 2.4, a high-order pole-zero filter is required. Unfortu-
nately, a high-order filter has a long impulse response, and this will significantly
increase the run times for software simulation.

For discrete-time simulation the low-pass filter h(t) is implemented as a
digital filter. The simplest solution uses a first-order low-pass digital filter,
which basically models the fading process as a Markov process. To describe
this approach further, let and represent the
real and imaginary parts of the complex envelope at epoch k, where T is the
simulation step size. Then and are Gaussian random variables with
the state equation
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where and are independent zero-mean Gaussian random variables,
each with time correlation Since

has zero-mean, the envelope is Rayleigh distributed and the
phase is uniformly distributed on the interval
It can be shown that the discrete correlation functions of  and  are

With 2-D isotropic scattering the desired autocorrelation is, from (2.21),

Clearly the above approach gives a different Doppler spectrum. Completion
of model requires that and be specified. Taking the discrete-time Fourier
transform of (2.157) gives the psd

One possibility is to arbitrarily set the 3 dB point of  to Solving
the resulting quadratic for gives

To normalized the mean square envelope to  the value of is chosen as

Fig. 2.29 plots an example of the received envelope. The slow roll-off of
the first-order low-pass filter leaves some high frequency components in the
Doppler spectrum, which are apparent in the faded envelope. Some improve-
ment can be obtained by using a higher order filter, but as explained earlier, this
will increase the complexity of the simulator. One advantage of using low-pass
filtered white Gaussian noise is the ease by which multiple uncorrelated fading
waveforms can be generated. We just need to use uncorrelated noise sources.

3.2 SUM OF SINUSOIDS METHOD
Another very effective channel simulator has been suggested by Jakes that

is based on the sums of sinusoids. The description of this method begins with
(2.8) and (2.6) and assumes equal strength multipath components
The received complex envelope has the form
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where N is the number of sinusoids and is a random phase given by

Jakes approximates a 2-D isotropic scattering environment by choosing the
N components to be uniformly distributed in angle, i.e.,

By choosing N/2 to be an odd integer, the sum in (2.163) can be rearranged
into the form

where we have relabeled the phase indices. Note that the Doppler shifts
progress from as n progresses from
1 to N/2 – 1 in the first sum, while in the second sum they progress from

to Therefore, the frequencies in these
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terms overlap. To simplify further Jakes uses nonoverlapping frequencies to
write as

where

and the factor        is included so that the total power remains unchanged. Note
that (2.166) and (2.167) are not equal. In (2.166) all phases are independent.
However, (2.167) implies that and, therefore, correlation is
introduced into the phases. This correlation leads to non-stationary behavior
as described by Pop and Beaulieu [263]. If we further impose the constraint
that in (2.167), then (2.167) can be rewritten in the form

where

From the above development, the fading simulator shown in Fig. 2.30 can
be constructed. There are M low-frequency oscillators with frequencies

where and with one
oscillator with frequency The amplitudes of the oscillators are all unity
except for the oscillator at frequency which has amplitude Note that
the structure in Fig. 2.30 implements (2.169), except for a scaling factor of

It is desirable that the phase of be uniformly dis-
tributed. This can be accomplished by choosing the phases and so that

and where is a time
average operator. From Fig. 2.30
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Choosing and gives
and The mean square values and

can be scaled to any desired value. A typical Rayleigh faded
envelope, obtained by using or  is shown in Fig. 2.31. The
normalized autocorrelation function



Propagation Modeling 85

is plotted against the normalized time delay in Fig. 2.32. Observe that
the autocorrelation tends to deviate from the desired values at large lags. This
can be improved upon by increasing the number of oscillators that are used in
the simulator. For example, Fig. 2.33 shows the normalized autocorrelation
function when the number of oscillators is doubled from 8 to 16. One of the
advantages of using Jakes’ method is that the autocorrelation and, hence, the
psd of the inphase and quadrature components of the received signal can be
generated so as to closely approximate a 2-D isotropic scattering environment.

3.3 MULTIPLE FADED ENVELOPES
In many cases it is desirable to generate multiple envelopes with uncorrelated

fading. Jakes’ extended his method to generate up to M fading envelopes by
using the same M low frequency oscillators. This is accomplished by giving
the nth oscillator the additional phase shift
yielding the kth faded envelope

The appropriate values of ;  and      are determined by imposing the additional
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offset, rather than a single oscillator, the use of phase shifters can be eliminated.
This leads to the fading generator shown in Fig. 2.34.

Consider the following choice for and with the objective yielding
uncorrelated waveforms

By using these values, the crosscorrelations between the different faded en-
velopes can be computed. Fig. 2.35 plots the typical normalized crosscorrela-
tion

against the normalized time delay Although it is possible to make
at we observe that the envelope crosscorrelations can be quite large for

This property is not desirable.
Dent et. al. [81] suggested a modification to Jakes’ approach that uses

orthogonal Walsh-Hadamard codewords to decorrelate the faded envelopes.
The Walsh-Hadamard codewords are obtained from a Hadamard matrix
The matrix is generated by using the recursion

constraint that the multiple faded envelopes be uncorrelated (or as nearly un-
correlated as possible). By using two quadrature low- frequency oscillators per
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where Let the kth row of          be the codeword To generate
the kth faded envelope, the outputs of the M low frequency oscillators are
weighted by the co-ordinates of the codeword   and combined to yield

where for some integer with and  defined
in (2.177) and (2.178), respectively. This method decreases the envelope
crosscorrelations, due to the orthogonality of the Walsh-Hadamard codewords.
It can be shown that the autocorrelations of the faded envelopes are the same as
those shown in Figs. 2.32 and 2.33. The envelope crosscorrelations are shown
in Figs. 2.36 and 2.37. The crosscorrelations are zero at zero lag. At non-zero
time lags the crosscorrelations are not exactly zero, but are small enough to be
effectively zero. By increasing the number of oscillators, the crosscorrelations
remain close to zero over a larger range of time lags.

Sometimes it is desirable to generate multiple faded envelopes with a speci-
fied crosscorrelation to study, for example, the effects of branch correlation in
receivers that employ antenna diversity. One straight forward approach uses
a linear combination of uncorrelated faded envelopes. Suppose that the two
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complex envelopes and  are uncorrelated, and a third complex enve-
lope  is formed by taking a linear combination
of the first two. Then the normalized crosscorrelation of  and is

Notice that varies from 0 to as a varies from 0 to 1.

3.4 SIMULATION OF WIDE-BAND
MULTIPATH-FADING CHANNELS

The model, models the channel by a tapped
delay line with number of taps at different delays. Each tap is the result of a
large number of multipath components and, therefore, the taps will experience
multipath fading. Letting be the complex envelope of the transmitted
signal, the complex envelope of the received signal is

where is the number of taps, and the  and are the complex gains and
path delays associated with the taps. Although the are random, they are
usually fixed in the model. It follows that the channel has impulse
response

and can be described by the tap gain vector

and the tap delay vector

Sometimes it is convenient if the tap delays are multiples of some small
number leading to the tapped delay line channel model shown
in Fig. 2.38. Many of the tap coefficients in the tapped delay line are zero,
reflecting the fact that no energy is received at these delays. The time varying
channel tap coefficients can be generated by using the approaches
described in Section 3..

If we assume a WSSUS channel and we assume that each tap experiences
isotropic scattering, then each tap should experience uncorrelated fading with
the autocorrelation
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where is the envelope power or associated with the kth tap and is the
zero-order Bessel function of the first kind, and  is the maximum Doppler
frequency. Since the taps are uncorrelated, the total envelope power is

It follows that the tap gain vector g has the covariance matrix [173, 167]

where H denotes Hermitian transposition and

COST207 models:. The COST207 models were developed and standardized
for the GSM system. Four different Doppler spectra,  have been specified
in the COST207 models [67]. First define

The following types are defined;

a) CLASS is the classical Doppler spectrum, used for path delays not in excess
of 500 ns
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b) GAUS1 is the sum of two Gaussian functions, used for path delays from
500 ns to       (5 00 ns )

where is 10 dB below A.

c) GAUS2 is the sum of two Gaussian functions, used for path delays exceeding

where is 15 dB below B.

d) RICE is a combination of the classical Doppler spectrum and one specular
path that is sometimes used for the shortest path;

A number of specific models have been defined in the COST207 study [67].
Typical urban (TU) (non-hilly) and bad urban (BU) (hilly) power delay profiles
are shown in Table 2.1 and Fig. 2.39. Sometimes it is desirable to reduce
the number of paths to reduce the computational requirements of computer
simulations. Table 2.2 and Fig. 2.40 show the 6-ray reduced typical urban and
reduced bad urban channel, as defined by COST207 [67]. Also provided are
models for rural (non-hilly) areas (RA) in Table 2.3, typical hilly terrain (HT)
in Table 2.4, and reduced hilly terrain (HT) in Table 2.5.

T-spaced model:. A typical digital communication system consists of the
combination of a transmitter filter, modulator, waveform channel, demodulator,
and receiver filter. Data symbols are fed into the transmit filter every T seconds,
while T-spaced samples are taken at the output of the receiver filter, where T
is the baud duration. The overall system from the input to the transmitter filter
to the output of the sampler can be modeled by an equivalent overall T-spaced
finite impulse response (FIR) channel.
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The T-spaced channel model is similar to the  channel model, except
that the channel taps are T-spaced. Usually, the taps in the T-spaced model
are all non-zero and correlated. The tap correlations often lead to difficulties
when analyzing the performance of digital communication systems that are
operating on these channels. These analytical difficulties are often overcome
by assuming that the T-spaced taps are uncorrelated [79,99,137,201,321,187].
For computer simulations, however, such simplifications are not necessary and
in fact undesirable. However, to reduce run times in discrete-time simulations,
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it is sometimes desirable to set the simulation step size to the baud duration
T. We now describe a method for generating the T-spaced tap coefficients
with the proper crosscorrelations when a linear modulation scheme is used
and the underlying channel model is Consider the arrangement
shown in Fig 2.41. As discussed in Chapter 4, a typical digital communication
system consists of a transmit filter  channel and receiver matched
filter The overall pulse is and is chosen,
for example, to be a raised cosine pulse. To obtain the T-space channel tap
co-efficient, we pass the pulse p(t) through the  channel and extract
T-spaced samples. The T-spaced samples are a linear combination of the taps
in the model. Suppose that a vector of M, T -spaced, tap coefficients
is generated in this manner
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Then where is defined in (2.185), and A is an
real matrix. The parameter M is a design parameter equal to the number of
T-spaced taps that we wish to process in the receiver. As described in the
example below, the entries of the matrix A are determined by the overall pulse
response of the transmitter and receiver filters, the relative power and delays of
the rays in the  model, and the T-spaced sampler timing phase. Note
that the matrix A only needs to be generated once each time the relative delays
of the rays in the channel and/or the sampler timing phase change.
The covariance matrix of the T-spaced tap gain vector is
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For a WSSUS channel with 2-D isotropic scattering

Example 2.1____Suppose that the combination of the transmitter and receiver
filter is a raised cosine pulse having a roll-off factor of 0.353

3 See Chapter 4 for a discussion of raised cosine pulse shaping.
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where The -spaced waveform channel is characterized by two
equal strength taps  with a differential delay of
In this example, we wish to generate the two main taps in the T-spaced channel
model, and under the condition that Let

and

The entries of matrix A depend on the timing phase of the T-spaced samples
taken at the output of the pulse generator. In a practical system, the sampler
timing phase is determined by the synchronization process in the receiver.
Suppose that the sampler timing phase is chosen so that the T-spaced taps

and have equal variance. Consider Fig. 2.42. Since for
the -spaced channel in this example, the entries of matrix A can be obtained
by writing

Hence,
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For and

4. SHADOWING
Let denote the mean envelope level, where the expectation

is taken over the pdf of the received envelope, e.g., the Rayleigh and Rice
distribution in (2.43)  and  (2.50), respectively. Sometimes is called the local
mean because it represents the mean envelope level where the averaging is
performed over a distance of a few wavelengths that represents a locality. The
local mean itself is a random variable due to shadow variations that are
caused by large terrain features between the BS and MS, such as buildings
and hills in macrocells and smaller objects such as vehicles in microcells. The
same argument applies to the mean squared envelope level
Empirical studies have shown that  and  have the log-normal distributions

where

and The mean values and are sometimes
called the area mean because the averaging is performed over an area that is
large enough to average over the shadows. The area mean is determined by the
propagation path loss between the BS and MS. By using a transformation of
random variables,
can be shown to have the Gaussian densities

Note that the logarithm of the log-normal random variable in yields a normal
random variable.
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Some confusion may arise in the description of log-normal shadow distri-
bution, because some authors [235, 122, 123] treat the mean envelope        as
being log-normally distributed with standard deviation while other authors
[203, 225, 268, 310] treat the mean square-envelope  as being log-normally
distributed with the same value of Clearly, these two quantities are not the
same. It is shown in Appendix 2A that the standard deviation  is the same
in each case. However, with Ricean fading the means differ by

where

and denotes the confluent hypergeometric function. The shadow
standard deviation  ranges from 5 to 12 dB with 8 dB being a typical value for
macrocellular applications. The shadow standard deviation increases slightly
with frequency (0.8 dB higher at 1800 MHz than at 900 MHz), but has been
observed to be nearly independent radio path length, even for distances that
are very close to the transmitter [225]. The shadow standard deviation that is
observed in microcells varies between 4 and 13dB [278, 33, 216, 142, 144, 226].
Mogensen [226] has reported to 8.2 dB at 900 MHz in urban areas,
while Mockford et. al. [225] report a value of 4.5 dB for urban areas. Berg
[33] and Goldsmith and Greenstein [144] report that is around 4 dB for a
spatial averaging window of 20 wavelengths and BS antenna heights of about
10 (m). Several studies suggest that  decreases with an increase in the degree
of urbanization or density of scatters. For example, the results presented by
Mockford et. al. [225] suggest that is 1.3 to 1.8 dB higher in a suburban
environment than in an urban environment.

4.1 LABORATORY SIMULATION OF SHADOWING
One of the challenges when constructing a shadow simulator is to account

for the spatial correlation of the shadows. Several studies have investigated the
spatial correlation of shadows [162, 151, 216, 172, 152]. One simple model
has been suggested by Gudmundson [152], where log-normal shadowing is
modeled as a Gaussian white noise process that is filtered by a first-order
low-pass filter. With this model

where is the mean envelope or mean squared-envelope, expressed
in decibels, that is experienced at location is a parameter that controls
the spatial correlation of the shadows, and is a zero-mean Gaussian random
variable with From equation (2.157), it immediately follows
that the spatial autocorrelation function of  is
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Since the variance of log-normal shadowing is

we can express the autocorrelation of  as

This approach generates shadows that decorrelate exponentially with distance.
It is interesting to note that Mandayam et. al. [214] have shown through an ex-
treme value analysis that log-normal shadows cannot decorrelate exponentially
with distance. Nevertheless, in the absence of a better solution, Gudmundson’s
model in (2.207) is still useful and effective. To use the simulator in (2.207) we
must relate the decorrelation parameter  to the simulation index k. Suppose
that we wish to model the shadows that are experienced by a MS that is trav-
eling with velocity v. The envelope (or squared envelope) is sampled every T
seconds. In kT seconds the MS moves a distance Let  be the shadow
correlation between two points separated by a spatial distance of D m. Then
the time autocorrelation of the shadowing is

Comparing (2.210) and (2.211) we see that  For typical suburban
propagation at 900 MHz, it has been experimentally verified by Gudmundson
[150] that dB with a spatial correlation of approximately 0.82 at
a distance of 100 m. For typical microcellular propagation at 1700 MHz,
Gudmundson has also reported dB with a spatial correlation of 0.3
at a distance of 10 m.

4.2 COMPOSITE SHADOWING-FADING
DISTRIBUTIONS

Sometimes it is desirable to know the composite distribution due to shad-
owing and multipath fading. This may be particularly true for the case of
slow moving or stationary MSs, where the receiver is unable to average over
the effects of fading and a composite distribution is necessary for evaluating
link performance and other quantities. Two different approaches have been
suggested in the literature for obtaining the composite distribution. The first
approach is to express the envelope (or squared-envelope) as a conditional den-
sity on and then integrate over the density of  to obtain
the composite distribution. Assuming that we are interested in the composite
envelope
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For the case of Rayleigh fading

and, hence,

The composite envelope distribution with Rayleigh fading and log-normal
shadowing is

where . Sometimes this distribution is called a Susuki distribu-
tion, after the original work by Susuki [311]. The second approach, originally
suggested by Lee and Yen [194], is to express the composite received signal as
the product of the short term multipath fading and the long term shadow fading.
Hence, at any time t, the envelope of the composite signal has the form

and the squared-envelope of the composite signal has the form

Under the assumption that the fading and shadowing are independent random
processes, we now demonstrate that both approaches lead to identical results.
The density function of envelope in (2.216) can be obtained by using a bivariate
transformation and then integrating to obtain the marginal density. This leads
to the density

Again, consider the case of  log-normal shadowing and Rayleigh fading. Using
(2.43) and (2.199) gives
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Observe that (2.215) and (2.219) are related by

It follows that the random variables and are simply related through the
linear transformation

Note, however, that is just the mean of the Rayleigh distribution.
Therefore, if we normalize a(t) to have unit mean, then and have the
exact same distribution. Voila!

4.2.1 COMPOSITE GAMMA-LOG-NORMAL DISTRIBUTION
It is sometimes very useful to model the radio propagation environment as

a shadowed Nakagami fading channel, because the Nakagami distribution is
mathematically convenient and can closely approximate a Ricean distribution
which in turn is often used to model a specular multipath fading channel. The
composite distribution of the squared-envelope due to Nakagami fading and
log-normal shadowing has the Gamma-log-normal density function

where As shown in Appendix 2B, the composite Gamma-log-
normal distribution in (2.222) can be approximated by a log-normal distribution
with mean and standard deviation

where is the Euler psi function and is Riemann’s zeta function
as defined in Appendix 2B. When the approximation is valid for

and for the approximation is valid for all ranges of
of interest [165]. The effect of Nakagami fading in (2.222) is to decrease the
mean and increase the variance. However, this affect decreases as the shape
factor m increases (corresponding to less severe fading). For example, with

(Rayleigh fading) we have

while with we have and
We conclude that the effects of Nakagami fading

become more pronounced when the shape factor m and the shadow standard
deviation σ are small.
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5. PATH LOSS MODELS
It is well known that the received signal power decays with the square of  the

path length in free space. That is, the received envelope power is [257]

where is the transmitted power, and  are the transmitter and receiver
antenna gains, and d is the radio path length. The signals in land mobile
radio applications, however, do not experience free space propagation. A more
appropriate theoretical model assumes propagation over a flat reflecting surface
(the earth) as shown in Fig. 2.43. In this case, the received envelope power is
[257]

where and are the heights of the BS and MS antennas, respectively.
Under the condition that (2.225) reduces to

where we have invoked the approximation sin  for small Observe that
when the propagation over a flat reflecting surface differs from free
space propagation in two ways. First, the path loss is not frequency dependent
and, second, the envelope power decays with the fourth power rather than the
square of the distance. Fig. 2.44 plots the path loss

against the distance d. Notice that the path loss and, hence, the received
envelope power has alternate minima and maxima when the path length is
small. This property has been noted in experiments by Milstein et. al. [223].
The last local maxima in the path loss occurs when

5.1 PATH LOSS IN MACROCELLS
Several highly useful empirical models for macrocellular systems have been

obtained by curve fitting experimental data. Two of the more useful models
for 900 MHz cellular systems are Hata’s model [253] based on Okumura’s
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prediction method [162], and Lee’s model [190].

5.1.1 OKUMURA-HATA AND CCIR MODELS
Hata’s empirical model [162] is probably the simplest to use, and can dis-

tinguish between man-made structures. The empirical data for this model was
collected by Okumura [253] in the city of Tokyo. Be cautioned, however,
that the path losses for Japanese suburban areas do not match North American
suburban areas very well. The latter are more like the quasi-open areas in
Japan. Okumura and Hata’s model is expressed in terms of the carrier fre-
quency 150 BS antenna height 30 the
MS antenna height and the distance
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between the BS and MS. The model is known to be accurate to within 1 dB for
distances ranging from 1 to 20 km. With Okumura and Hata’s model, the path
loss between two isotropic BS and MS antennas is

where

and

An empirical model was published by the CCIR that gives the path loss as

where A and B are defined in (2.229) with being the medium or small
city value in (2.230). The parameter E accounts for the degree of urbanization
and is given by

where when the area is covered by approximately 16% buildings.
Typical values from the Okumura-Hata “large city” model are plotted in
Fig. 2.45, for a BS height of 70 m, a MS antenna height of 1.5 m, and a
carrier frequency of 900 MHz. Several studies have shown that, due to a lesser
degree of  urbanization, the North American urban areas have path losses similar
to the Japanese suburban areas.

5.1.2 LEE’S AREA-TO-AREA MODEL
Lee’s area-to-area model [190] is used to predict a path loss over flat terrain.

If the actual terrain is not flat, e.g., hilly, there will be large prediction errors.
Two parameters are required for Lee’s area-to-area model; the power at a 1 mile
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(1.6 km) point of interception, and the path-loss exponent, The
received signal power can be expressed as

where d is in kilometers and The parameter  is a correction
factor used to account for different BS and MS antenna heights, transmit powers,
and antenna gains. The following set of nominal conditions are assumed in
Lee’s area-to-area model:

frequency MHz

BS antenna height = 30.48 m

BS transmit power = 10 watts

BS antenna gain = 6 dB above dipole gain

MS antenna height = 3 m

MS antenna gain = 0 dB above dipole gain

If the actual conditions are different from those listed above, then we compute
the following parameters:
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different antenna-gain correction factor at the MS (2.234)

From these parameters, the correction factor is

The parameters and have been found from empirical measure-
ments, and are listed in Table 2.6.

Experimental data suggest that n in (2.233) ranges between 2 and 3 with the
exact value depending upon the carrier frequency and the geographic area. For

MHz in a suburban or open area,  is recommended. In an urban
area with is recommended. The value of in (2.234)
can also be determined from empirical data

The path loss is the difference between the transmitted and received
field strengths, To compare with the
Okumura-Hata model we must assume an isotropic BS antenna with 0 dB gain,
so that . Then by using the nominal BS transmitter power of
40 dBm (10 watts) along with the parameters in Tab. 2.6 for and

the following path losses can be obtained
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These typical values from Lee’s area-to-area model are plotted in Fig. 2.46,
for the same parameters used with Okumura-Hata model in Fig. 2.45.

5.2 PATH LOSS IN OUTDOOR MICROCELLS
Most of the future PCS microcellular systems are expected to operate in

1800-2000 MHz frequency bands. Some studies have suggested that the path
losses experienced at 1845 MHz are about 10 dB larger than those experienced
at 955 MHz when all other parameters are kept constant [68]. The COST231
study [69] has resulted in two models for urban microcellular propagation, the
COST231-Hata model and the COST231-Walfish-Ikegami model.

5.2.1 COST231-HATA MODEL
The COST231-Hata model is based on the proposal by Mogensen [226]
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et. al. to extend Okumura and Hata’s model for use in the 1500-2000 MHz
frequency range, where it is known that Okumura and Hata’s model under
estimates the path loss. The COST231-Hata model is expressed in terms of the
carrier frequency 1500 BS antenna height
200 (m), MS antenna height and distance
In particular, the path loss with the COST231-Hata model is

where

Although both the Okumura and Hata and the COST231-Hata models are
limited to BS antenna heights greater than 30 m, they can be used for lower BS
antenna heights provided that the surrounding buildings are well below the BS
antennas. They should not be used to predict path loss in urban canyons. The
COST231-Hata model is good down to a path length of 1 km. It should not be
used for smaller ranges, where path loss becomes highly dependent upon the
local topography.

5.2.2 COST231-WALFISH-IKEGAMI MODEL

The COST231 -Walfish-Ikegami model distinguishes between LoS and NLoS
propagation. The model is accurate for carrier frequencies in the range

and path distances in the range

LoS propagation:. For LoS propagation in a street canyon, the path loss is

where the first constant is chosen so that is equal to the free-space path loss
at a distance of  20 m. The model parameters are the distance d (km) and carrier
frequency

NLoS propagation:. As defined in Fig. 2.47, the path loss for non line-of-
sight (NLoS) propagation is expressed in terms of the following parameters:

BS antenna height,
MS antenna height,
roof heights of buildings (m)

height of BS relative to rooftops (m)
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height of MS relative to rooftops (m)

width of streets (m)
building separation (m)
road orientation with respect to the direct radio path, degrees

If no data on the structure of the buildings and roads are available, the following
default values are recommended, and

number of floors + roof (m), where pitched and
0 (m) flat.

The NLoS path loss is composed of  three terms, viz.,

where

free-space loss
roof-to-street diffraction and scatter loss

multi-screen diffraction loss

The roof-top-to-street diffraction and scatter loss is

where

is an orientation loss.
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The multi-screen diffraction loss is

where

is the shadowing gain (negative loss) for cases when the BS antenna is above
the rooftops. The parameters and depend on the path length, d, and base
station elevation with respect to the rooftops The term accounts for
the increase in path loss when the BS antennas are situated below the roof tops
of adjacent buildings, and is given by

The terms and control the dependency of the multi-screen diffraction loss
on the distance and frequency, respectively, and are given by

The COST231-Walfish-Ikegami model works best for Large
prediction errors can be expected for The model is poor for

because the terms in (2.245) do not consider wave guiding in street
canyons and diffraction at street corners.

5.2.3 STREET MICROCELLS
For ranges less than 500 m and antenna heights less than 20 m, some

empirical measurements have shown that the received signal strength for LoS
propagation along city streets can be described by the two-slope model [161,
149, 175, 360, 268, 345]

where is the transmitted power, k is a constant and d (m) is the distance.
Close into the BS, free space propagation will prevail so that The
parameter g is called the break point and ranges from 150 to 300 m [161,
149, 175, 360]. At larger distances, an inverse-fourth to -eighth power law is
experienced so that b ranges from 2 to 6. This is probably caused by increased
shadowing at the greater distances [161]. The model parameters that were
obtained by Harley [161] are listed in Table 2.7. Xia [366] has demonstrated
that the break-point occurs where the Fresnel zone between the two antennas
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just touches the ground assuming a flat surface. This distance is

where For high frequencies this distance can
be approximated as Notice that the break-point is dependent on
frequency, with the break-point at 1.9 GHz being about twice that for 900 MHz.

Street microcells may also exhibit NLoS propagation when a MS rounds a
street corner as shown in Fig. 2.48. In this case, the average received signal
strength can drop by 25-30 dB over distances as small as 10 m for low antenna
heights in an area with multi-story buildings [51, 324, 207, 238, 286], and by
25-30 dB over distances of 45-50 m for low antenna heights in a region with
only one- or two-story buildings [286]. This phenomenon is called the corner
effect.

Grimlund and Gudmundson [149] have proposed an empirical street corner
path loss model. Their model assumes LoS propagation until the MS reaches a
street corner. The NLoS propagation after rounding a street corner is modeled
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by assuming LoS propagation from an imaginary transmitter that is located at
the street corner having a transmit power equal to the received power at the
street corner from the serving BS. That is, the received signal strength (in dBm)
is given by

where (m) is the distance between the serving BS and the corner. For the
scenario depicted in Fig. 2.48, the received signal strength with this model is
shown in Fig. 2.49. The heavy curves show the average received signal strength
from the two BSs as the MS traverses the dashed path shown in Fig. 2.48. These
curves were obtained by using and
in (2.250), and assuming that at The dotted curves
superimposed on the heavy lines in Fig. 2.49 show the received signal strength
with the combined effects of  path loss, log-normal shadowing, and multipath-
fading. The latter two were obtained by using the simulators described in
Sections (4.1) and (3.2).
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5.3 PATH LOSS IN INDOOR MICROCELLS
Indoor microcellular systems are becoming very important for providing

wireless voice and data communications within the home and work-place. The
characterization of in-building radio propagation is necessary for the effective
deployment of  these systems. In general, the path loss and shadowing charac-
teristics vary greatly from one building to the next. Typical path loss exponents
and shadow standard deviations are provided in Table 2.8 for several different
types of  buildings.

For multistory buildings, the RF attenuation between floors is important for
frequency reuse on different floors of the same building. Measurements have
indicated that the greatest floor loss occurs when the transmitter and receiver
are separated by a single floor. Typically, the floor loss is 15 to 20 dB for
one floor and an additional 6 to 10 dB per floor up to a separation of 4 floors.
For 5 or more floors of separation, the overall floor loss will increase only
a few dB for each additional floor. This effect is thought to be caused by
signals diffracting up the sides of the building and signals scattering off the
neighboring buildings. Also important for the deployment of indoor wireless
systems is the building penetration loss. This loss depends on the frequency
and height of  the building. Turkmani et. al. [323] have shown that the building
penetration losses decrease with increasing frequency, in particular they are
16.4, 11.6, and 7.6 dB at 441 MHz, 896.5 MHz, and 1400 MHz, respectively.
In general the building penetration loss for signals propagating into a building
tends to decrease with height, the reason being that a LoS path is more likely
to exist at increased height. The building penetration loss decreases by about
2 dB per floor from ground level up to about 9 to 15 floors and then increases
again [346]. Windows also have a significant effect on penetration loss. Plate
glass provides an attenuation of about 6 dB, while lead lined glass provides an
attenuation anywhere from 3 to 30 dB.
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APPENDIX 2.A: Derivation of  Equation (2.205)
This Appendix derives an expression for the second moment of a Ricean

random variable in terms of its first moment. A Ricean random variable X has
probability density function

and moments [270]

where is the gamma function, and is the confluent hyperge-
ometric function. The first moment of X is

where is the Rice factor. The second moment of X is

Substituting from (2-2.A.3) into (2-2.A.4) gives

Note that and for

APPENDIX 2.B: Derivation of  Equation (2.222)
From (2.222), the composite distribution for the squared envelope is
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where The mean of the approximate log-normal distribution
is

Assuming that m is an integer, the inner integral becomes [147, 4.352.2]

Then by using the change of  variables we obtain

where is the Euler psi function, and

and is Euler’s constant. Likewise, the second moment of the
approximate log-normal distribution is

Assuming again that m is an integer, the inner integral is [147, 4.358.2]
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leading to

where

is Reimann’s zeta function. Finally, the variance of the approximate log-normal
distribution is

Problems
2.1. Suppose that r(t) is a stationary band-pass random process

Show that the autocorrelation of r(t) is

2.2. Suppose that a vertical monopole antenna is used and the pdf of arriving
plane waves, is given by (2.41). Find the band-pass Doppler power
spectrum

2.3. Determine and plot the (normalized) power spectral densities for
the following cases. Assume 2-D isotropic scattering;

a) A vertical loop antenna in the plane perpendicular to vehicle motion,

b) A vertical loop antenna in the plane of  vehicle motion,
c) A directional antenna of  beamwidth  directed perpendicular to vehicle

motion with (see Fig 2.B.l(a))

d) A directional antenna of  beamwidth directed along vehicle motion
with (see Fig. 2.B.l(b))
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2.4. Consider a 2-D isotropic scattering channel. Show that the psd of the
received envelope is given by (2.65).

2.5. Consider the non-isotropic scattering environment shown in Fig. 2.5.

a) Show that the psd of is given by (2.67).
b) Show that the psd of the received envelope is given by

(2.68).

2.6. Consider a wide-sense stationary zero-mean complex Gaussian random
process having the autocorrelation function

Show that the autocorrelation and autocovariance functions
of the squared-envelope are given by (2.71) and (2.72),
respectively.

2.7. Consider a wide-sense stationary non zero-mean complex Gaussian ran-
dom process where

and and are the means of and respectively.
Show that the autocorrelation and autocovariance functions of  the squared-
envelope are given by (2.76) and (2.79), respectively.

2.8 Establish the equivalence between (2.92) and (2.93).
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2.9. Consider a situation where the received envelope is Rayleigh faded
but the Doppler power spectrum is not symmetrical about

i.e., a form of non-isotropic scattering. Show that the envelope level crossing
rate is given by

where

and the are defined in (2.92) with

2.10. Consider the situation in the Fig. 2.B.2, where the MS employs a direc-
tional antenna with a beam width of Assume a 2-D isotropic scattering
environment.

a) In receiving a radio transmission at 850 MHz, a Doppler frequency of
20 to 60 Hz is observed. What is the beam width of the MS antenna,
and how fast is the MS traveling?

b) Suppose that the MS antenna has a beam width of 13°. What is the
level-crossing rate with respect to the rms envelope level, assuming that
the MS is traveling at a speed of 30 km/h?

2.11. A vehicle experiences 2-D isotropic scattering and receives a Rayleigh
faded 900 MHz signal while traveling at a constant velocity for 10 s. The
average duration of  fades 10 dB below the rms envelope level is 1 ms. How
far does the vehicle travel during the 10 s interval? How many fades is
the envelope expected to undergo that are 10 dB below the rms envelope
level during the 10 s interval? Assume that the local mean remains constant
during travel.

2.12. A vehicle receives a Ricean faded signal where the specular component is
at the frequency and scatter component is due to 2-D isotropic scattering.
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a) Compute the average duration of fades that 10 dB below the rms en-
velope level for and a maximum Doppler frequency of

b) Suppose that data is transmitted using binary modulation at a rate of
1 Mbps, and an envelope level that is 10 dB below the rms envelope
level represents a threshold between “error-free” and “error-prone” con-
ditions. During error-prone conditions, bits are in error half the time.
Assuming that the data is transmitted in 10,000 bit packets, how many
bits errors (on the average) will each transmitted packet contain?

2.13. Show that for wide sense stationary (WSS) channels

That is the channel correlation functions and
have a singular behavior with respect to the Doppler shift variable. What is
the physical interpretation of this property?

2.14. Show that for uncorrelated scattering (US) channels

That is the channel correlation functions and .
have a singular behavior with respect to the time delay variable. What is
the physical interpretation of this property?

2.15. Consider the COST-207 typical urban (TU) and bad urban (BU) power
delay profiles shown in Fig. 2.39 of the text with delays and fractional
powers given in Tab. 2.1.

a) Calculate the average delay,
b) Calculate the rms delay spread,
c) Calculate the approximate values of and
d) If the channel is to be used with a modulation that requires an equalizer

whenever the symbol duration determine the maximum
symbol rate that can be supported without requiring an equalizer.

2.16. The scattering function  for a multipath fading channel is non-
zero for the range of values and Hz.
Furthermore, is uniform in the two variables  and

a) Find numerical values for the following parameters;
1. the average delay, , and rms delay spread,
2. the Doppler spread,
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3. the approximate coherence time,
4. the approximate coherence bandwidth,.

b) Given the answers in part a), what does it mean when the channel is
1. frequency-nonselective
2. slowly fading
3. frequency-selective

2.17. Suppose that the fading gain is modeled as a Markov process with state
equation given by (2.156).

a) What are the probability density functions of the envelope magnitude

and envelope phase

at any epoch k.
b) Derive the discrete autocorrelation function

and discrete crosscorrelation function

2.18. Consider Jakes’ fading simulator shown in Fig. 2.30.

a) With the choice that show that

b) Rederive the time averages in part a) for the choice

2.19. (computer exercise) You are to write a software fading simulator that
uses Jakes’ method and plot typical sample functions of the faded enve-
lope. By scaling and appropriately, generate a Rayleigh faded
envelope having the mean-squared envelope Plot a sample func-
tion of your faded envelope assuming a maximum Doppler frequency of

where T is the simulation step size.

2.20. (computer exercise) In this problem you are to generate Ricean faded
by making appropriate modifications to Jakes’ Rayleigh fading simulator in
Figure 2.30. Assume that the means and of and
respectively, are generated according to Aulin’s model in (2.47) and (2.48).
For and and 16, plot the following
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a) The envelope

b) The wrapped phase

2.21. (computer exercise) This problem uses the fading simulator you devel-
oped in Problem 2.20. We now want to compute an estimate of the mean-
squared envelope from samples of and
where T is the sample spacing in seconds. The estimate is computed by
forming the empirical average

where NT is the window averaging length in seconds. Assuming a constant
velocity, the distance the MS moves (in units of wavelengths) in a time of
NT seconds is

a) For and 16, generate 1000 estimates of the of by using
non-overlapping averaging windows of size

Construct a graph that plots, for each K, the sample variance of the
estimate on the ordinate and the window size on the abscissa.

b) Can you draw any qualitative conclusions from part a)?

Note: Samples of the local mean are often used in handoff algorithms.

2.22. Consider a scattering environment where it is known that no plane waves
arrive from either directly ahead or directly behind the direction of motion.
We are interested in constructing a fading simulator similar to Jakes’ method
to account for this fact.

a) How might you modify Jakes’ method to account for the above situation,
assuming that you only need to generate one faded signal?

b) Assume that the received complex envelope has the form

where is the maximum Doppler frequency, is the random phase
of the nth component, and is the
angle of arrival for the nth component. Following the method used for
deriving Jakes’ fading simulator and assuming that TV/4 is even, show
that can be written in the form
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where
1. What are the values of and - in terms of the phases
2. Determine K so that
3. Assuming that what is the crosscorrelation between

the real and imaginary parts of g(t)? Is this a desirable result for
the simulator?

2.23. As shown in Fig. 2.34, Jakes’ approach can be used to generate M faded
envelopes according to

where K is a normalization constant,

a) What are some of the problems with this technique?
b) It is claimed that this method can generate faded envelopes and

that are almost uncorrelated for arbitrary j and k provided that

for some integer i; otherwise, the correlation between certain pairs of
faded envelopes may be significant. Justify whether this claim true or
false.

2.24. (computer exercise) It is claimed that the modified Jakes’s method in
(2.181) can yield uncorrelated faded envelopes, because the rows of the
Hadamard matrix are orthogonal.

a) By using analytical methods determine whether or not this method can
yield faded envelopes having a crosscorrelation of zero at a lag of zero,
i.e.,

b) Write a software fading simulator to implement the modified Jakes’
method with oscillators.
1. Plot the normalized autocorrelation of defined in (2.175).
2. Choosing two of the faded envelopes at random, plot the normalized

crosscorrelation between and defined in (2.179).

2.25. (computer exercise) In this problem we want to generate variations in
the local mean due to shadowing. The shadows are generated according
to the state equation in (2.207).
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a) Suppose that the simulation step size is s and the MS velocity
is . We want a shadow decorrelation of  0.1 at a distance

b) Using the value of   ξ obtained in part a) and a shadow standard deviation
of plot a graph of against the distance traveled.
Scale your plot so the distance traveled goes from 0 to 100 m.

2.26. The measured path loss at a distance of 10 km in the city of Tokyo is
160 dB. The test parameters used in the experiment were the following:

BS antenna height

MS antenna height

carrier frequency

isotropic BS and MS antennas.

Compare the measured path loss with the predicted path loss from Okumura
and Hata’s model and Lee’s model.

Note: If any model parameters are undefined, then use the default values.

2.27. Consider Fig. 2.B.3 and the following data

The symbol transmission rate is 24300 symbols/s with 2 bits/symbol

The channel bandwidth is 30 kHz

The propagation environment is characterized by an rms delay spread
of

A MS is moving from base station A (BSA) to base station B (BSB). Base
station C (BSC) is a co-channel base station with BSA.

Explain how you would construct a computer simulator to model the re-
ceived signal power at the MS from (BSA) and (BSC), as the MS moves
from BSA to BSB. Clearly state your assumptions and explain the relation-
ship between the propagation characteristics in your model.
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Chapter 3

CO-CHANNEL INTERFERENCE

For cellular radio systems the radio link performance is usually limited by
interference rather than noise and, therefore, the probability of ourage due to co-
channel interference outage, is of primary concern. Since this chapter deals
with co-channel interference there is no need to distinguish between thermal
noise and co-channel interference outages. For the remainder of the chapter, the
probability of outage refers to the probability of co-channel interference outage.
The definition of the outage probability depends on the assumptions made about
the radio receiver and propagation environment. At higher velocities, the radio
receiver can usually average over the fast envelope variations by using coding
and interleaving techniques. In this case, the transmission quality will be
acceptable provided that the average received carrier-to-interference ratio, A,
exceeds a receiver threshold The receiver threshold is determined by
the performance of the radio link in the presence of envelope fading. Once
has been determined, the variations in due to path loss and shadowing will
determine the outage probability. At lower velocities, the radio receiver cannot
average over the fast envelope variations due to the delay constraints imposed by
voice traffic. In this case, the transmission quality will be acceptable provided
that the instantaneous received carrier-to-interference ratio, exceeds another
receiver threshold Once has been specified, variations in due to path
loss, shadowing, and envelope fading, will determine the outage probability.

The effect of co-channel interference on the radio link performance depends
on the ability of the radio receiver to reject co-channel interference. Some of the
more advanced receivers incorporate sophisticated signal processing methods
for the rejection or cancellation of co-channel interference, e.g., equalization

1Note that and are not the same.
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and interference cancellation techniques. In this case, the radio receiver is more
tolerant to co-channel interference and the receiver thresholds and are
reduced. This will reduce the outage probability.

Evaluating the outage probability for the log-normally shadowed signals that
are typically found in cellular frequency reuse systems requires the probability
distribution of the interference power that is accumulated from the sum sev-
eral log-normal signals. Although there is no known exact expression for the
probability distribution for the sum of log-normally random variables, several
approximations have been derived by various authors. All of their approaches
approximate the sum of log-normal random variables by another log-normal
random variable. A method that matches the first two moments of the approxi-
mation has been developed by Fenton [118]. Sometimes Wilkinson is credited
with this method, as in [295]. Here we called it the Fenton-Wilkinson method.
Schwartz and Yeh developed another log-normal approximation that uses the
exact first two moments for the sum of two log-normal random variables [295].
The Schwartz-and-Yeh method generally provides a more accurate approxima-
tion than the Fenton-Wilkinson method but it is more difficult to use. Prasad
has corrected some errors in Schwartz and Yeh’s paper in [264]. Another
log-normal approximation is the cumulants matching approach suggested by
Schleher [293]. With this approach, different log-normal approximations are
applied over different ranges of the composite distribution. A good comparison
of the methods of  Fenton-Wilkinson, Schwartz-and-Yeh, Parley, and Schleher
has been undertaken by Beaulieu, Abu-Dayya, and McLane [28].

The above log-normal approximations have been extensively applied to the
calculation of the probability of outage in cellular systems. For example,
Fenton’s approach has been applied by Nagata and Akaiwa [240], Cox [74],
Muammar and Gupta [235], and Daikoku and Ohdate [75]. Likewise, the
Schwartz-and-Yeh approach has been applied by Yeh and Schwartz [372],
Prasad and Arnbak [264], and Prasad, Kegel, and Arnbak [266].

Current literature also provides a thorough treatment of the probability of
outage when the signals are affected by fading only, including the work of Yao
and Sheikh [369], Muammar [234], and Prasad and Kegel [265]. Section 3.
shows that the probability of outage is sensitive to the Rice factor of  the desired
signal, but it is insensitive to the number of interferers provided that the total
interfering power remains constant. Calculations of the probability of outage
for signals with composite log-normal shadowing and fading have considered
the cases of Rayleigh fading by Linnartz [203], Nakagami fading by Ho and
Stüber [165], and Ricean fading by Austin and Stüber [24]. Sections 4. and 5.
show that shadowing has a more significant effect on the probability of outage
than fading. Furthermore, the probability of outage is dominated by fading
of the desired signal rather than fading of the interfering signals, e.g., with
Ricean fading, the probability of outage is sensitive to the Rice factor of the
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desired signal but is insensitive to the Rice factor of interfering signals. Finally,
all of the above references assume a channel characterized by frequency non-
selective (flat) fading. If the channel exhibits frequency selective fading, then
the same general methodology can be used but the instantaneous carrier-to-
interference ratio, must be appropriately defined. The proper definition
depends on the type of receiver that is employed, e.g., a maximum likelihood
sequence estimation (MLSE) receiver for TDMA systems.

Most of the literature dealing with the probability of outage assumes that the
interfering co-channel signals add noncoherently. The probability of outage
has also been evaluated by Prasad and Kegel [267,265] for the case of coherent
addition of Rayleigh faded co-channel interferers and a Ricean faded desired
signal. The coherent co-channel interferers are assumed to arrive at the receiver
antenna with the same carrier phase. However, as discussed by Prasad and Kegel
[267] and Linnartz [203], it is more realistic to assume noncoherent addition
of co-channel interferers in mobile radio systems because of the scattering
environment. Coherently addition of co-channel interferers generally leads to
pessimistic predictions of the probability of outage.

The remainder of this chapter begins in Section 1. where approximations are
derived for the sum of multiple log-normally shadowed interferers. The various
approximations are compared in terms of their accuracy. Section 2. derives the
probability of outage with multiple log-normal interferers. Section 3. considers
the outage probability for multiple Rayleigh or Ricean faded interferers without
shadowing. Sections 4. and 5. do the same for multiple log-normally shadowed
Nakagami faded interferers, and for multiple log-normally shadowed Ricean
faded interferers, respectively.

1. MULTIPLE LOG-NORMAL INTERFERERS
Consider the sum of log-normal random variables

where the are Gaussian random variables with means and

variances and the are the log-normal random variables.
Unfortunately, there is no known closed form expression for the probability
density function (pdf) of the sum of multiple log-normal random
variables. However, there is a general consensus that the sum of indepen-
dent log-normal random variables can be approximated by another log-normal
random variable with appropriately chosen parameters. That is,
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where is a Gaussian random variable with mean and variance
The problem is to determine and in terms of the and

Several methods have been suggested in the literature to
solve this problem including those by Fenton [118], Schwartz and Yen [295],
and Farley [295]. Each of these methods provides varying degrees of accuracy
over specified ranges of the shadow standard deviation the sum I , and the
number of interferes

1.1 FENTON-WILKINSON METHOD
With the Fenton-Wilkinson method, the mean and variance of

are obtained by matching the first two moments of the sum I with the
first two moments of the approximation To derive the appropriate moments,
it is convenient to use natural logarithms. We write

where and Note that
and The nth moment of the log-normal random vari-

able can be obtained from the moment generating function of the Gaussian
random variable as

To find the appropriate moments for the log-normal approximation we can use
(3.4) and equate the first two moments on both sides of the equation

where For example, suppose that have
means and identical variances Identical variances
are often assumed because the standard deviation of log-normal shadowing is
largely independent of the radio path length [188, 190]. Equating the means
on both sides of (3.5)

gives the result
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Likewise, we can equate the variances on both sides of (3.5) under the assump-
tion that the are independent

giving the result

By squaring each side of (3.7) and dividing each side of resulting equation by
the respective sides of (3.9) we can solve for in terms of the known values
of and . Afterwards, can be obtained from (3.7).
This procedure yields the following solution:

Finally, and
The accuracy of this log-normal approximation can be measured in terms of

how accurately the first two moments of are estimated, and
how well the cumulative distribution function (cdf) of is described by a
Gaussian cdf. It has been reported in [295] that the Fenton-Wilkinson method
breaks down for Unfortunately, for cellular radio applications the
standard deviation of log-normal shadowing typically ranges from 6 to 12 dB.
However, as pointed out in [28], the Fenton-Wilkinson method only breaks
down if one considers the application of the Fenton-Wilkinson method for the
prediction of the first two moments of Moreover, in problems relating
to the co-channel interference outage in cellular radio systems, we are usually
interested in the tails of both the complementary distribution function (cdfc)

and the cdf In this case,
we are interested in the accuracy of the approximation

for large and small values of  x. It will be shown later that the Fenton-Wilkinson
method can approximate the tails of the cdf and cdfc functions with good
accuracy.
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1.2 SCHWARTZ-AND YEH-METHOD
The Schwartz-and-Yeh method [295] uses exact expressions for the first

two moments of the sum of two log-normal random variables. Nesting and
recursion techniques are then used to find exact values for the first two moments
for the sum of log-normal random variables. For example, suppose that

The exact first two moments of  ln             are computed.
We then define as a new Gaussian random variable, let

and again compute the exact first two moments of ln I. Since
the procedure is recursive we only need to detail the Schwartz-and-Yeh method
for the case when

or

where the Gaussian random variables and have means and  and
variances and , respectively.

Define the Gaussian random variable so that

Taking the expectation of both sides of (3.14) and assuming that the approxi-
mation holds with equality gives

The second term in (3.17) is

We now use the power series expansion

where To ensure convergence of the power series and the resulting
series of integrals, the integration in (3.18) is broken into ranges as follows:
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The second integral is obtained by using the identity

After a very long derivation that is detailed in [295],

where

with

The variance can be computed in a similar fashion, resulting in the expression
[295]

where
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with

and

It has been reported in [295] that approximately 40 terms are required in
the infinite summations to achieve four significant digits of accuracy in the
moments. On the next step of the recursion it is important that we let
and otherwise, the procedure fails to converge.

1.3 FARLEY’S METHOD
Consider normal random variables each with mean and variance
 Farley approximated the cdfc of the sum

as

As shown in [28], Farley’s approximation is actually a strict lower bound on
the cdfc. To obtain this result let

and define the two events

{at least one }

the complement of event A . (3.34)

Events A and B are mutually exclusive and partition the sample space. There-
fore,
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The second term in (3.35) is positive for continuous pdfs such as the log-
normal pdf. For example, the event

is a subset of the event B. Under the assumption that the are independent
and identically distributed, the probability of event C is

Therefore, Since the are independent and identically
distributed

Finally, we have the lower bound on the cdfc

or, equivalently, the upper bound on the cdf

1.4 NUMERICAL COMPARISONS
Fig. 3.1 compares the cdf for and log-normal random

variables with the various log-normal approximations. Likewise, Figs. 3.2 -
3.4 provide comparisons of  the various log-normal approximations for the cdfc.
Exact results are also shown that have been obtained by computer simulation.
Observe that the cdfc is approximated quite well for all the methods, but the
best approximation depends on the number of interferers, shadow standard
deviation, and range of distribution. The cdf is approximated less accurately,
especially for log-normal random variables.

2. PROBABILITY OF OUTAGE
Consider the situation shown in Fig. 1.15, where a mobile station (MS) is

at distance from the desired base station (BS) and at distances
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from the first tier of co-channel BSs. For convenience, define
the vector as the set of distances for a particular MS
location. The average received carrier-to-interference ratio as a function of the
vector d is

For the case of a single interferer the sum on the right side of (3.41)
only has one term. Therefore, is Gaussian with mean

and variance For the case of multiple interferers, the second
term is approximated as a Gaussian random variable. We first obtain the
mean and the variance for the log-normal approximation using the

techniques discussed in Section 1.. The mean and variance of
are, respectively,

Then

where we have again shown the dependency of the co-channel interference on
the set of distances. Note that has mean and variance

If there were only one possible choice of serving BS, then the probability of
outage at a particular location is

I

When handoffs are allowed the analysis is more complicated. In this case,
the probability of outage will depend on the handoff algorithm that is employed.
In the simplest case, we can consider soft handoffs where the BS that provides
the most robust link is always used. In this case, an outage occurs only when
no BS can provide a link having a carrier-to-interference ratio that exceeds
In this case, the probability of outage at a particular location is

)
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where M is the number of handoff candidates. The outage can then be calcu-
lated by averaging the probability of outage over the random location of a MS
within a reference cell.

3. MULTIPLE RICEAN/RAYLEIGH INTERFERERS
In microcellular environments, the received signal often consists of a direct

line of sight (LOS) component, or perhaps a specular component, accompanied
by a diffuse component. In this case, the envelope of the received signal
experiences Ricean fading. In the same environment, the co-channel signals
are often assumed to be Rayleigh faded, because a direct LOS between the
co-channel cells is not likely to exist and the propagation path lengths are much
longer. In this section, we calculate the probability of outage for the case of
fading only. The combined effect of shadowing and fading is deferred until
the next section. Let the instantaneous power in the desired signal and the
interfering signals be denoted by and respectively.
Note that where is the squared-envelope. For a specified receiver
threshold the probability of outage is

where The instantaneous received signal power, , has
the non-central chi-square (Ricean fading) distribution in (2.44), while the
instantaneous power of each interferer, has the exponential distribution
(Rayleigh fading) in (2.39).

For the case of a single interferer, the probability of outage reduces to the
simple closed form [369]

where K is the Rice factor of the desired signal, and
If the desired signal is Rayleigh faded, then the probability of

outage can be obtained by setting in (3.50). For the case of multiple
interferers, each with mean power the probability of outage has the closed
form [369]

where This expression is only valid if when
the different interferers have different mean power. If some of
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the interferers have the same mean power, then an appropriate expression for
the probability of outage can be derived in straight forward manner. If all
the interferers have the same mean power, then the total interference power

has the Gamma pdf

The probability of outage can be derived as [369]

Again, if the desired signal is Rayleigh faded, then the probability of outage
with multiple Rayleigh faded interferers can be obtained by setting in
either (3.51) or (3.53), which ever is appropriate. In Fig. 3.5, the probability of
outage is plotted as a function of the carrier-to-interference ratio

for various Rice factors and a single interferer. Observe that the Rice factor of
the desired signal has a significant effect on the probability of outage. Fig. 3.6
plots the probability of outage for and 7 and varying numbers of
interferers. Observe that the number of interferers does not affect the probability
of outage as much as the Rice factor, provided that the total interfering power
remains constant.

4. MULTIPLE LOG-NORMAL NAKAGAMI
INTERFERERS

The probability of outage has been evaluated in the literature for a single
Nakagami interferer [364] and multiple Nakagami interferers [5, 370], in the
absence of  shadowing. Here we analytically formulate the probability of outage
with multiple log-normal Nakagami interferers. For the case when the interfer-
ing signals have the same shadowing and fading statistics, we derive an exact
mathematical expression for the probability of outage. Let the instantaneous
power in the desired signal and the interfering signals be denoted by and

respectively. Again, for a specified receiver threshold
the probability of outage is
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where Since the kth signal is affected by log-normal
shadowing and Nakagami fading, has the composite pdf

Let be the total power from the interfering signals,
and Then the joint pdf of X and Y is

and

It follows that the probability of outage is
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Substituting the Nakagami pdf for and integrating with respect to x gives
the conditional probability [147]

4.1 STATISTICALLY IDENTICAL INTERFERERS
Here we assume statistically identical co-channel interferers so that
and Following Linnartz [203], the integral in

(3.59) can be obtained by using Laplace transform techniques. The Laplace
transform of the pdf pw(y) is

The integral in (3.59) is then equal to the hth derivative of with respect
to s evaluated at the point That is,
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where the last line follows under the assumption of statistically independent
interferes. By using the composite distribution in (3.56) with

Averaging over the log-normal shadowing distribution of the desired signal
gives the final result

Equation (3.63) is an exact expression for shadowed Nakagami fading chan-
nels. When it reduces to the simple expression obtained by
Linnartz [203] for shadowed Rayleigh fading channels. If the path loss associ-
ated with each interferer is the same, then and the product in (3.63)
reduces to taking the power. Let

and use the identity [147]

Observe that G(s) is just a function of the derivatives of F ( s ) , and
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We can obtain G(s) from (3.65) and (3.66), and substitute it into (3.63). Then
by using a change of variables the probability of outage in (3.63) becomes

The integrals in (3.66) and (3.67) can be efficiently computed by using Hermite-
Gauss quadrature integration. Applying the Hermite-Gauss quadrature formula
to (3.66) gives

where are weight factors, are the zeros of the Hermite polynomial
and is the order of the Hermite polynomial. By using this result and

the values in Table 3.1 (listed for convenience) we have

Fig. 3.7 shows the probability of outage as a function of the carrier-to-
interference ratio

Results are plotted for interfering signals and varying degrees of fading
on the desired and interfering signals. Observe that the probability of outage is
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insensitive to changes in the m values for interfering signals. This phenomenon
demonstrates that co-channel interference is dominated by the fading of the
desired signal rather than fading of the interfering signals. Fig. 3.8 shows
the probability of outage for different values of the shadow standard deviation

We can conclude that the number of interferers and the shadow standard
deviation have the most significant effect on the probability of outage.
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5. MULTIPLE LOG-NORMAL RICEAN/RAYLEIGH
INTERFERERS

This section presents an exact method for evaluating the probability of
co-channel interference for Ricean/Rayleigh faded channels with log-normal
shadowing. The results can be applied for a Ricean faded desired signal and
a single

Rayleigh faded interferer, or vice versa. It can also be applied for a Rayleigh
faded desired signal with multiple Ricean or Rayleigh faded interfering signals.
Once again, let the instantaneous power in the desired signal and the
interfering signals be denoted by and respectively. For
a specified receiver threshold the probability of outage is, again,

where and each has either a composite log-normal expo-
nential (Rayleigh fading) distribution or a composite log-normal non-central
chi-square (Ricean fading) distribution. The can
be reordered such that where is
exponentially distributed, the are either exponentially or
non-central chi-square distributed. When the desired signal is Rayleigh faded
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and and Otherwise, when the desired signal
is Ricean faded and a single Rayleigh interferer is present, we observe that

Therefore, using and
the

probability of outage is
Thus, let where The joint pdf of
X and Y is and

Therefore,

Substituting the exponential pdf for and integrating with respect to x
gives the conditional probability

where Following Linnartz [203], the integral in (3.74) can be
simplified by using Laplace transform techniques. Since the
are all independent random variables, pw(y) is the convolution of the densities

of the Hence, (3.74) becomes

where is the Laplace transform of the pdf given by
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where is the Rice factor of the kth signal. Averaging over the shadow
distribution for the desired signal yields the final result

The integrals in (3.76) and (3.77) can be efficiently computed using Hermite-
Gauss quadrature integration, as explained earlier. Corresponding expressions
for Rayleigh fading can be obtained by setting the   in (3.76).

5.1 SINGLE INTERFERER
For a Rayleigh faded desired signal and a Ricean faded interferer, (3.77) can

be used directly with and If we assume the simple path loss
model in (1.6), and define the normalized reuse distance as where and

are the radio path lengths of the desired and interfering signals, respectively,
then the average carrier-to-interference ratio is

The probability of outage is plotted against the normalized reuse distance in
Fig. 3.9, where it is shown to be insensitive to the Rice factor of the interferer.
Likewise, Fig. 3.10 plots the probability of outage against the normalized reuse
distance when the desired signal is Ricean faded and there is a single Rayleigh
faded interferer. Observe the strong dependency of the probability of outage
on the Rice factor of the desired signal.

5.2 MULTIPLE INTERFERERS
For a Rayleigh faded desired signal with multiple Ricean/Rayleigh interfer-

ers, (3.77) can be used directly leading to the same (not shown) result as the
single interferer case; the probability of outage is insensitive to the Rice factors
of the interferers.

For a Ricean faded desired signal with multiple Ricean/Rayleigh interferers,
a different approach must be taken. An exact solution for the case of a Ricean
faded desired signal with multiple Rayleigh interferers has been presented by
Wang and Lea [349]. However, the case of a Rician faded desired signal
with multiple Ricean interferers is still an open problem. One possibility is to
approximate the Rice distribution with a Nakagami distribution as discussed in
Sectionnaka, and use the results of Section 4..
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Problems
3.1. Consider the scenario in Fig. 3.11 which depicts the worst case situation

for the first tier of co-channel interference on the forward channel. Assume
a cluster size of 7 cells, a cell radius of R = 3 km, a path loss exponent of

and carrier-to-interference threshold Ignore the
effect of handoffs and assume that the MS must stay connected to the BS in
the center cell.

a) Using the simple path loss model in (1.6) with
at a shadow standard deviation calculate the
probability of outage in (3.47) by using the Fenton-Wilkinson
method.

b) For what is required threshold such that the probability
of outage is less than 1%?

c) Repeat b) for

3.2. Consider the Fenton-Wilkinson method for approximating the sum of
log-normal random variables. Consider the sum of N log-normal random
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variables
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where the are independent zero-mean Gaussian random variables with
dB. Plot the mean and variance of the approximate

Gaussian random variable as a function of N for

3.3. This problem uses computer simulation to verify the usefulness of the
Schwartz-and-Yeh approximation and the Fenton-Wilkinson approximation
for the sum of two log-normal random variables. Consider the sum of two
log-normal random variables

where the Gaussian random variables and are independent
and identically distributed with zero mean and variance By using the
Schwartz-and-Yeh method, plot the values of and as a function
of the variance Repeat for the Fenton-Wilkinson method. Now obtain
the same results by using computer simulation and compare the analytical
results. What are your conclusions?

3.4. You are asked to design a highway microcell system as shown in Fig. 3.12.
Each cell has length 2R.

a) A BS with an omnidirectional antenna is placed at the center of each
cell. Ignoring shadowing and envelope fading, determine the minimum
reuse factor needed so that the worst case carrier-to-interference ratio,

is at least 17 dB. State whatever assumptions you make.

b) Now suppose that directional antennas are used to divide each cell into
two sectors with boundaries perpendicular to the highway. Repeat part
a).

c) Consider again the sectored cell arrangement in part b). If shadowing
is present with a standard deviation of dB, what is the probability
of outage on a cell boundary? Assume soft handoffs between adjacent
cells.

3.5. Derive equation (3.50).

3.6. Derive equation (3.51).

3.7. Derive equation (3.53).
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3.8. Consider a microcellular environment where a Ricean faded signal is af-
fected by a single Rayleigh faded interferer. Neglect the effect of path loss
and shadowing. Suppose that the transmission quality is deemed accept-
able if both the instantaneous carrier-to-noise ratio and the instantaneous
carrier-to-interference ratio exceed the thresholds, and respectively.
Analogous to (3.53) derive an expression for the probability of outage.



Chapter 4

MODULATED SIGNALS
AND THEIR POWER SPECTRA

Modulation is the process where the message information is embedded into
the radio carrier. Message information can be transmitted in the amplitude,
frequency, or phase of the carrier, or a combination of these, in either analog or
digital form. Most first generation cellular systems such as AMPS use analog
FM, because analog technology was well understood when these systems were
developed. However, the pressing need for greater spectral efficiency lead to
the use of digital modulation techniques in second generation digital cellular
systems.

To achieve high spectral efficiency, modulation schemes for FDMA and
TDMA systems have a high bandwidth efficiency, measured in units of bits
per second per Hertz of bandwidth (bits/s/Hz). As discussed earlier in this
book, the link quality in many wireless systems is limited by co-channel inter-
ference. Hence, modulation schemes must be identified that are both bandwidth
efficient and capable of tolerating high levels of co-channel interference. More
specifically, digital modulation techniques are chosen for FDMA and TDMA
wireless systems that satisfy the following three properties:

Compact Power Density Spectrum: To minimize the effect of adjacent
channel interference, the power radiated into the adjacent band should be
60 to 80 dB below that in the desired band. Hence, modulation techniques
with a narrow main lobe and fast roll-off of side-lobes are needed.

Good Bit Error Rate Performance: A low bit error probability must be
achieved in the presence of fading, Doppler spread, intersymbol interfer-
ence, adjacent and co-channel interference, and thermal noise.

Envelope Properties: Portable and mobile applications typically employ
non-linear (Class-C) power amplifiers to minimize battery drain. Nonlinear
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amplification may degrade the bit error rate performance of modulation
schemes that transmit information in the amplitude of the carrier. Also,
spectral shaping is usually performed prior to up-conversion and non-linear
amplification. To prevent the regrowth of spectral side-lobes during non-
linear amplification, relatively constant envelope modulation schemes are
preferred.

A variety of digital modulation techniques are currently being used in wire-
less communication systems. Two of the more widely used digital modulation
techniques for cellular mobile radio are and GMSK. The former
is used in the North American IS-54 and Japanese PDC and PHS systems, while
the latter is used in the European GSM, DCS 1800, DECT, and CT2 systems.

This book does not treat analog FM in detail and we refer the reader to
other textbooks on the subject, such as those by Haykin [164] and Stremler
[308]. Section 1. begins the chapter with a general characterization of band-
pass modulated signals. Section 2. discusses Nyquist pulse shaping for ISI-
free transmission. Sections 3. through 8. then provide a detailed treatment
of the various linear and nonlinear digital modulations techniques that are
suitable for mobile radio applications, including QAM, PSK,
orthogonal modulation, OFDM, CPM, OMSK, and others. Since bandwidth
efficiency is of great concern in mobile radio systems, Section 9. discusses the
spectral characteristics of digitally modulated signals, beginning with a general
framework followed by specific cases.

1. REPRESENTATION OF BAND-PASS MODULATED
SIGNALS

Band-pass modulation schemes refer to modulation schemes that transmit
information by using carrier modulation. The carrier modulated waveform can
be expressed in the complex envelope form

where

is the complex envelope and is the carrier frequency. For any digital modu-
lation scheme, the complex envelope can be written in the standard form

where A is the amplitude and is the sequence of complex data symbols
that are chosen from a finite alphabet. One data symbol is transmitted every
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T seconds, so that the baud rate is R = 1/T symbols/s. The function
is an equivalent shaping function whose exact form depends on the type of
modulation that is employed. For example, with binary phase shift keying
(BPSK)

where

data symbol transmitted at epoch n
unit amplitude rectangular pulse of length T

and where u(t) is the unit step function. Many other types of modulation
are considered later in this chapter, where information is transmitted in the
amplitude, phase, and/or frequency of the carrier. In each case, the modulated
signal will be represented in the standard form in (4.3) so as to simplify the
task of finding its power spectral density (psd).

By expanding (4.1), the band-pass waveform can also be expressed in the
quadrature form

The waveforms and are known as the quadrature components s(t),
because they amplitude modulate the phase quadrature carrier components
cos and sin

Finally s(t) can be expressed in the envelope-phase form

where

The three representations in (4.1), (4.6), and (4.7) are equivalent and will be
used interchangeably.

1.1 VECTOR SPACE REPRESENTATIONS
For digital modulation schemes, the bandpass signal that is transmitted

at each baud interval will belong to a finite set of finite energy waveforms
with a few exceptions. Let denote the set of such
waveforms, where M is the size of the set. The corresponding complex
envelopes are denoted by For now we will work
with the complex envelopes.
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An N-dimensional complex vector space is defined by the set of complex
orthonormal basis functions where

and and 0 otherwise. Each waveform can be projected
onto the set of basis functions to yield a signal vector

where

If the basis functions are chosen appropriately, then the can be expressed
exactly in terms of the basis functions. That is,

A systematic procedure for constructing an appropriate set of basis functions
is now described.

1.2 GRAM-SCHMIDT PROCEDURE
Define the inner product between two waveforms u(t) and v(t) as

and define the norm of the waveform u(t) as

Note that the squared-norm

is the energy contained in u(t).
Given the finite set of finite energy signals  an

orthonormal set of basis functions can be con-
structed according to the following algorithm:

1: Set and define
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2: Set and define

3: Set and define

Repeat Step 3 until all the have been used. If one or more of the above
steps yields omit these from consideration. In the end a set of

complex orthonormal basis functions
is obtained. The dimensionality of the complex vector space N equals M
if and only if the set of waveforms is linearly
independent, i.e., none of the waveforms is a linear combination of the others.
Example 4.1

Construct and orthonormal basis set for the set of waveforms shown in
Fig. 4.1.

1: Set Then

2: Set where
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Then

3: Set where

Then

4: Set But
so ignore Step 4.

The set of basis function is shown in Fig. 4.2.
The can be expressed as a linear combination of the basis functions,

according to (4.13), and the corresponding signal vectors in (4.11) can be
constructed. For the above example, the signal vectors are
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These four signal vectors can be plotted in a 3-D signal space, as shown in
Fig. 4.3.

1.3 SIGNAL ENERGY AND CORRELATIONS
Define the inner product between two length-N vectors u and v as

and the norm of the vector u as

Consider the set of band-pass waveforms

The energy in the waveform is
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Using the relation in (4.22) along with the identity we
obtain

where The above approximation is accurate when
the bandwidth of the complex envelope is much less than the carrier frequency
so that the double frequency term can be neglected. For digital band-pass
modulated signals with baud rate this condition is equivalent to

By using the Gram-Schmidt procedure, the can be expressed in terms
of a set of N (real) basis functions where N is
the dimension of the real vector space.

yielding the corresponding signal vectors

It follows the energy in is

where we used the orthonormal property of the basis functions in (4.10). Notice
that the energy in is equal to the squared norm of the corresponding signal
vector

Likewise, the can be expressed in terms of a set of N complex basis
functions where N is the dimension of the com-
plex vector space. Note that the dimensionality of the vector space and the set
of basis functions for the and the are different, but related. The
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energy in is

Hence

The correlation between the waveforms and is defined as

Finally, the squared Euclidean distance between and is

2. NYQUIST PULSE SHAPING
Consider a modulation scheme where the complex envelope has the form

where p(t) is a shaping pulse, is the complex data symbol sequence, and
T is the baud period. Now suppose the complex envelope is sampled every T
seconds to yield the sample sequence

where is a timing offset assumed to lie in the interval [0, T). First consider
the case when the effect of  having will be dealt with later. When
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where is the sampled pulse. The first term in (4.34) is equal
to the data symbol transmitted at the kth baud epoch, scaled by the factor p0.
The second term is the contribution of all other data symbols on the sample
This term is called intersymbol interference (ISI).. To avoid the appearance
of ISI, the sampled pulse response must satisfy the condition

where is the Dirac delta function defined by

In this case

Therefore, to avoid ISI the pulse p(t) must have equally spaced zero crossings
at intervals of T seconds. This requirement is known as the (first) Nyquist
criterion.

We now derive an equivalent frequency domain requirement by showing that
the pulse p(t) satisfies the condition if and only if

The term is called the folded spectrum. To avoid ISI, the folded
spectrum must be a constant value or in other words “flat.” Using the Fourier
transform, we can write

It follows that and are a Fourier series pair, i.e.,
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Now suppose that the condition in (4.38) is satisfied. Then
and from the last line of (4.39)

Conversely, suppose that the condition is satisfied. Then from
(4.40)

The requirement on the folded spectrum in (4.38) allows us to design pulses
in the frequency domain that will yield zero ISI. First consider the pulse

where

This pulse yields a flat folded spectrum. In the time domain

This pulse achieves the first Nyquist criterion because it has equally spaced
zero crossings at T second intervals. Furthermore, from the requirement of a
flat folded spectrum, it achieves zero ISI while occupying the smallest possible
bandwidth. Hence, it is called an ideal Nyquist pulse. Sometimes the edge
frequency is called the Nyquist frequency.

We now examine the effect of the sampling or timing offset with the aid
of the ideal Nyquist pulse. With a timing offset

In this case, the ISI term is not zero. Furthermore, with the ideal Nyquist
pulse the effect of the timing offset is exasperated because the ISI term is not
absolutely summable as shown in Problem 4.1. This is caused by the slow time
decay of the ideal Nyquist pulse, in this case 1/t. To make our communication
systems more robust to timing errors, we would like to construct pulses that
satisfy the Nyquist criterion but decay faster with time.

To construct other Nyquist pulses, we start with the ideal Nyquist pulse,
shown in Fig. 4.4(a). To the pulse we add a “transmittence”

function as shown in Fig. 4.4(b). The critical requirement is that the
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transmittence function have skew symmetry about the Nyquist frequency 1/2T.
Any function with skew symmetry will do. The resulting Nyquist pulse P(f)
is shown in Fig. 4.4(c). Clearly, the pulse has a flat folded spectrum. The
corresponding time domain pulse p(t) can be obtained by taking the inverse
Fourier transform of P(f). Notice that the pulse P(f) takes up additional
bandwidth in exchange for the faster decay of the corresponding time domain
pulse p(t).

Raised cosine and root raised cosine pulse shaping:. The raised cosine
pulse is defined by

The bandwidth of the raised cosine pulse is The roll-off factor
controls the bandwidth that is in excess of the Nyquist bandwidth.

Taking the inverse Fourier transform of P(f) gives the time domain pulse
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For reduces to the sinc pulse in (4.45). Notice that the raised cosine
pulse decays as a function of

As discussed in Chapter 5, the pulse shaping is usually divided between the
transmitter and receiver filters. Very often the receiver filter is “matched”
to the transmitter filter in which case  The overall
pulse consisting of the cascade of the transmitter and receiver filters is

where * denotes the operation of convolution. The equivalent
condition in the frequency domain is In this case, the
transmitter filter has transfer function If the overall pulse
p(t) is a raised cosine pulse with the transfer function P(f) in (4.47), then the
pulse is said to be a root raised cosine pulse. Taking the inverse Fourier
transform of  gives the corresponding time domain root raised cosine
pulse

For reduces to the sinc pulse

Raised cosine and root raised cosine pulses corresponding to , are
shown in Fig. 4.5. Strictly speaking the pulses in (4.49) and (4.5) are non-
causal. Therefore, in practice a truncated time domain pulse must be used. For
example, in Fig. 4.5 the pulses are truncated to 6T and time shifted by 3T to
yield causal pulses. Later we will look at the effect of the pulse truncation
length. Notice that the raised cosine pulse is a Nyquist pulse with equally
spaced zero crossings at the baud period T, while the root raised cosine pulse
is not.

3. QUADRATURE AMPLITUDE MODULATION
(QAM)

With QAM, the complex envelope is

where

is the  amplitude shaping pulse, and is the complex
data symbol that is transmitted at epoch n. It is apparent that both the amplitude
and the phase of a QAM signal depend on the complex symbol. QAM has
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the advantage of high bandwidth efficiency, but amplifier nonlinearities will
degrade its performance due to the non-constant envelope.

The QAM waveforms that are transmitted at each baud epoch have complex
envelopes

To represent the in terms of a set of signal vectors,
the required basis function is

where

is the energy in the band-pass pulse Using this basis function

and the QAM complex signal vectors are1

1Since only one basis function is needed, we use the scalar rather than the vector
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QAM signal constellations:. A variety of QAM signal constellations may
be constructed. Square QAM constellations can be constructed when M is
a power of 4 by choosing and

The complex signal-space diagram for the square 4-, 16, and 64-
QAM constellations is shown in Fig. 4.6. Notice that the minimum Euclidean
distance between any two signal vectors is

When M is not a power of 4, the signal constellation is not square. Usually,
the constellation is given the shape of a cross to minimize the average energy
in the constellation for a given minimum Euclidean distance between signal
vectors. Examples of the QAM “cross constellations” are shown in Fig. 4.7.

Other types of QAM constellations are possible as well. Fig. 4.8 shows two
different 8-QAM constellations.

PAM signal constellations:. Pulse amplitude modulation (PAM) can be
viewed as a special case of QAM, where information is transmitted only in
the cosine component of the carrier. With our formulation, this can be ac-
complished by using real data symbols belonging to the set

The PAM complex signal vectors are

Typical 4- and 8-PAM signal constellations are shown in Fig. 4.9.
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4. PHASE SHIFT KEYING (PSK)
The complex envelope of a PSK signal has the form

where

is the amplitude shaping pulse. The carrier phase takes on values
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where is an arbitrary constant phase, and the data symbols are defined as
with M being the alphabet size.

The PSK waveforms that are transmitted at each baud epoch have complex
envelopes

Using the basis function in (4.54)

The PSK complex signal vectors are

The complex signal-space diagram for 8-PSK (with ) is shown in
Fig. 4.10. Notice that all PSK waveforms have the same energy

4.1 OFFSET QPSK (OQSPK)
QPSK or 4-PSK is equivalent to 4-QAM, where and

The QPSK signal can have either
or phase shifts from one baud interval to the next. With offset QPSK
(OQPSK), the complex envelope is

where

and is the bit interval. With OQPSK signals the possibility of 180°
phase shifts is eliminated. In fact, the phase can change by only every
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seconds. With OQPSK, the amplitude shaping pulse is often chosen
to be the root raised cosine pulse in (4.49).

The signal-space diagrams for QPSK and OQPSK are shown in Fig. 4.11,
where is the symbol energy. The dotted lines in Fig. 4.11 show the allowable
phase transitions. The exact phase trajectories depend on the amplitude shaping
function. Note that the phase trajectories do not pass through the origin. This
property reduces the peak-to-average ratio of the complex envelope, making the
OQPSK signal less sensitive to amplifier nonlinearities than the QPSK signal.
It also reduces the dynamic range that is required of the power amplifier.
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4.2
QPSK transmits 2 bits/baud by transmitting sinusoidal pulses having one

of 4 absolute carrier phases. also transmits 2 bits/baud, but
information is encoded into the differential carrier phase, and sinusoidal pulses
having one of 8 absolute carrier phases are transmitted at each baud epoch.

Let be the absolute carrier phase for the nth data symbol, and let
be the differential carrier phase. With  the differential

phase is related to the quaternary data sequence through
the mapping

Notice that the phase differences are The complex envelope
of the signal is

)

where

The summation in the exponent represents the accumulated carrier phase, while
the last term is the phase change due to the nth information symbol. Assuming
that the absolute carrier phase during the even and odd baud intervals
belongs to the sets and respec-
tively, or vice versa. With -DQPSK the amplitude shaping pulse is
often chosen to be the root raised cosine pulse in (4.49).

The signal-space diagrams for QPSK and are shown in Fig. 4.12,
where is the symbol energy. The dotted lines in Fig. 4.12 show the allow-
able phase transitions. The phaser diagram for with root raised
cosine amplitude pulse shaping is shown in Fig. 4.13. Note that the phase
trajectories do not pass through the origin. Like OQPSK, this property reduces
the peak-to-average ratio of the complex envelope, making the
signal less sensitive to amplifier nonlinearities. Finally, we observe that unlink
QPSK the carrier phase of changes by radians
during every baud interval. This property makes symbol synchronization is
easier with as compared to QPSK.
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3

5. ORTHOGONAL MODULATION AND VARIANTS
Orthogonal modulation schemes transmit information by using a set of wave-

forms, that are orthogonal in time. Many different types of or-
thogonal waveforms can be constructed and here we consider a few methods.



Modulated Signals and Their Power Spectra 173

Orthogonal FSK modulation:. Orthogonal M-ary frequency shift keying
(MFSK) modulation uses a set of M waveforms that have different frequencies.
The MFSK complex envelope is

where

and The MFSK waveforms that are transmitted
at each baud epoch have complex envelopes

By choosing the frequency separation the
1 are orthogonal (see Problem 4.1). Since the are orthogonal, the MFSK
signal vectors have dimension The appropriate set of basis functions
is

where

is the energy in the band-pass pulse The MFSK complex
signal vectors are

where is a vector of length M with a “1” in the mth
co-ordinate and zeros elsewhere.

Orthogonal modulation with binary orthogonal codes:. Another type of
orthogonal modulation starts with the rows of a Hadamard matrix The
Hadamard matrix is generated recursively according to
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where For example,

Notice that the rows of the Hadamard matrix are mutually orthogonal. A set of
equal energy M orthogonal waveforms can be constructed according to

where is the kth co-ordinate in the mth row of the Hadamard matrix,
is the symbol duration, and is a shaping pulse either having

duration or satisfying Nyquist’s first criterion with equally spaced zero
crossings at intervals of seconds. The energy in the waveform  is

To construct signal vectors, the appropriate choice of basis function is

and once again

Biorthogonal signals:. A set of M biorthogonal signals can be easily con-
structed from a set of M/2 orthogonal signals. The M-ary biorthogonal
waveforms have complex signal vectors

where the vectors have length M/2. By using an appropriate set of basis
functions, for example in (4.73) or (4.79), the complex envelopes of the signal
waveforms can be easily constructed.
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Orthogonal multipulse modulation:. With binary orthogonal codes only
bits are transmitted at each baud epoch. A more bandwidth

efficient scheme can be obtained by using the rows of the Hadamard matrix
to define N orthogonal amplitude shaping pulses

With orthogonal multipulse modulation, a block of N serial data symbols,
each of duration is first converted into a block of N parallel data symbols.
The block of N information symbols is transmitted in parallel by using the
N orthogonal amplitude shaping pulses in (4.82). The transmitted complex
envelope is

where

and is the block of N data symbols
transmitted at epoch n.

6. ORTHOGONAL FREQUENCY DIVISION
MULTIPLEXING (OFDM)

Orthogonal frequency division multiplexing (OFDM) is a modulation tech-
nique that has been suggested for use in cellular radio [54, 39], digital audio
broadcasting [119], digital video broadcasting, and wireless LAN systems such
as IEEE 802.11, HIPERLAN, and MMAC [333]. OFDM is a block modulation
scheme where data symbols are transmitted in parallel by employing a (large)
number of orthogonal sub-carriers. A block of N serial data symbols, each of
duration is converted into a block of N parallel data symbols, each with
duration The N parallel data symbols modulate N sub-carriers that
are spaced 1/T Hz apart.

The complex envelope of an OFDM signal is given by

where
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where n is the block index, N is the block length,
is the data symbol block at epoch n, and The frequency offset

just ensures that band-pass signal is centered about the carrier frequency.
The data symbols are often chosen from a QAM or PSK constellation,

although any 2-D signal constellation can be used. If a rectangular shaping
pulse is chosen, then the 1/T Hz frequency separation of the
sub-carriers ensures that they are orthogonal regardless of the random phases
that are imparted due to data modulation (see Problem 4.4). As we will see
later, other choices for may result in a more compact psd, but the error
rate performance will degrade due to the loss of sub-channel orthogonality.

The OFDM system typically operates over a non-ideal channel with transfer
function T(f), such that the amplitude response is not constant across
the channel bandwidth W. The power spectral density of the additive Gaussian
noise may not be constant either. Shannon [299] proved that the
capacity of a non-ideal additive Gaussian noise channel is achieved when the
transmitted power is adjusted across the bandwidth W according to

where K is a constant chosen to satisfy the constraint

and is the average available power to the transmitter. One method to
achieve capacity is to divide the bandwidth W into N sub-bands of width

where is chosen small enough so that is
approximately constant within each sub-band. The signals in each sub-band
may then be transmitted with the optimum power allocation , while being
individually coded to achieve capacity.

If the number of sub-carriers N is chosen so that is essentially
constant across each sub-band, then no equalization is necessary because the
ISI is negligible. Viewing the problem another way, if the block length N
is chosen so that where is the length of the channel
impulse response, then the effect of the intersymbol interference (ISI) is greatly
reduced. To eliminate the ISI altogether at the expense of a small decrease in
capacity, a guard interval of length can be inserted between
successively modulated OFDM blocks.

It is clear from (4.86) that the data symbols for fixed n modulate
the nth sub-carrier. From (4.87), the transmitter power should be high when
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is large and small when is small. In a practical
system with a target bit error rate, this implies the use of a larger signal
constellation in sub-bands where is larger. The technique of
using different sized signal constellations on the different OFDM sub-carriers
is sometimes called discrete multitone modulation (DMT).

6.1 MULTIRESOLUTION MODULATION
Multiresolution modulation (MRM) refers to a class of modulation tech-

niques where multiple classes of bit streams are transmitted simultaneously
that differ in their rates and error probabilities. MRM is easy to implement
in OFDM schemes by using multiplexed, interleaved, and embedded signal
constellations. Multiplexed MRM divides the sub-carriers into contiguous
blocks, and a different size signal constellation and transmit power is used
in each block. A larger signal constellation will transmit more bits/baud but
also require a higher signal-to-noise ratio to achieve a given error probability.
Interleaved MRM interleaves the different classes of bit streams onto the sub-
carriers in a cyclic fashion, i.e., if there are K different classes of bit streams,
then the sub-carriers are assigned to the bit stream.
Each class of bit stream can be transmitted by using a different sized signal
constellation and power level.

Embedded MRM is more subtle and relies upon the use of asymmetric
signal constellations. Fig. 4.14 shows an example of a 16-QAM MRM signal
constellation, that can be used to transmit two different classes of bit streams,
called low priority (LP) and high priority (HP). In Fig. 4.14, two HP bits are
used to select the quadrant of the transmitted signal point, while two LP bits are
used to select the signal point within the selected quadrant. In order to control
the relative error probability between the two priorities a parameter
is used, where is the distance between LP symbols and is the distance
between centroids in the HP symbols. In general, should be less than 0.5,
since the MRM constellation becomes symmetric 16-QAM at As
becomes smaller, more power is allocated to the HP bits and, hence, they are
received with a smaller error probability.

6.2 FFT-BASED OFDM SYSTEM
A key advantage of using OFDM is that the modulation and demodulation

can be achieved in the discrete-domain by using a discrete Fourier transform
(DFT). The fast Fourier transform (FFT) algorithm efficiently implements the
DFT.

Consider block in (4.86) and ignore the frequency offset
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Further assume that Then the complex envelope has the form2

Suppose the complex envelope is sampled at epochs to yield the
sequence

Notice that the vector is just the inverse DFT (IDFT) of
the vector After taking the IDFT, the sample sequence

can be passed through a D/A converter and carrier modulated.
When the OFDM modulator is implemented as using an IFFT algorithm, the

amplitude shaping pulse is no longer the ideal rectangular pulse
Rather, the pulse is generated by using a discrete-time approximation to the
rectangular pulse. To obtain this pulse, we pass the rectangular impulse train

2For the remainder of our discussion we remove the block index 0.
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through an ideal low-pass filter with impulse response

The gives the amplitude shaping pulse

which is plotted in Fig. 4.15. Notice that the pulse is non-causal. As discussed
in Section 9.6 this has some interesting implications for the transmitted power
spectrum.

Another key advantage of OFDM is the ease by which the effects of ISI can
be mitigated. A guard interval consisting of a cyclic prefix or suffix of length G
can be appended to the sequence X. Assuming a cyclic suffix, the transmitted
sequence with guard interval is

where G is the length of the guard interval in samples, and is the residue
of n modulo N. To avoid a reduction in data rate, the baud duration with guard
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interval is The overall OFDM baseband modulator simply
consists of an IFFT circuit to implement the IDFT followed by a D/A converter,
as shown in Fig. 4.16.

The combination of the D/A converter, waveform channel anti alias-
ing filter, and A/D converter yields an equivalent discrete-time channel with
sampled impulse response where is the length of the channel
impulse response. The discrete-time convolution of the transmitted sequence

with the discrete-time channel produces the received sequence
where

Note that for our present discussion we have neglected the effects of noise.
The length of the guard interval, G, is assumed to equal or exceed the channel
length, L.

When a block is received, the first samples are assumed to be
corrupted by ISI from the previous block. The ISI is removed by replacing
these samples with the cyclic suffix according to

This operation is illustrated in Fig. 4.17.
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As shown in Fig. 4.18, the OFDM demodulator then performs an FFT on
the vector The demodulated sequence is

where

Notice that is equal to multiplied by the equivalent complex channel
gain Hence, the ISI due to the channel has been completely removed. When
noise is present, then the must be used to make data symbol decisions. This
is the purpose of the serial metric computer in Fig. 4.18. The metric computer
will be discussed further in Chapter 5.
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7. CONTINUOUS PHASE MODULATION (CPM)
Continuous phase modulation (CPM) refers to a broad class of frequency

modulation techniques where the carrier phase varies in a continuous manner.
A comprehensive treatment of CPM is provided in Anderson et. al. [12].
CPM schemes are attractive because they have constant envelope and excellent
spectral characteristics, i.e., a narrow main lobe and fast roll-off of sidelobes.
The complex envelope of a general CPM waveform has the form

where A is the amplitude, is initial carrier phase at  and

The term is called the excess phase. In (4.101), the symbols are defined
as follows:

is the data symbol sequence and T is the baud period. The data
symbols are chosen from the alphabet where
M is the modulation alphabet size.

is the sequence of modulation indices. When the modulation
index is fixed for all symbols. With multi-h CPM, the sequence
is chosen in a cyclic fashion from set of H modulation
indices. That is,

is the frequency shaping function, that is zero for t
and normalized to have an area equal to 1/2. A full response CPM has

while partial response CPM has Some possible frequency
shaping pulses are shown in Table 4.1. A more compact power density spec-
trum is obtained by using frequency shaping functions having continuous
higher-order derivatives, such as the raised cosine pulse in Table 4.1.

An infinite variety of CPM signals can be generated by choosing different
frequency shaping pulses, modulation indices, and modulation alphabet sizes.

It is useful to define the phase shaping function, as
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7.1 FULL RESPONSE CPM
Consider a full response CPM signal with a single modulation index,

Within the time interval the excess phase is

The first term in (4.103) represents the accumulated excess phase up to time
nT, while the second term represents the excess phase increment for t within
the interval Note that the phase is continuous so long as the
frequency shaping function does not contain impulses, which accounts
for all practical cases.

Since (4.103) represents the phase within the interval the
corresponding complex envelopes for all such intervals can be concatenated
together to write the full response CPM complex envelope as

where

where we have assumed an initial phase
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Continuous phase frequency shift keying (CPFSK) is a special type of full
response CPM obtained by using the rectangular frequency shaping function
LREC with For CPFSK

CPM signals can be visualized by sketching the evolution of the excess phase
for all possible data sequences. This plot is called a phase tree, and a

typical phase tree is shown in Fig. 4.19 for binary CPFSK. Since the CPFSK
frequency shaping function is rectangular, the phase trajectories are linear as
suggested by (4.106). In each baud interval, the phase increases by if the
data symbol is +1 and decreases by if the data symbol is –1.

7.1.1 MINIMUM SHIFT KEYING (MSK)
Minimum shift keying (MSK) is a special case of binary CPFSK, with

modulation index The MSK bandpass signal is
where Assuming that the phase
within time interval can be obtained from (4.103) as

The MSK signal can be described in terms of the phase tree in shown in
Fig. 4.19 with At the end of each symbol interval the excess phase
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takes on values that are integer multiples of Since excess phases that
differ by integer multiples of are indistinguishable, the values taken by
at the end of each symbol interval reduced modulo belong to the finite set

In this fashion, the phase tree collapses into the phase trellis
shown in Fig. 4.20.

Consider the MSK band-pass waveform in the interval given
by

Observe that the MSK signal has one of two possible frequencies

and

The difference between these frequencies is This
is the minimum frequency separation to ensure orthogonality between two
co-phased sinusoids of duration T (see Problem 4.4) and, hence, the name
minimum shift keying.

Another interesting form for the MSK signal can be obtained by starting
with (4.104) and (4.105). After a lengthy derivation which we omit here, we
can write the MSK complex envelope as

where
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and

Note that and are independent binary symbol sequences that take
on elements from the set and the half sinusoid amplitude shaping
pulse has duration 2T. Notice that the information symbols and

are transmitted on the quadrature branches with an offset of T seconds.
It follows that MSK is equivalent to OQPSK with a half-sinusoid amplitude
shaping pulse. This property can be exploited in practice to generate and detect
MSK signals.

8. PARTIAL RESPONSE CPM
Partial response CPM signals have a frequency shaping pulse with

duration LT where Partial response CPM signals have better spectral
characteristics than full response CPM signals, i.e., a narrower main lobe and
faster roll-off of side lobes.

The partial response frequency shaping function can be written as

where

Likewise, for the phase shaping function

where

Note that
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and

An equivalent frequency shaping function of duration T can be derived by
noting that the baseband modulating signal has the form

It follows that

where

and

Likewise, an equivalent phase shaping function of duration T can be defined as

Therefore, the partial response shaping functions and can been
replaced by equivalent shaping functions and of duration
T whose value depends on the current data symbol and the past data
symbols.
Example 4.2 LREC Frequency Shaping Function

For an LREC frequency shaping function

Hence,

where
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Therefore,

Example 4.3 LRC Frequency Shaping Function
For an LRC frequency shaping function

Hence,

where

It follows from the above development that the complex envelope of a partial
response CPM signal can be written in the standard form

where

and we have assumed an initial phase The excess phase over the
interval is

where

is the accumulated phase state. During the interval the excess
phase depends on the data symbol the previous data symbols,
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and the accumulated phase state . The state of
the CPM signal at time is defined by the L-tuple

Since the vector can take on values, the
number of states equals times the number of values that can take on.

The modulation index is often restricted to be a rational number,
where m and p are integers that have no common factors. This constraint
ensures that the number of phase states is finite which required for the imple-
mentation of some types of CPM receivers. If m is even, then

while if m is odd

Hence, there are p phase states for even m, while there are 2p phase states for
odd m. In conclusion, the number of CPM states is

For example, if and  then

and the number of states is 32.
CPM signals cannot be described in terms of a signal-space diagram, like

QAM and PSK. However, the CPM signal can be described in terms of the
trajectories from one phase state to another. Figs. 4.22 and 4.21 show the phase
state diagrams for MSK and binary CPM with respectively. Since
binary modulation is used, the phase trajectories are only allowed to adjacent
phase states as shown by the dotted lines in the figures.

8.1 GAUSSIAN MINIMUM SHIFT KEYING (GMSK)
It will be shown in Section 9. that MSK has all the desirable attributes for

mobile radio systems, except for a compact psd. This can be alleviated by
low-pass filtering the modulating signal
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prior to modulation, as shown in Fig. 4.23. Such filtering removes the higher
frequency components in x(t) and results in a more compact psd.

GMSK is a special type of partial response CPM that uses a low-pass pre-
modulation filter having the transfer function
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where B is the 3 dB bandwidth of the filter. It is apparent that H(f) is
bell shaped about hence the name Gaussian MSK. Transmitting the
rectangular pulse

through this filter yields the frequency shaping pulse

where

It is not difficult to show that the total pulse area is and,
therefore, the total contribution to the excess phase for each data symbol is

The excess phase change over the time interval from to is

where

The first term in (4.142) is the desired term, and the second term is the inter-
symbol interference (ISI) introduced by the premodulation filter.

Fig. 4.24 plots a GMSK frequency shaping pulse (truncated to 5T and time
shifted by 2.5T) for various normalized filter bandwidths BT. Because the
frequency shaping pulse has a duration greater than T, ISI is introduced. As
BT decreases, the ISI increases. Thus, while a smaller value of BT results in
a more compact power density spectrum, the induced ISI will degrade the bit
error rate performance. This leads to a tradeoff in the choice of BT. Some
studies have indicated that provides a good tradeoff for mobile
radio systems [239].
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8.2 LINEARIZED GMSK (LGMSK)
GMSK is a not linear modulation scheme. A linearized GMSK (LGMSK)

signal is useful because it simplifies signal generation, receiver algorithms, and
performance analysis. Here we derive a simple and accurate linear approxi-
mation to GMSK in the discrete-time domain, from which a continuous time
GMSK signal can be generated with a D/A converter.

The GMSK phase shaping function is the integral of the frequency shaping
function as defined in (4.102). Using integration by parts we can show that

where

Since the phase shaping pulse is strictly non-causal, it must be approx-
imated in practice by using a truncated and time shifted version. Here we
consider the time shifted pulse

The phase shaping pulse is shown in Fig. 4.25.
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Suppose that the data symbol sequence    is differentially encoded to
yield the sequence

The sequence is then applied to the GMSK modulator to produce the
complex envelope

Now observe from Fig. 4.26 that and We
now sample the complex envelope with a sample spacing of J/T to give
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By using the fact that cos(x) is even function and sin(x) is odd function, and
the cosine and sine terms can be rewritten as

Since the sampled signal reduces to

Finally, we can eliminate the nonlinear terms, since they are much smaller than
the others. This leads to the LGMSK complex envelope

The sampled LGMSK shaping pulse can now be obtained from the approximate
sampled complex envelope in (4.152). Assuming that we have the
following:
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Fig. 4.26 plots the interpolated LGMSK pulse, Just as MSK is equivalent
to OQPSK with a half-sinusoid shaping pulse, LGMSK is equivalent to OQPSK
with the shaping pulse

8.3 TAMED FREQUENCY MODULATION (TFM)
Tamed frequency modulation (TFM) is a special type of partial response

binary CPM that was introduced by Jager and Dekker [80]. To define TFM
signals, recall that the excess phase for MSK obeys the difference equation

For TFM, the excess phase trajectory is smoothed by using the partial response
condition

The maximum excess phase change over any bit interval is equal to To
complete the definition of the TFM signal, an appropriate premodulation filter
must be defined. If the premodulation filter has impulse response then
the excess phase can be written as
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where

The excess phase change over the time interval is

Expanding (4.155) in more detail gives

Comparing (4.158) and (4.159) gives the condition

From the definition of in (4.157) the above equation leads to

One way of  obtaining is to use a pulse that satisfies Nyquist’s third
criterion [248, 259]

and generate by using scaling and delay operations through the filter
shown in Fig. 4.27. The transfer function of this filter is

The overall pulse has the form
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The filter S(f) ensures that the phase constraint in (4.155) is satisfied.
However, HN(f) determines the shape of the phase trajectories and, hence,
can influence the TFM power density spectrum. In general, has the
form

where is the Fourier transform of a pulse that satisfies Nyquist’s first
criterion [248, 259]. One example is the raised cosine pulse defined
in (4.47). Consider, for example, the ideal Nyquist pulse (raised cosine pulse
with )

Using (4.164)–(4.166) gives

The corresponding frequency shaping pulse is plotted in Fig. 4.28.
Note the close similarity to the GMSK pulse in Fig. 4.24.

Generalized tamed frequency modulation (GTFM) is an extension of
TFM where the phase difference has the form

The constants a and b satisfy the condition so that the maximum
change in during one symbol period is restricted to A large class
of signals can be constructed by varying the value of b and by varying the pulse
response TFM is a special case of GTFM where
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9. POWER SPECTRAL DENSITIES OF DIGITALLY
MODULATED SIGNALS

A digitally modulated band-pass signal can be written in the generic form

where is a random phase uniformly distributed over Modulated
signals are not wide sense stationary, but belong to a class of random processes
that are cyclostationary. The autocorrelation function of s(t) is
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To proceed further, we note that

where denotes the ensemble average over the random carrier phase.
Using this result,

Finally, the power density spectrum is the Fourier transform of i.e.,

where is the power density spectrum of the complex envelope
Observe that is real, even though and are complex; this
property follows from the fact that as shown in Appendix A.
Therefore,

From the above expression, it is apparent that the psd of the band-pass waveform
s(t) is completely determined by the psd of its complex envelope

9.1 PSD OF A COMPLEX ENVELOPE
We have seen that the complex envelope of any digitally modulated signal

can be expressed in the standard form

The autocorrelation of is

Observe that is a cyclostationary random process, meaning that the auto-
correlation function is periodic in t with period T. To see this
property, first note that
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Under the assumption that the information sequence is a stationary random
process we can write

Therefore is cyclostationary.
Since is cyclostationary, the autocorrelation  can be obtained by

taking the time average of given by

where denotes time averaging and the second last equality used the station-
ary property of the data sequence The psd of is obtained by taking
the Fourier transform of

3Note that expectation and integration are linear operations and their order can be exchanged.
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where is the Fourier transform of To express the power
density spectrum in a more convenient form, let

Then

Note that the psd in (4.182) depends on the correlation properties of the
information sequence and the form of the equivalent pulse shaping function

Now suppose that the data characteristics are such that and
are independent for Then

where

It follows that

where

The terms and represent the continuous and discrete portions of
the psd. The fact that represents the discrete portion, can be seen more
clearly by using the identity
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to write

Finally, by using the property the continuous portion of
the psd can be written as

Note that the ensemble average and Fourier transform are interchangeable
linear operators. Therefore, if the complex envelope has zero mean, i.e.,

, then Under this condition

Hence, if has zero mean, then contains no discrete components
and . Conversely, if has nonzero mean, then
will contain discrete components.

Alternative Method. An alternative method of computing the psd is as fol-
lows. From the first line in (4.180)

Therefore, is given by the double Fourier transform

where
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Uncorrelated Source Symbols. Suppose that depends on one sym-
bol only

and that the data symbols are independent. Then

Hence, is given by (4.185), where

Once again, if has zero mean, then (no discrete spectral
components) and

Linear Full Response Modulation. Consider linear full response modula-
tion schemes where and From
(4.181)

where

Hence, from (4.182) the psd of the complex envelope is

where

Note that the psd is the product of two components; one depends on the
amplitude shaping function and the other depends on the correlation of the data
sequence. With uncorrelated data symbols
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where The psd is then given by (4.185), (4.197), and
(4.198). If then and

where

Linear Partial Response Modulation. Consider linear partial response mod-
ulation schemes where has duration LT. Following the development in
Section 8. the equivalent shaping function has the form

where

Taking the Fourier transform gives

From (4.181),

For the special case of uncorrelated zero-mean data symbols,
Hence,

where

Example 4.4 Duobinary Signaling For duobinary signaling, and
and where

rect
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With uncorrelated zero-mean data symbols

and from (4.182)

Example 4.5 Modified Duobinary Signaling_______________
For modified duobinary signaling, and

and With uncorrelated zero-mean data symbols,

and from (4.182)

9.2 PSD OF QAM
The psd of QAM with uncorrelated zero-mean data symbols is given by

(4.206). If then

To fairly compare bandwidth efficiencies with different M, the frequency
variable should be normalized by the bit interval For M-ary signaling

Hence,

With root raised cosine pulse shaping, has the form
defined in (4.47) with in (4.49). The root raised cosine pulse is non-
causal. When the pulse is implemented as a digital FIR filter, it must be
truncated to a finite length This truncation produces the new pulse

rect The Fourier transform of the truncated pulse is
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where * denotes the operation of convolution taken over the
frequency variable f. The psd of QAM with the pulse can again be
obtained from (4.206) by simply replacing with As shown
in Fig. 4.29, pulse truncation can lead to significant side lobe regeneration.
Again, to fairly compare bandwidth efficiencies with different M, the frequency
variable should be normalized by the bit interval The has the effect of
dividing the elements on the horizontal axis in Fig. 4.29 by a factor of

9.3 PSD OF PSK
For PSK signals with the uncorrelated data symbols and the equivalent

shaping function in (4.60), the psd is given by (4.206) with Hence,
PSK signals have the same psd as QAM signals. The psd with rectangular and
root raised cosine pulse shaping is given by (4.213) and (4.214), respectively.
Again, to fairly compare bandwidth efficiencies with different M, the frequency
variable must be normalized by the bit interval

9.4 PSD OF OQPSK
For OQPSK, the equivalent shaping function is
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where

With uncorrelated data symbols,

Therefore,

Hence, OQPSK has the same power density spectrum as QPSK.

9.5 PSD OF
To find the power density spectrum of we first compute the

autocorrelation

For

For

Taking the double Fourier transform gives

Finally, the psd is

Just like OQPSK, has the same power density spectrum as QPSK.
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9.6 PSD OF OFDM
The psd of an OFDM signal can be obtained by treating OFDM as in-

dependent modulation on N sub-carriers that are separated in frequency by
1/T. Ignoring the guard interval the data symbol period on each sub-carrier

is where is the serial source data symbol period. Suppose the
data symbols that are modulating each sub-carrier have zero mean and variance

To keep the 1/T-spaced sub-carriers orthogonal in time, the
amplitude shaping function must be the rectangular pulse
However, if a loss of sub-channel orthogonality can be tolerated, then other
types of amplitude shaping pulses can be used, such as the root raised cosine
pulse. Assuming that the amplitude shaping pulse is the psd of the
OFDM complex envelope is

Consider the rectangular amplitude shaping pulse with
Fourier  transform The corresponding OFDM psd is shown
in Figs. 4.30 and 4.31 for block sizes of and  respectively. As
the block size N is increased, the psd becomes flat in the band-
width containing containing the sub-carriers, while the side lobes decrease. In
fact, in the limit as TV becomes very large, the sidelobes diminish to zero and
the complex envelope of the OFDM signal occupies the band

This is the minimum possible bandwidth required for transmitting data sym-
bols at a rate of symbols per second without intersymbol interference
(ISI). It can be achieved by transmitting the serial source data symbols using
single carrier modulation and the amplitude shaping pulse
However, as mentioned earlier, the transmission of data symbols with such a
high baud rate will suffer from channel induced ISI and require equalization at
the receiver.

For smaller values of N, improvement in the psd can be obtained by using
a root raised cosine pulse shaping on each of the sub-carriers. Fig. 4.32 shows
the effect of using such pulse shaping, which can be compared directly with
Fig. 4.30. However, we repeat that the use of root raised cosine pulse shaping
will destroy the sub-carrier orthogonality. As shown in Chapter 5 the cost is a
floor in the bit error rate performance.

Finally, it is interesting to examine the OFDM power spectrum, when the
discrete-time IFFT modulator is used. After D/A conversion, the complex time
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domain waveform that is transmitted on the kth sub-carrier is

where

and It follows that the psd for the kth sub-carrier is

Taking the Fourier transform of gives

The power spectrum for the kth subcarrier is
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Since the data symbols on the subcarriers are independent, we can just add their
psds together to yield the overall psd

which is plotted in Fig. 4.33. Note that the psd has the ideal rectangular form
rect(fT).

Finally, the above results were obtained by using an ideal reconstruction
filter in the D/A converter. This leads to a non-causal amplitude shaping pulse

shown in Fig. 4.15. Any practical implementation will truncate this pulse
in the time domain. This in turn will lead to spectral sidelobes outside the band

9.7 PSD OF FULL RESPONSE CPM
Recall that the equivalent shaping function for CPM is given by (4.105). To

compute the psd, we define the auxiliary function

and calculate its mean and autocorrelation function. If  M-ary signaling is used
with the values of defined by
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then

where sinf(x) is defined by

Also

Evaluating the above expression for gives the following result which
will be used later

To evaluate the psd, it is necessary to compute the autocorrelation of
This can be done as follows

Now suppose that the data sequence is uncorrelated. Then for
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where we have used (4.236). Likewise, for

Finally, the psd is obtained by using (4.238) and (4.239) along with (4.182) and
(4.192).

Alternative Method. There is an alternate method for obtaining the psd that
provides more insight. Similar to the way that (4.189) was derived, we use
(4.182) along with the property to obtain

Taking the double Fourier transforms of (4.238) and (4.239) gives

where

denotes the Fourier transform and

Then,
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Observe that

so that

The implication of equation (4.245) is that two separate cases must be consid-
ered when evaluating the psd.

Case 1: In this case the sum in (4.243) converges so that

and the psd has no discrete components.

Case 2: This case is possible only if

For this condition to be true we must have

where c is a constant. However, so that

mod for all Then is a constant so that

and
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Hence, the psd is

Clearly, the second term in the above expression is a discrete spectral compo-
nent. Finally, if assumes the values defined in (4.232), then

However, Therefore,

Hence, h must be an integer for there to be a discrete spectral component.

9.7.1 PSD OF CPFSK
Suppose that h is a non-integer so that the psd has no discrete components.

Then

where
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Also,

These expressions are used in (4.246) to obtain the psd. If h is an integer, then
the psd will have a discrete component and

This expression can be used in (4.250) to obtain the psd.
If a binary modulation is used, the above expressions simplify even

more. For the case when h is not an integer

When h is an integer
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Figs. 4.34a and 4.34b plot the psd against the frequency fT.
The psd of MSK corresponds to Note that modulation indices other
than result in a narrower main lobe than MSK, but larger sidelobes.
Fig. 4.34b demonstrates the appearance of discrete components as

9.7.2 PSD OF MSK
An alternative method for computing the psd of MSK starts by recognizing

that MSK is equivalent to OQASK with a half-sinusoid amplitude shaping
pulse. It follows from (4.110) that the MSK baseband signal has the form

where

and



218

The Fourier transform of (4.266) is

Since the data sequence is uncorrelated, the psd can be computed from (4.195)
and (4.196). Since the data sequence has zero mean, Also,

From (4.199)

Once again, the psd of MSK is plotted in Fig. 4.34a.

9.8 PSD OF GMSK AND TFM
GSMK and TFM are special cases of partial response CPM. In general,

the psd of partial response CPM is difficult to obtain except for a rectangular
shaping function. One solution has been suggested by Garrison [131], where
the modulating pulses are approximated by using a large number of rectangular
sub-pulses with properly chosen amplitudes.
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Fig. 4.35 plots the psd of GMSK with various normalized filter bandwidths
BT. Note that a smaller BT results in a more compact psd. Likewise,
Fig. 4.36 plots the psd of TFM and GMSK with Observe that the
psd of  TFM compares well with that of  GMSK. This is not surprising since their
corresponding frequency shaping pulses are quite similar, comparing Figs. 4.24
and 4.28.

Finally, it is interesting to compare the spectral characteristics of  GMSK and
since both methods are extensively used in mobile communication

systems. To make a fair comparison, we must remember that GMSK transmits
1 bit/baud while transmits 2 bits/baud. If uses root
raised cosine pulse shaping, then the spectral occupancy normalized to a bit
duration is is obtained by dividing the elements on the horizontal axis of
Fig. 4.5 by a factor of 2. For example at (corresponding to

) the side lobes are about 44 dB down from the main lobe
when From Fig. 4.35, with almost the same roll off is
obtained. However, for larger values of  f, the GMSK pulse is seen to decay
faster.
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Problems
4.1. Assume that a received signal is given by

where and p(t) is the ideal Nyquist pulse

There are two problems associated with this pulse shape. One is the problem
of realizing a pulse having the rectangular spectral characteristic P( f ) given
above. The other problem arises from the fact that the tails in p( t ) decay as
1 / t . Consequently, a sampling timing error results in an infinite series of
ISI components. Such a series is not absolutely summable and, hence, the
sum of the resulting interference does not converge.

Assume that for where N is a positive integer. In spite
of the restriction that the channel is band-limited, this assumption holds in
all practical communication systems.

a) Due to a slight timing error, the received signal is sampled at
where Calculate the response for Separate
the response into two components, the desired term and an ISI term.
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b) Assume that the polarities of are such that every term in the ISI is
positive, i.e., worst case ISI. Under this assumption show that the ISI
term is

and, therefore, as

4.2. Show that 16-QAM can be represented as a superposition of two four-
phase constant envelope signals where each component is amplified sepa-
rately before summing, i.e.,

where and are statistically independent binary
sequences with elements from the set Thus, show that the
resulting signal is equivalent to

and determine and in terms of and

4.3. An important parameter for digital modulation schemes is the peak-to-
mean envelope power ratio (PMEPR), defined by

where is the largest value of and is its time
average. When non-linear power amplifiers are used it is desirable to keep
the PMEPR as small as possible.

a) Plot PMEPR for with root raised cosine pulse shaping, as
a function of the roll-off factor

b) Repeat part a) for QPSK. What conclusions can you draw?

4.4. Two new modulation schemes have very recently been proposed for the
UWC-136HS third generation system, called Q-O-QAM and B-O-QAM. Q-
O-QAM transmits 2 bits/symbol, while B-O-QAM transmits 1 bit/symbol.
The mapping of Q-O-QAM data bits to symbols is as
follows: The symbols are used to generate the symbols which are
given by

For B-O-QAM the mapping of data bits  to symbols is as follows: The
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symbols are also used to generate the symbols which are given by

a) Plot the signal space diagram for Q-O-QAM and B-O-QAM and show
the allowable transitions between the signal points in the signal con-
stellation. Why would these modulation schemes be useful for radio
transmitters that use non-linear power amplifiers.

b) Assuming an AWGN channel and coherent detection, write down an
expression for the probability of  symbol error for Q-O-QAM and B-O-
QAM in terms of the bit energy to noise ratio

4.5. Consider two sinusoids waveforms

a Determine the minimum value of such that the inner product
over the interval Assume that

b Repeat part a) for the two sinusoids

where and are arbitrary phases.

4.6. Suppose that an OFDM system is implemented with a guard interval that
is a cyclic extension of the IFFT co-efficients as shown in (4.95).

a) Show that the output of the OFDM demodulator is given by (4.98).

b) Now suppose that the guard interval simply consists of a blank interval
where nothing is transmitted. Assuming that can the
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data block be recovered by taking an FFT of the received block

4.7. Consider a CPM signal that is generated by using a triangular frequency
shaping pulse shown below

a) Find the peak frequency deviation so that

b) Sketch the phase tree and phase trellis for the binary source symbol
sequence

4.8. A CPM signal is generated from a baseband signal with a half-sinusoid
shaping function.

a) If find the peak frequency deviation from the carrier frequency.

b) Sketch the phase tree and phase trellis if the data symbol sequence is

4.9. Sketch the phase-tree, the phase trellis, and phase state diagram for partial
response CPM with and

4.10. Consider a partial response CPM signal

a) Generate a shaping function of duration 3T by convolving a rectangular
shaping function of duration T with a rectangular shaping function of
duration 2T.

b) Define and sketch the three segments of the shaping function,
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c) Sketch the baseband signal if the symbol sequence is

4.11. What are the phase states and states for the following CPM signals:

a) Full response binary CPFSK with either or

b) Partial response binary CPFSK with either or

4.12. Consider a multi-h CPM waveform with the h sequence
and the frequency shaping pulse In the ith signaling

interval the excess phase changes by radians if is used and
by radians if is used.

a) Plot the phase-trellis assuming the initial phase

b) Indicate the phase trajectory for the symbol sequence

4.13. Design a Gaussian pulse-shaping filter with for a symbol rate
of 19.2 kbps. Write expressions for and plot, i) the impulse response and
frequency response of the filter, and ii) the frequency shaping pulse
Repeat for the case of  and

4.14. Consider TFM with the frequency shaping pulse

Suppose that this pulse is obtained by exciting a filter with a gate
function rect( t/T ). Find and sketch the impulse response of the filter

4.15. Prove the identity

4.16. Consider the case of uncorrelated data symbols.

a) Show that if the symbols are equiprobable, then
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b) Compute the value of part a) for

4.17. Consider the complex low-pass binary modulated signal

where The data sequence is correlated such that

Compute the power density spectrum of

4.18. Suppose that a binary data sequence is correlated
such that i.e., adjacent data bits are the same with
probability 3/4 and different with probability 1/4.

a) Compute the autocorrelation function for this data sequence.
b) Compute the power spectrum

4.19. Suppose that an uncorrelated binary data sequence is transmitted by
using binary PAM with a root-Gaussian amplitude shaping pulse

a) What is the transmitted power density spectrum?
b) Find the value of so that the power density spectrum is 20 dB below

its peak value at frequency 1/T, where T is the baud duration.
c) What is the corresponding time domain pulse

4.20. Consider a system that uses a set of bi-orthogonal signals that
are derived from the Hadamard matrix in (4.76). The set of 16 signals
is constructed according to

where is the baud period. Note that 4 bits are transmitted per
baud.
Assume an uncorrelated data sequence and assume that all 16 waveforms
are used with equal probability.

a If find the psd of the transmitted complex envelope

b Plot the power spectrum against the normalized frequency
where is the bit duration.
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Chapter 5

DIGITAL SIGNALING
ON FLAT FADING CHANNELS

The performance of a digital modulation scheme is degraded by many
transmission impairments including fading, delay spread, Doppler spread, co-
channel and adjacent channel interference, and noise. Fading causes a very
low instantaneous received signal-to-noise ratio (SNR) or carrier-to-noise ratio
(CNR) when the channel exhibits a deep fade, delay spread causes intersymbol
interference (ISI) between the transmitted symbols, and a large Doppler spread
is indicative of rapid channel variation and necessitates a receiver with a fast
convergent algorithm. Co-channel interference, adjacent channel interference,
and noise, are all additive distortions that degrade the bit error rate performance
by reducing the CNR or SNR.

This chapter derives the bit error rate performance of digital signaling on
frequency non-selective (flat) fading channel with AWGN. Flat fading channel
models are appropriate for narrow-band land mobile radio systems or mobile
satellite systems. Flat fading channels affect all frequency components of a
narrow-band signal in exactly the same way and, therefore, do not introduce
amplitude or phase distortion into the received signal. Frequency selective
channels distort the transmitted signal and will be the subject of Chapter 6.
Flat fading channel will be shown to significantly degrade the bit error rate per-
formance unless appropriate countermeasures are taken. Diversity and coding
techniques are well known methods for combating fading. The basic idea of
diversity systems is to provide the receiver with multiple replicas of the same
information bearing signal, where the replicas are affected by uncorrelated fad-
ing. Coding techniques introduce a form of time diversity into the transmitted
signal which can be exploited to mitigate the effects of fading.

The remainder of this chapter is organized as follows. Section 1. introduces
a vector representation for digital signaling on flat fading channels with additive
white Gaussian noise (AWGN). Section 3. provides a generalized analysis of
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the error rate performance of digital signaling on flat fading channels. Sec-
tion 2. derives the structure of the optimum coherent receiver for the detection
of known signals in AWGN. The error probability performance of various
coherently detected digital signaling schemes is considered including PSK in
Section 4., QAM in Section 5., orthogonal signals in Section 6., and OFDM in
Section 7.. Section 9. considers differential detection of PSK and
Section 10. considers non-coherent detection and, finally, Section 11. considers
coherent and non-coherent detection of CPM signals.

1. VECTOR SPACE REPRESENTATION OF
RECEIVED SIGNALS

Suppose that one of M complex low-pass waveforms say
is transmitted on a flat fading channel with additive white Gaussian noise

(AWGN). For such a channel, the received complex envelope is

where is the complex fading gain introduced by the channel,
and is zero-mean complex AWGN with a power spectral density (psd) of

watts/Hz. At any time t the complex fading gain g( t ) is a complex Gaussian
random variable. The receiver must determine which message waveform
was transmitted from the observation of received signal

In our present development, the pulses are assumed to have duration
T. However, our results will also apply to the case of root Nyquist pulses with
duration for example, the root raised cosine pulse. The only difference
is the length of the required observation interval.

If  the channel changes very slowly with respect to the data symbol duration,
i.e., then g( t ) will effectively remain constant over the observation
interval1. Under this condition, the explicit time dependency of g( t ) can be
removed so the received signal becomes

where is the fading gain. If the Gaussian fading process has zero
(non-zero) mean then the magnitude is Rayleigh (Ricean) distributed and the
phase is uniformly (non-uniformly) distributed over as described in
Chapter 2.1.2.

To facilitate the derivation of the optimum receiver and its analysis, it is
useful to introduce a vector space representation for the received signals. If
the channel is affected by AWGN, then the required basis functions are those
obtained by using the Gram-Schmidt orthonormalization procedure outlined in

1 For land mobile radio applications is a reasonable assumption.
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Chapter 4.1.2. Using these basis functions, the received signal can be expressed
as

where

and

The above process yields the vector

where

For an AWGN channel, the  are Gaussian random variables
that can be completely described by their means and covariances. The means
are

and covariances are
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It follows that the are independent complex Gaussian random variables with
zero mean and variance Hence, the vector has the multivariate Gaussian
pdf (A.40)

Such noise is said to be circularly symmetric, because the joint appears
as a hyperspherical cloud that is centered at the origin in the N-D vector space.

The waveform is a “remander process” due to the fact that lies
outside the vector space that is spanned by the basis functions
However,

Since it follows that is uncorrelated
with the received vector This property implies that the remainder process

is irrelevant when making the decision as to which signal waveform was
transmitted, a result known as Wozencraft’s irrelevance theorem [365]. In other
words, the received vector is the only data useful for the decision process and,
hence, represents “sufficient statistics” for the problem at hand.

2. DETECTION OF KNOWN SIGNALS IN ADDITIVE
WHITE GAUSSIAN NOISE

The maximum a posteriori probability (MAP) receiver generates the vector
and from its observation decides in favor of the message vector that

maximizes the a posteriori probability If is received and the
decision is made in favor of the signal vector  then the conditional probability
of decision error is

The unconditional probability of decision error is
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The MAP receiver clearly minimizes the probability of decision error, since
the integrand is minimized for all possible received vectors

By using Bayes’ theorem, the a posteriori probability can be
expressed in the form

where is the joint conditional probability density function (pdf) of
the received vector given the transmitted message vector and is the
prior probability of transmitting Since the pdf of the received vector
is independent of the transmitted message vector, the MAP receiver chooses
the vector to maximize In other words, the MAP decision
rule is

choose if

Note that the MAP receiver requires knowledge of the complex channel gain
g, implying that the receiver must employ an adaptive channel estimator.

A receiver that chooses the vector to  maximize regardless of the
prior messages probabilities is called a maximum likelihood (ML) receiver.
The ML decision rule is

choose if

If the prior message probabilities are equal, i.e., then selection of
the signal vector that maximizes also maximizes Under
this condition the ML receiver also minimizes the probability of decision error.
The prior message probabilities will be equal when the source coding is good.
In practice, an ML receiver is quite often implemented regardless of the prior
message probabilities, because they may unknown. Note also, that the ML
receiver requires knowledge of the channel gain g.

To proceed further we need the joint conditional pdf Since
and has the joint pdf in (5.10), we have

By using (5.16) in (5.15), it is apparent that the signal vector that maximizes
also maximized the metric (or distance measure)

In other words, the ML receiver decides in favor of the scaled message vector
that is closest in squared Euclidean distance to the received vector Such

a receiver is said to make minimum distance decisions.
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An alternative form of the ML receiver can be derived by expanding (5.17)
as

Then notice that is independent of and Hence, the
ML just needs to maximize the metric

Using the definition of the inner product, the above metric can be written in the
alternate form

The last line in (5.20) follows because the can be divided by α  without
altering the decision process.

From the above development, the form of the ML receiver is clear. The
receiver must first perform quadrature demodulation as shown in Fig. 5.1 to
extract the complex envelope The received bandpass
waveform is

Then

where is just a low pass filter to reject the double frequency term af-
ter demodulation. After quadrature demodulation, there are several receiver
structures that are functionally equivalent, but differ in their method of imple-
mentation and complexity. As shown in Fig. 5.2, one possibility is to generate
the observation vector by correlating the received complex envelope with
the basis functions. This receiver structure is called a correlation detector.
An functionally equivalent structure is shown in Fig. 5.3, where the complex
envelope is filtered with a bank of filters having impulse responses
and sampling the outputs at time T. The filter < is the matched  filter to

This receiver structure is called a matched filter detector The matched
filter can be shown to be the filter that maximizes the signal-to-noise ratio at
the sampling instant when the input consists of a signal corrupted by AWGN.
This result is available in numerous textbooks and we do not present it here
(but see Problem 5.2). Finally, the metric computer in Fig. 5.4 processes the
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observation vector to produce the metrics The
decision is made in favor of the data symbol corresponding to the largest metric.

To show equivalence of the correlation and matched filter detectors, let
denote the filter matched to Then the output of the

matched filter is the convolution

Sampling the filter output at time T gives

This is exactly the same as the correlation in (5.4). We note that other variations
of the ML receiver can be constructed in a similar fashion by direct implemen-
tation of (5.20) by using either a bank of M correlators or a bank of M matched
filters.

Some simplifications can be made for certain types of signal sets. If the
message waveforms have equal energy such as PSK signals, then  for
all m. Hence, the bias term in (5.20) can be neglected, leading to

In this case, the receiver does not need to know the complete complex channel
gain but only the random carrier phase The random carrier phase
can be obtained in practice by using a phase locked loop.
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3. PROBABILITY OF ERROR
Consider a signal constellation defined by the set M signal vectors

Throughout this section, we assume equally likely messages so that
By observing the vector the ML receiver chooses the message vector

that minimizes the squared Euclidean distance To compute
the probability of ML decision error for an arbitrary set of signal vectors, we
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first a define convex decision regions around each of the signal points
in the N-D signal space. Fig. 5.5 shows an example of the decision regions.
Formally, the decision regions are defined by

Observe that all are closer to than to any other signal point
The ML decision rule becomes

choose if

The decision boundaries are hyperplanes that are defined by the locus of signal
points that are equidistant from two neighboring signal vectors.

The conditional error probability associated with is

where is the conditional probability of correct reception. By using the
joint conditional pdf in (5.16) we can write

Finally, the average probability of decision error is
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Sometimes it may be difficult to compute the exact probability of decision
error, due to the difficulty in defining the decision regions and performing
the integration in (5.33). In this case, various upper and lower bounds, and
approximations on the probability of error are useful. First we introduce the
concept of the pairwise error probability.

3.1 PAIRWISE ERROR PROBABILITY
Now consider two of the M signal vectors and We wish to determine

the probability of decision error at the receiver, as if these two signal points
are the only ones that exist. This error probability is called the pairwise error
probability because it can be defined for each pair of signal vectors in the signal
constellation. The two signal vectors and are separated at the receiver
by the squared Euclidean distance | Due to the
circularly symmetric property of the AWGN noise, the pdf of the noise vector

is invariant to its rotation about the origin in the vector space. Hence, the
noise component along the vector that joins the two signal vectors
has zero mean and variance

A decision boundary can be established at the midpoint between the two
signal vectors as shown in Fig. 5.6. Suppose that vector is sent, and let

denote the probability of ML decision error. The error probability is
just the probability that the noise along the vector  forces the received
vector to cross the decision boundary. This probability is just equal
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to

where is the squared Euclidean distance between and
Finally, we note that Hence, the pairwise error probability
between the message vectors and is

3.2 UPPER BOUNDS ON ERROR PROBABILITY
Suppose that is transmitted and let denote the event that the receiver

chooses instead. The probability of the event is the pairwise error
probability . The conditional probability of decision error is

/ \

By using the union bound

we have
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Combining the above result with (5.36) gives

and using (5.34) to further average over the signal set gives

A further upper bound can be obtained by first computing the minimum
squared Euclidean distance between any two signal points

Thus the pairwise error probability between and is bounded by

Hence, we can write

Finally, some other upper bounds can be obtained using the upper bound on
the Q-function (see Problem 5.1)

Combining with the union bound in (5.41) gives

and combining with the upper bound in (5.44) gives the simplest but loosest
upper bound
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3.3 LOWER BOUND ON ERROR PROBABILITY
A useful lower bound on the probability of decision error can be obtained

by bounding the error probability

if  at least one neighbor at distance

otherwise
(5.48)

Then

where is the number of signal vectors having at least one minimum
distance neighbor. Certainly so that

/

3.4 BIT VERSUS SYMBOL ERROR PROBABILITIES
Thus far our figure of merit has been the probability of decision error or

symbol error probability, However, we are very often interested in the
bit error probability, In general, this error probability depends on the
particular mapping between data bits and data symbols. Since each data symbol
corresponds to data bits the bit error probability is bounded as follows:

Gray coding:. For signal constellations such as PSK and QAM, it is possible
to map the binary data bits onto the M-ary symbols in such a way that the
nearest neighboring symbols (in Euclidean distance) differ in only one bit
position. Such a mapping is called a Gray code. When the signal-to-noise
ratio is high, we find that symbol errors are made onto the nearest neighboring
symbols with high probability. In these cases, symbol errors correspond to
single bit errors. Hence,

where
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Equally likely symbol errors:. Consider the case where all symbol errors
are equally likely. To compute the probability of bit error, first note that the

symbols have a one-to-one mapping onto all possible binary k-
tuples as shown in Fig. 5.7. Now suppose that all zeros k-tuple, or first row,
corresponds to the correct symbol. However, the receiver makes an error and
chooses ith row (symbol), Since there are zeros and ones in each
column and a zero corresponds to a correct bit, the probability of a particular
bit position being in error is

4. ERROR PROBABILITY OF PSK
Error probability of binary PSK (BPSK):. From (4.64) and (4.61) with

the BPSK signal vectors are2

Since there are only two signal vectors, the error probability is given by (5.36.
For BPSK signals, Also BPSK transmits 1 bit/symbol so
the symbol energy is where is the bit energy. Therefore, the
probability of bit error is

where is defined as the bit energy-to-noise ratio

2When the signal vectors lie in a 1-D complex vector space, we simplify notation by using the scalars
rather than the vectors and
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Error probability of quaternary PSK (QPSK):. From (4.64) and (4.61)
with the QPSK (or 4-PSK) signal vectors are

The QPSK signal constellation is shown in Fig. 5.8. The decision boundaries
correspond to the real and imaginary axis of the complex vector space. The
noise components and are independent zero-mean Gaussian random
variables with variance With minimum distance decisions, the probability
of symbol error is

where, again, is the channel attenuation. Since we have

where is defined as the symbol energy-to-noise ratio

Suppose the data bits are mapped onto the data symbols using a Gray code
as shown in Fig. 5.8. Letting denote the probability of  bit error, it follows
that

and

Comparing the above equation with (5.60).

QPSK transmits 2 bits/symbol so the symbol energy is where is
the bit energy. Since
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Notice that the bit error probabilities of BPSK and QPSK are identical. Finally,
since OQPSK is identical to QPSK with the exception of the inphase and
quadrature branches being offset by seconds, the error performance
of OQPSK is identical to QPSK.

Error probability of M-PSK:. To derive the error probability of M-PSK
consider, for example, the 8-PSK signal constellation and associated decision
regions shown in Fig. 5.9. Once again data bits are mapped onto data symbols
by using a Gray code. Consider (4.46) and suppose that the message vector

is transmitted. The received signal vector is

Since the error probability is invariant to the angle rotation we can arbitrarily
set so that

It follows that is a complex Gaussian random variable with pdf
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Since was transmitted, the probability of correct symbol reception with
minimum distance decisions is the probability that the received angle

lies in the interval
To find the pdf of the angle we first define the new random variables

such that

Then by using a bivariate transformation of random variables (Appendix A),
the joint pdf of R and can be obtained as

Since we are interested only in the phase we obtain the marginal pdf of

where is the received symbol energy-to-noise ratio. The
probability of M-ary symbol error, is just the probability that lies outside
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the region Thus

A closed form expression for this integral does not exist, except for the cases
which were considered earlier.

Error probability with Rayleigh fading:. When the channel experiences
fading, the error probability must be averaged over the fading statistics. If the
channel is Rayleigh faded, then is a Rayleigh random variable. By using a
transformation of random variables,• and have the exponential pdfs

where and are the average received bit and symbol energy-to-noise ratios,
respectively, and

For BPSK and QPSK the average probability of bit error is

The BPSK and QPSK bit error probability is plotted in Fig. 5.10 for an AWGN
channel and a flat Rayleigh fading channel with AWGN. Observe that Rayleigh
fading converts an exponential dependency of the bit error probability on the
bit energy-to-noise ratio into an inverse linear one. This behavior is typical for
any uncoded modulation scheme in Rayleigh fading, and results in a huge loss
in performance unless appropriate countermeasures are taken. For M-PSK, the
average symbol error probability is

where is given by (5.70). However, no closed form expression exists.
With Gray coding the bit error probability is approximately

Differential PSK (DPSK):. The received carrier phase for PSK signals is
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where is an arbitrary constant phase and is the random phase due to the
channel. The receiver corrects for the phase  by multiplying the received com-
plex envelope by as shown in (5.27). However, in practice this operation is
not quite that simple, because the symmetries in the signal constellation create
phase ambiguity. In particular, we note that any channel induced phase of the
form k an integer, will lead to exactly the same set of received
carrier phases. While the receiver can use a phased locked loop to recover the
received carrier phase, there will remain a phase ambiguity which is a multiple
of This phase ambiguity must be resolved if the information is to be
recovered correctly.

Differential encoding is one of the most popular methods for resolving
phase ambiguity, where information is transmitted in the carrier phase differ-
ences between successive baud intervals rather than the absolute carrier phases.
Differential encoding of PSK signals is done as follows. The information
sequence is differentially encoded into a new
sequence according to
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where denotes modulo-M addition. Then the sequence is transmitted
in the absolute carrier phase according to

After carrier recovery the received carrier phase is

where the additional term  an integer, represents the phase ambiguity.
The receiver computes the differential phase

(5.78)

where denotes modulo-M subtraction. Hence, the data sequence is
recovered regardless of the phase ambiguity.

In the presence of AWGN noise, the receiver must form estimates of
the received carrier phases However, the noise will cause errors in these
estimates and occasionally We note that an incorrect phase estimate

causes the decisions on both and to be in error, assuming that the
phase estimates and are both correct. Hence, at high signal-to-noise
ratios where errors occur infrequently, the bit error probability of DPSK is
roughly two times that of PSK.

5. ERROR PROBABILITY OF M-QAM
Error probability of M-PAM:. Consider the Gray coded 8-PAM system
signal constellation shown in Fig. 5.11. For the inner points on the
signal constellation, the probability of symbol error is

where the 2 appears in front of the Q function because errors can be made by
crossing either of the two decision boundaries. Likewise, for the 2 outer points
on the signal constellation the probability of symbol error is
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Hence, the probability of symbol error is

Next we have to relate to the average symbol energy. Since

the energy in is

The average energy is

Using the identities

and simplifying gives the result
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Hence from (5.81)

where

is the average symbol energy-to-noise ratio.

Error probability of M-QAM:. Consider an M-QAM system having a
square constellation size for some integer m. Such an M-QAM
system can be viewed as two systems in quadrature, each allocated
one-half the power of the M-QAM system. For example, the Gray coded
16-QAM system in Fig. 5.12 can be treated as two independent Gray coded
4-PAM systems in quadrature, each operating with half the power of the 16-
QAM system. From (5.87), the symbol errorprobability for each
system is

where is the average symbol energy-to-noise ratio of the M-QAM system.
Finally, the probability of correct symbol reception in the M-QAM system is

and the probability of symbol error is

For other types of M-QAM constellations, such as those in Figs. 4.7 and 4.8,
the error probability can be obtained by defining convex decision regions and
using the approach suggested in Section 3..

Error probability with Rayleigh fading:. If the channel is Rayleigh faded,
then has the exponential pdf in (5.71). It follows that the average symbol
error probability is

Fig. 5.13 plots the (approximate) bit error probability against
the average received bit energy-to-noise ratio, for several
values of M. Notice that the required to achieve a given bit error probability
increases with the alphabet size M. However, the bandwidth efficiency also
increases with M, since there are bits/symbol.



Digital Signaling on Flat Fading Channels 249

6. ERROR PROBABILITY OF ORTHOGONAL
SIGNALS

Orthogonal signals:. Consider the M-ary orthogonal signal set



250

where is a length-M vector with a “1” in the mth coordinate. If the signal
is transmitted, then the received signal vector is

where the are independent zero mean complex Gaussian random variables
with variance The ML receiver computes the decision variables

and chooses the signal with the largest We have

where we have ignored the phase rotation on the noise samples. The
are independent Gaussian random variables with variance  the mean
of is while the have zero mean. The probability
of correct decision conditioned on is the probability that all the

are less than x. This is just

Hence,

Now let Then

where

Finally, the probability of symbol error is
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An alternate expression for the error probability can be derived by first condi-
tioning on the event that one of the decision variables is
the largest. This gives

Now let Then

For orthogonal signals and the bit error probability is given
by (5.54). If the channel is Rayleigh faded, then has the exponential pdf in
(5.71), and the average bit error probability is

Biorthogonal signals:. Consider the biorthogonal signal set

Now suppose that is transmitted. The receiver computes the M/2 decision
variables

and chooses the one having the largest magnitude. The sign of is
used to decide whether or was sent. As before, the

are independent Gaussian random variables with variance
the mean of is while the have zero
mean. The probability of correct decision is the probability that and

Condition on we
have

Hence,
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Now let Then

Finally, For biorthogonal signals but the bit
error probability is not given by (5.54).

7. ERROR PROBABILITY OF OFDM
For an AWGN channel, the error probability of OFDM can be calculated by

taking advantage of the property that the OFDM sub-carriers are orthogonal.
The optimum receiver for OFDM on an AWGN channel consists of a bank
of correlator detectors, one for each sub-carrier. Since the sub-carriers are
orthogonal, there is no cross talk between them, and the symbol error probability
for each of the subcarriers can be obtained independently of the others.

A key advantage of OFDM is that the receiver can be implemented by
using fast Fourier transform (FFT) algorithm, as discussed in Chapter 4.6. In
the following discussion we assume that the guard interval is long enough to
isolate the OFDM blocks. Hence, we suppress the block index. Following
the development in Chapter 4.6, suppose that the discrete-time sequence

is transmitted over a flat fading channel with complex gain g.
The received sequence is where

is the channel gain, and the are the noise samples. Suppose that
the are obtained by passing the received noise waveform through an ideal
anti aliasing filter having a bandwidth followed by a sampler. In this case,
the are independent zero complex Gaussian random variables with variance

The receiver first removes the guard interval according to

where is the residue of n modulo N. Demodulation is then performed
by computing the FFT on the block R to yield the vector of N
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decision variables

where and the noise terms are given by

A block diagram of an OFDM receiver is shown in Fig. 5.14.
It can be shown that the are zero mean complex Gaussian random variables

with covariance

Therefore, the are independent Gaussian random variables having mean
and variance To be consistent with our earlier results

for PSK and QAM signals, we can multiply the for convenience by the factor
so they have variance Such scaling gives

where has variance Notice that is equal to the complex
signal vector that is transmitted on the ith sub-carrier. For each of the the
receiver decides in favor of the signal vector that minimizes the squared
Euclidean distance

Thus for each OFDM block N symbol decisions must be made, one for each of
the N sub-carriers. This can be done in either a serial fashion as in Fig. 5.14,
or a parallel fashion.
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Finally, it is clear that the probability of symbol error is identical to that
achieved with independent modulation on each of the sub-carriers. This is
expected, because the sub-carriers are orthogonal in time.

Interchannel Interference (ICI):. Perhaps a more interesting issue is the
effect of Doppler on the OFDM receiver performance. Although our analysis
will be undertaken for slow flat fading channels, a similar analysis will apply
provided that the guard interval is longer than the length of the channel impulse
response. We will show that variations in the complex channel gain
over the duration of an OFDM block causes interchannel interference (ICI)
due to a loss of subchannel orthogonality. The ICI has an effect similar to
AWGN.

To isolate the Doppler effects, AWGN is ignored. The received discrete-time
sequence after removal of the guard interval is

The vector Z at the output of the FFT demodulator circuit is

where

To highlight the effect of channel time variations, (5.118) can be rewritten as

where

Note that H(0) is a multiplicative noise term, while is an additive noise term
due to ICI. If the channel is time-invariant, then and
as before. But for a time-varying channel is a function of all the data symbols
within a block and, hence, interchannel interference (ICI) is introduced.

For N sufficiently large in (5.121), the central limit theorem can be invoked
and the ICI treated as a Gaussian random variable. Since and
are independent random variables and it follows that
The variance of is computed by evaluating the autocorrelation function at
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lag zero. Since where is the average symbol
energy, the autocorrelation of is

If we further assume the normalization and isotropic
scattering with an isotropic receiver antenna (see Chapter 2), then the autocor-
relation becomes

where is the maximum Doppler frequency. Note that the autocorrelation is
not influenced by the positioning of the guard interval, due to the symmetry of
the summations.

For symbol-by-symbol detection, it is sufficient to examine the variance of
the ICI term

where the fact that is an even function has been used. Note that
variance of the ICI terms is only a function of  Eav, N, Ts, and fm, but is
otherwise independent of the signal constellation. Fig. 5.15 plots the signal-to-
interference ratio

as a function of for several values of N.
Suppose that the data symbols are chosen from a 16-QAM alphabet.

From Section 5., the symbol error probability for 16-QAM is

where is the average received symbol energy-to-noise ratio. With Rayleigh
fading, the symbol error probability is obtained by averaging (5.126) over the
pdf in (5.71). Assuming validity of the Gaussian approximation for the ICI,
the error floor due to ICI can be obtained by substituting the SIR in (5.125)
for The results are shown in Fig. 5.16. Simulation results are also shown
in Fig. 5.16 corroborating the Gaussian approximation for the ICI. Fig. 5.17
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shows the bit error rate performance of OFDM with subcarriers,
a 16-QAM signal constellation, and a 20 Mbps bit rate for various Doppler
frequencies. At low additive noise dominates the performance so that the
extra noise due to ICI has little effect. However, at large ICI dominates the
performance and causes an error floor. Further measures are needed to improve
the performance.

8. ERROR PROBABILITY OF MSK
MSK signals can be recovered using a variety of techniques. One method

suggested by De Buda uses the fact that MSK is equivalent to OQPSK with a
half-sinusoid shaping function. From (4.110), the MSK complex envelope is

n

where

The received complex envelope is

where The receiver first removes the effect of the phase rotation by
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where we have ignored the effect of the phase rotation on the noise because
it is circularly symmetric. Detection then proceeds by processing the real and
imaginary parts of as separate binary PAM streams. The resulting
MSK detector is shown in Fig. 5.18. Note that the source symbols on the
in-phase and quadrature carrier components must be detected over intervals of
length 2T, the duration of the amplitude shaping pulse and bit decisions
are made every T seconds. Since bit error performance of OQPSK and QPSK
(and BPSK) are identical, and MSK can be viewed as a form of OQPSK, it
follows that MSK has the same bit error performance as QPSK or BPSK.

9. DIFFERENTIAL DETECTION
Differentially encoded PSK (DPSK) can also be detected by using differen-

tially coherent detection, where the receiver estimates the change in the phase
of the received carrier between two successive signaling intervals. Since the
differential carrier phase between baud intervals is precisely what contains the
data, the basic mechanism for differential detection is obvious. If the carrier
phase changes slowly with respect to the baud period, then the phase differ-
ence between waveforms received in two successive signaling intervals will be
independent of the absolute carrier phase. However for fading channels, the
carrier phase can change over two successive baud intervals. This leads to an
error floor that increases with the Doppler frequency.

Binary DPSK:. Consider binary DPSK. Let denote the absolute carrier
phase for the nth symbol, and denote the differential carrier
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phase, where

The complex envelope of the transmitted signal is

and the complex envelope of the received signal is

where is the complex channel gain.
A block diagram of a differentially coherent receiver for DPSK is shown in

Fig. 5.19. During the time interval the values of
and in Fig. 5.19 are

where

is the bit energy, and the noise terms are

Note that and are independent Gaussian random variables
with variance

In the absence of noise, it is easy to verify that To determine
the pdf of the decision variable it is convenient to express as
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where

It can be shown by using characteristic functions that where W
and Y are non-central and central chi-square random variables with densities
[309]

Defining the pdf of is

where Q(a,b) is the Marcum Q function, defined by
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From (5.142), the bit error probability of DPSK with differential detection is

where is the received bit energy-to-noise ratio. For a slow
Rayleigh fading channel, is Rayleigh distributed so the received bit energy-
to-noise ratio has the exponential pdf in (5.71). It follows that the bit error
probability with slow Rayleigh fading is

9.1 DIFFERENTIAL DETECTION OF
The above results can be extended to differential detection of

Once again the complex envelopes of the transmitted and received signals
are given by (5.132) and (5.133), respectively. However, with

where A block diagram of the differentially
coherent receiver for is shown in Fig. 5.20. The values of

and are again given by (5.134). The detector outputs are

where . and are defined in (5.138) and (5.139), respectively. In the
absence of noise, it can be verified that the detector outputs are

where The bit error probability for with Gray
coding is quite complicated to derive, but can be expressed in terms of well
known functions [270]

where is the zero-order modified Bessel function of the first kind defined
by
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and is the bit energy-to-noise ratio. Once again, if the channel is faded, then
the bit error probability can be obtained by averaging over the fade distribution.

10. NON-COHERENT DETECTION
If information is transmitted in the amplitude or frequency of a waveform,

then a non-coherent receiver can be used. Non-coherent receivers make no
attempt to determine the carrier phase. Non-coherent receivers are easier
to implement than coherent receivers. They typically allow the receiver to
be implemented with less expensive components that may also consume less
power. Non-coherent receivers trade implementation complexity for transmitter
power and bandwidth. Typical applications for non-coherent receivers include
one-way paging, where the receiver must be inexpensive and operate at a low
power budget. With one-way paging transmit functions are not required in the
terminal equipment.

Suppose that one of M complex low-pass waveforms,
is transmitted, say on a flat fading channel with AWGN. The received

complex envelope is

where is the channel gain that includes the random phase and
is the AWGN.

By projecting onto the basis functions obtained through the Gram-
Schimdt orthonormalization procedure on the signal set we obtain
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the received vector

The joint pdf of is given in (5.10). The maximum likelihood non-coherent
detector does not use the random phase in the decision process, and chooses
the message vector to maximize the joint conditional pdf

choose if

Letting denote the pdf of < we have

Using the joint pdf of in (5.10)

Now let

Hence

Assuming a uniformly distributed random phase gives
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Since the term is independent of the 111111111111111hypothesis the signal
maximizes also maximizes the metric

If all message waveforms have equal energy, then considerable simplification
results. The ML receiver can choose to maximize

However increases monotonically with x. Therefore, the ML receiver
can simply choose to maximize

From the above development, the structure of the ML non-coherent receiver is
clear. The receiver first uses the quadrature demodulator in Fig. 5.1 to extract
the real and imaginary components of the complex envelope and
Then compute

and maximize over the choice of Continuing further, note that

This leads to the detector structure shown in Fig. 5.21, commonly known
as a square-law detector. Note that the square-law detector generates .
However, the choice of that maximizes also maximizes If the
do not have equal energy then the metric in (5.161) must be used. This add
considerable complexity to the ML receiver because the channel gain a must
be determined and the Bessel function must be calculated.

Error probability of M-ary orthogonal signals. Consider the case of M-
ary orthogonal signals as discussed in Chapter 4.5. Assume without loss of
generality that is sent. Then
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Since the M-ary orthogonal signals have equal energy, we can use the metric
in (5.163). Then

The receiver will make a correct decision if

From Appendix A, has the Rice distribution

while the are independent Rayleigh random variables with pdf

The probability of correct symbol reception is
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Using the binomial expansion

gives

However, the above integral is

The trick is to manipulate the integrand to look like a Ricean pdf. To do so, let

Then

where is the symbol energy-to-noise ratio. Hence,

and the probability of symbol error is
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Since orthogonal modulation is used, the probability of bit error is

11. DETECTION OF CPM SIGNALS
CPM receivers can be categorized into three different types of dectection

schemes; coherent detection, differential detection, and non-coherent detection.
Furthermore, in each category there are two approaches; symbol-by-symbol
detectors and sequence estimators. For mobile radio channels, sequence esti-
mation based approaches are not favored for at least two reasons. First is the
hardware limitation due to the large number of CPM states, since the complexity
of sequence estimators grows ex ponentially with the number of system states.
Second is the possible utilization of coding and interleaving to combat fading.
Coding issues will be discussed in detail in Chapter 8 The use of interleaving
requires separation of the CPM demodulator and the decoder. When convo-
lutional or trellis coding is used with CPM, a soft output symbol-by-symbol
detector is typically used to detect the CPM signals, while a sequence estimator
is still used for decoding. Therefore, this section only treats symbol-by-symbol
CPM detectors. While there exist a large variety of coherent and non-coherent
symbol-by-symbol CPM detectors, we present two structures. Both receivers
use multiple-symbol observation intervals to detect partial response CPM sig-
nals, and both generate soft outputs making them well suited to systems that
employ convolutional, trellis, or Turbo coding.

The CPM complex envelope during the time interval is

where is the symbol energy, is the symbol duration, h
is the modulation index, and x is the data symbol sequence chosen from the
M-ary alphabet The phase shaping function is

, where is a partial response frequency shaping pulse

of duration LT. The accumulated phase is equal to mod
The CPM state at time is defined by the L-tuple

In the sequel, the CPM signal will also be denoted by to emphasize
the finite state nature of the signal. For a slow flat fading channel, the received
signal is
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where is a zero-mean complex AWGN with psd watts/Hz.

11.1 COHERENT CPM DEMODULATOR
A coherent CPM demodulator was proposed by Osborn and Luntz [254], and

Schonhoff[294]. The metrics for symbol are obtained by observing over
successive symbol intervals and generating metrics for all possi-

ble symbol vectors where The ML
metric for , is proportional to the conditional density
and is given by3

The metrics for can be obtained by averaging (5.178) over the possible
values of and averaging over all possible initial states This leads to the
metric

where and are the probabilities of and respectively, and the
last equality follows because all the are equal, and all the are equal, for
equally likely data symbols. By using (5.179) a set of M metrics is calculated
for the M possible   The receiver decides in favor of the symbol having the
largest metric.

A simplified receiver that will yield almost the same performance uses the
suboptimum metric [254, 294]

which is also exactly the same as the metric proposed by Kerr and McLane for
full response CPFSK [181].

11.2 NON-COHERENT CPM DEMODULATOR
The receiver adopts the same multiple-symbol detection strategy used for

the coherent receiver described in the previous section. After observing
over an N-symbol interval where
the non-coherent CPM demodulator generates the following set of

3Slowly varying channels are assumed where g remains constant over the observation interval.
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conditional symbol metrics for

where is the adjacent symbol
vector. Note that the phase term in , does not affect the value of
(5.181) and can therefore be assumed zero. A simple symbol metric can be
formed by choosing the largest among all possible . viz,

The set of M symbol metrics so obtained is then used to make decisions on the
transmitted symbols.

For the symbol metric in (5.182) is the same one
used by the single-symbol receiver in [2] and, as a result, the single-symbol
receiver can be treated as a special case of the receiver presented here. In order
to calculate the metrics recursively, we can follow a similar approach to [305]
and rewrite as

where

The metric generator structure is shown in Fig. 5.22. Generally, the met-
ric calculator requires matched filters and generates metrics.
However, unlike the coherent receiver the complexity is independent of the
modulation index h. Actually, since the term is not explicitly exploited,
h is not even required to be a rational number. Finally, it is observed that no
channel information is needed and, therefore, the receiver complexity is greatly
reduced.
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Problems
5.1. Derive the upper bound

Hint: Note that is the probability that a pair of independent zero-
mean, unit variance, Gaussian random variables lies within the shaded
region of Fig. 5.23(a). This probability is exceeded by the probability that

lies within the shaded region of Fig. 5.23(b).

5.2. Consider the receiver model shown in Fig. 5.24, consisting of a linear
time-invariant filter followed by a sampler. The input to the filter
consists of a pulse of duration T corrupted by AWGN
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The output of the filter is

where and The signal-to-noise ratio
at the output of the sampler is defined as

Find the filter (and corresponding transfer function that will
maximize the SNR.

5.3. Derive the expression for the symbol error probability of in
(5.87).

5.4. Show that the symbol error probability for coherent M-ary PSK is bounded
by where

and is the symbol energy-to-noise ratio.

5.5. Suppose that BPSK signaling is used with coherent detection. The channel
is affected by flat Rayleigh fading and log-normal shadowing with a shadow
standard deviation of Plot the average probability of bit error against
the average received bit energy-to-noise ratio under the assumption that
the MS is stationary, i.e., use the Susuki distribution in (2.180). Plot several
curves with different values of

5.6. (computer exercise) This problem requires that you first complete the
computer exercise in Problem 2.20, wherein you will construct a Ricean
fading simulator. The objective of this question is to evaluate the perfor-
mance of BPSK signaling on a Ricean fading channel through computer
simulation.
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Suppose that we send one of two possible signal vectors
where is the transmitted bit energy. Assuming ideal coherent
detection, the received signal vector is

where is a Ricean distributed random variable and is a zero-mean
complex Gaussian random variable with variance , For a given the
probability of bit error is

where The probability of bit error with Ricean fading is

Evaluate the bit error probability by using computer simulation, where
is generated by the Ricean fading simulator that you developed in Prob-
lem 2.20. Assume that the value of stays constant for a bit duration, i.e.,
update your fading simulator every T seconds, where T is the bit duration.
Assume

Plot the simulated bit error probability, against the average received bit
energy-to-noise ratio Show your results for

and for Rice factors and

Note: To adjust you will need to adjust the value of in your faded
envelope generator.

5.7. Consider an AWGN channel where the channel gain, has the following
probability density function

a) Determine the average probability of bit error for binary DPSK signaling
over a channel with gain in terms over the average received bit energy-
to-noise ratio What value does the probability of bit error approach
as gets large?

b) Now suppose that two-branch antenna diversity is used with prede-
tection selective combining. Assume that the diversity branches are
perfectly uncorrelated. Determine the average probability of error in
terms of the average bit energy-to-noise ratio per diversity branch
What value does the probability of error approach as gets large?

c) Plot the probability of error for parts a) and b) on the same graph.
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5.8. Suppose that the average bit energy-to-noise ratio, in a cell is uniformly
distributed between 12 and 16 dB. Calculate the average probability of bit
error in the cell assuming that there is also Rayleigh fading, and binary
DPSK signaling is used.

5.9. Consider the differentially coherent receiver shown in Fig. 5.19. Show
that the pdf of U is given by (5.142).

5.10. Consider binary, orthogonal signaling using non-coherent FSK modu-
lation and demodulation. The bit error rate for non-coherent FSK on an
AWGN channel is

where is the received bit energy-to-noise ratio. Derive the
bit-error-rate for

a) a flat Rayleigh fading channel

b) a flat Ricean fading channel

5.11. Consider binary CPFSK modulation with modulation index
Compute the minimum squared Euclidean distance between any pair of
band-pass waveforms as given by

where and are the two band-pass signals whose phase
trajectories diverge at time and remerge sometime later. What is the
pairwise error probability between two such signals?

5.12. The squared Euclidean distance between a pair of CPM band-pass wave-
forms, and is

Show that

where M is the symbol alphabet size, is the energy per bit, and   is
the phase difference between the two signals.

5.13. Construct a differential detector for MSK signaling. Obtain an expression
for the probability of bit error for differentially detected MSK on an AWGN
channel.
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5.14. Suppose that GMSK signaling is used. Unfortunately, a GMSK pulse
is noncausal and, therefore, a truncated version of the pulse is usually
employed in a practical system, i.e., the time domain pulse is

Compute the maximum value of the ISI term in (4.173) as a function of the
normalized filter bandwidth BT when



Chapter 6

ANTENNA DIVERSITY

Rayleigh fading has been shown to convert an exponential dependency of
the bit error probability on the signal-to-noise ratio into an inverse linear one,
thereby resulting in a very large signal-to-noise ratio penalty. Diversity is one
very effective remedy that exploits the principle of providing the receiver with
multiple faded replicas of the same information bearing signal. To understand
the mechanism, let p denote the probability that the instantaneous signal-to-
noise ratio is below a critical threshold on each diversity branch. Then with
independently faded branches, is the probability that the instantaneous
signal-to-noise ratio is below the same critical threshold on all L diversity
branches.

The methods by which diversity can be achieved generally fall into seven
categories: i) space, ii) angle, iii) polarization, iv) field v) frequency, vi) mul-
tipath, and vii) time. Space diversity is achieved by using multiple transmit
or receiver antennas. The spatial separation between the multiple antennas is
chosen so that the diversity branches experience uncorrelated fading. Chapter 2
showed that a spatial separation of about a half-wavelength will suffice with
2-D isotropic scattering and an isotropic antenna. Angle (or direction) diversity
requires a number of directional antennas. Each antenna selects plane waves
arriving from a narrow angle of arrival spread, so that uncorrelated branches
are achieved. Polarization diversity exploits the property that a scattering en-
vironment tends to depolarize a signal. Receiver antennas having different
polarizations can be used to obtain uncorrelated branches. Field diversity ex-
ploits the fact that the electric and magnetic field components at any point are
uncorrelated. Frequency diversity uses multiple channels that are separated by
at least the coherence bandwidth of the channel. In many cases, this can be
several hundred kilohertz. However, frequency diversity is not a bandwidth
efficient solution for TDMA and FDMA systems. Frequency hop spread spec-
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trum CDMA systems can exploit frequency diversity through the principle of
fast frequency hopping, where each symbol is transmitted sequentially on mul-
tiple hops (or carriers) that experience uncorrelated fading. Multipath diversity
is obtained by resolving multipath components at different delays by using di-
rect sequence spread spectrum signaling along with a RAKE receiver. Spread
spectrum concepts will be discussed in detail in Chapter 8. Time diversity is
obtained by transmitting the same information at multiple time periods that are
separated by at least the coherence time of the channel. Error correction coding
techniques can be viewed as an efficient method of time diversity. Unfortu-
nately, the coherence time of the channel depends on the Doppler spread, and a
small Doppler spread implies a large coherence time. Under this condition, it
may not be possible to obtain time diversity without introducing unacceptable
delay. Finally, the above techniques can be combined together. For example
space and time diversity can be combined together by using space-time coding
techniques.

This chapter concentrates on antenna diversity techniques. Section 1. dis-
cusses receiver antenna diversity techniques where there is a single transmit
antenna and multiple receiver antennas. Section 7. considers transmit diversity
schemes where there are multiple transmit antennas and a single or multiple
receiver antennas.

1. DIVERSITY COMBINING
There are many methods for combining the signals that are received on the

disparate diversity branches, and several ways of categorizing them. Diversity
combining that takes place at RF is called predetection combining, while
diversity combining that takes place at baseband is called postdetection com-
bining. In many cases there is no difference in performance, at least in an
ideal sense. Here we concentrate on implementations that use postdetection
combining.

Consider the receiver diversity system shown in Fig. 6.1. The signals that are
received by the different antenna branches are demodulated to baseband with a
quadrature demodulator in Fig. 5.1, processed with correlator or matched filter
detector, and then applied to a diversity combiner as shown in Fig. 6.1. Here
we consider maximal ratio, equal gain, selective, and switched combining.

If the signal is transmitted, the received complex envelopes on the
different diversity branches are

where is the fading gain associated with the branch. The
AWGN processes are independent from branch to branch. The corre-
sponding received signal vectors are
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where

The fading gains of the various diversity branches typically have some
degree of correlation, and the degree of correlation depends on the type of
diversity being used and the propagation environment. To simplify analysis,
the the diversity branches are usually assumed to be uncorrelated. However,
branch correlation will reduce the achievable diversity gain and, therefore, the
uncorrelated branch assumption gives optimistic results. Nevertheless, we will
evaluate the performance of the various diversity combining techniques under
the assumption of uncorrelated branches.

The fade distribution will affect the diversity gain. In general, the relative
advantage of diversity is greater for Rayleigh fading than Ricean fading, because
as the Rice factor K increases there is less difference between the instantaneous
received signal-to-noise ratios on the various diversity branches. However, the
performance will always be better with Ricean fading than with Rayleigh
fading, for a given average received signal-to-noise ratio and diversity order.
For our purpose, we will consider the performance with Rayleigh fading.

2. SELECTIVE COMBINING
With selective combining (SC), the branch yielding the highest signal-to-

noise ratio is always selected. In this case, the diversity combiner in Fig. 6.1
performs the operation

For radio systems that use continuous transmission, SC is impractical because
it requires continuous monitoring of all diversity branches to obtain the time-
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varying complex gains If such monitoring is performed, then it is probably
better to use maximal ratio combining, as discussed in the next section, since
the implementation is not that much more complicated and the performance is
better. However, in systems that use TDMA, a form of SC can sometimes be
implemented where the diversity branch is selected prior to the transmission
of a TDMA burst. The selected branch is then used for the duration of the
entire burst. Obviously, such an approach is only useful if the channel does not
change significantly over a TDMA burst. In this section, however, we evaluate
selection diversity under the assumption of continuous branch selection.

With Rayleigh fading, the instantaneous received symbol energy-to-noise
ratio on the kth diversity branch has the exponential pdf

where is the average received branch symbol energy-to-noise ratio. With
ideal SC, the branch with the largest symbol energy-to-noise ratio is always
selected so the instantaneous symbol energy-to-noise ratio at the output of the
selective combiner is

where L is the number of branches. If the branches are independently faded,
then order statistics gives the cumulative distribution function (cdf)

Differentiating the above expression gives the pdf

The average symbol energy-to-noise ratio with SC is

Fig. 6.2 plots the cdf against the normalized symbol energy-to-noise
ratio Note that the largest diversity gain is obtained in going from
to and diminishing returns are obtained with increasing L. This is
typical for all diversity techniques.
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The bit error probability with slow fading is obtained by averaging over
the pdf of For example, consider binary DPSK with differential detection
having the bit error probability

Hence, with SC

where we have used the binomial expansion
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The bit error probability is plotted in Fig. 6.3, where is equal to the branch
bit energy-to-noise ratio since binary modulation is being used. SC is seen
to give a very large improvement in error performance. When (6.11)
shows that the bit error probability is proportional to Again, the largest
diversity gain is achieved with 2-branch diversity and diminishing returns are
realized with increasing L.

3. MAXIMAL RATIO COMBINING
With maximal ratio combining (MRC), the diversity branches are weighted

by their respective complex fading gains and combined. MRC realizes an ML
receiver as we now show. Referring to (6.2), the vector

has the multivariate Gaussian distribution
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where is the channel vector. From this expression, the
ML receiver chooses the message vector that maximizes the metric

Since is independent of the hypothesis as to which was sent
and the receiver just needs to maximize the metric

If signals have equal energy then the last term can be neglected, since it is the
same for all message vectors. This results in

An alternative form of the ML receiver can also be obtained by rewriting the
metric in (6.16) as

From the above development, the ML receiver can be constructed. The diversity
combiner in Fig. 6.1 just generates the sum

which is then applied to the metric computer shown in Fig. 6.4.



282

After weighting, co-phasing and combining, the envelope of the composite
signal component is

The weighted sum of the branch noise powers is

Hence, the symbol energy-to-noise ratio is

where and is the average symbol energy in the signal
constellation. Hence, is the sum of the symbol energy-to-noise ratios of
the diversity branches.

If the branches are balanced (which is a reasonable assumption with antenna
diversity) and uncorrelated, then has a chi-square distribution with 2L
degrees of freedom. That is,

I
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where

The cdf of is

It follows from (6.22) that the average symbol energy-to-noise ratio with MRC
is

Fig. 6.2 plots the cdf Plots of the cumulative distribution function
allow easy comparison of the various combining schemes, without the need
to consider particular modulation schemes. For example, with SC the cdf in
Fig. 6.2 shows that However, for MRC Fig. 6.5
shows that The implication is that MRC
is 2 dB more effective than SC.

Since MRC is a coherent detection technique we must limit our attention to
coherent signaling techniques, e.g., BPSK and M-QAM. For example, if BPSK
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is used the bit error probability is:

where

The last step follows after some algebra. The expression in (6.27) is plotted in
Fig. 6.6. Once again, diversity significantly improves the performance.

4. EQUAL GAIN COMBINING
Equal gain combining (EGC) is similar to MRC because the diversity

branches are co-phased, but different from MRC because the diversity branches
are not weighted. In practice, such a scheme is useful for modulation tech-
niques having equal energy symbols, e.g., M-PSK. With signals of unequal
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energy, the complete channel vector is required anyway
and MRC might as well be used. With EGC, the receiver maximizes the metric

This metric can be rewritten in the alternate form

The combiner in Fig 6.1 just generates the sum

The vector is then applied to the metric computer shown in Fig. 6.4 with
The reason for setting comes from the

assumption of equal energy signals.
After co-phasing and combining, the envelope of the composite signal is

and the sum of the branch noise powers is The resulting symbol energy-
to-noise ratio is

The cdf and pdf for does not exist in closed form for However, for
and the cdf is equal to

Differentiating the above expression yields the pdf
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The average symbol energy-to-noise ratio with EGC is

With Rayleigh fading, and Furthermore, if
the branches experience uncorrelated fading, then for

Hence,

The error probability with 2-branch combining can be obtained by using
the pdf in (6.35). For example, with coherent BPSK signaling the bit error
probability is (see Problem 6.8)

where

5. SWITCHED COMBINING
A switched combiner scans through the diversity branches until it finds one

that has a signal-to-noise ratio exceeding a specified threshold. This diversity
branch is selected and used until the signal-to-noise ratio again drops below the
threshold. When this happens another diversity branch is chosen which has a
signal-to-noise ratio exceeding the threshold. The big advantage of switched
combining is that only one detector is needed. There are several variations of
switched diversity. Here, we analyze two-branch switch and stay combining
(SSC). With SSC, the receiver switches to, and stays with, the alternate branch
when the signal-to-noise ratio drops below a specified threshold. It does this
regardless of whether or not the signal-to-noise ratio with the alternate branch
is above or below the threshold.
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Let the symbol energy-to-noise ratios associated with the two branches be
denoted by and and let the switching threshold be denoted by T. By
using (6.5), the probability that is less than T is

Likewise, the probability that is less than S is

Let denote the symbol energy-to-noise ratio at the output of the switched
combiner. Then

Since is statistically identical to we can assume that branch 1 is currently
in use. It follows that

The region corresponds to the case where has dropped below the
threshold T and a switch to branch 2 is initiated, but so that the
switch does not result in a greater than T. On the other hand, the region

corresponds to the case when either is between T and S or when
has dropped below the threshold T so that a switch to branch 2 occurs, and

Since and are independent, the above probabilities are

Therefore,

Fig. 6.7 plots the cdf for several values of the normalized threshold
(dB). Observe that SSC always performs worse than SC

except at the switching threshold, where the performance is the same. Since
SSC offers the most improvement just above the threshold level, the threshold
level should be chosen as the minimum acceptable instantaneous symbol
energy-to-noise ratio that the radio system can tolerate and still provide an
acceptable error probability performance. Finally, the optimum threshold,
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, depends on Since varies due to path loss and shadowing, the
threshold must be adaptive.

The probability of bit error can be also be computed for SSC. The pdf for
is

If binary DPSK is used, then the probability of error is

where is the average branch bit energy-to-noise ratio. The above expression
is plotted in Fig. 6.8 for several values of T. The performance with  is the
same as using no diversity at all, because no switching occurs. The performance
changes little for As T increases, the probability of switching q also
increases, as shown in Fig. 6.9. For some system, it may desirable to keep q as
small as possible to minimize the number of switches.
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6. DIFFERENTIAL DETECTION WITH EQUAL GAIN
COMBINING

Equal gain combining has a simple implementation and very good per-
formance when used in conjunction with differential detection. Differential
detection circumvents the need to co-phase and weight the diversity branches.
The overall receiver structure is shown in Fig. 6.10. The structure of the in-
dividual differential detectors depends on the type of modulation that is being
used. For DPSK, the detector is shown in Fig. 5.19, while for the
detector is shown in Fig. 5.20. In the latter case, the U and V branches are
combined separately.

For DPSK the decision variable at the output of the combiner at epoch n is,
from (5.137),

Once again, by using characteristic functions it can be shown that
where and are non-central and central chi-square random

variables with 2L degrees of freedom, respectively, and having the densities

where
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is the non-centrality parameter, and is the nth-order modified Bessel
function of the first kind, defined by

After some algebraic detail, the probability of error can be expressed in the
closed form [270]

where

and

Since has the central chi-square distribution in (6.23), averaging    gives
the result

This can be manipulated in the same form as (6.27) with

The various diversity combining techniques are compared in Fig. 6.11 for
differentially detected binary DPSK signals. It is apparent that SSC results in
the worst performance, followed by SC. Differential detection followed by EGC
give the best performance. Once again, we stress that it does not make sense
to use MRC with differential detection since MRC is a coherent combining
technique. Therefore, a curve for MRC is not included in Fig. 6.11.

7. TRANSMITTER DIVERSITY
Transmitter diversity uses multiple transmit antennas to provide the receiver

with multiple uncorrelated replicas of the same signal. The obvious advantage
is that the complexity of having multiple antenna is placed on the transmitter
which may be shared among many receivers. For example, the forward (base-
to-mobile) link in many wireless systems. The portable receivers can use just
a single antenna and still benefit from a diversity gain.
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Transmitter diversity can take on many forms, distinguished by the method
of using the multiple transmit antennas. Transmit diversity is straight forward
for systems that use time division duplexing (TDD), where different time
slots on the same carrier are used in the forward and reverse links, because
of the reciprocity of the channel impulse response. At the base station the
signals received on all antennas can be processed during every received burst.
During the next forward burst, the antenna that provided the highest received
symbol energy-to-noise ratio is selected and used. This is a form of selective
transmit diversity (STD). Obviously, this scheme requires that the channel
change slowly.

For frequency division duplexed (FDD) systems, transmit diversity is more
complicated to implement, because the forward and reverse links are not re-
ciprocal. Time division transmit diversity (TDTD) can be used for FDD by
switching the transmitted signal between two or more transmit antennas. Alter-
nate bursts are transmitted through two or more separate antennas, a technique
known as time switched transmit diversity (TSTD). Another method is delay
transmitter diversity, where copies of the same symbol are transmitted through
multiple antennas at different times. This has the effect of creating artificial
delay spread so the resulting channel looks like a fading ISI channel. An
equalizer can then be used to recover the signal and provide a diversity gain.
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More elaborate forms of transmit diversity use space-time or space-frequency
encoding of the transmitted information. These scheme require three functions:
(1) the encoding and transmission of the information sequence at the transmit-
ter, (2) the combining scheme at the receiver, (3) the decision rule for making
decisions. Alamouti [10] has introduced a simple repetition transmit diversity
scheme with maximum likelihood combining at the receiver. By using two
transmit antennas and one receiver antenna, the scheme provides the same di-
versity order as maximal ratio receiver combining with one transmit antenna
and two receiver antennas. This scheme requires no feedback from the re-
ceiver to the transmitter, and requires no bandwidth expansion. However, to
estimate the channel, the scheme requires separate pilot sequence insertion and
extraction for each of the transmit diversity antennas.

The scheme proposed by Alamouti can be considered a form of space-
time coding. More sophisticated forms of transmit diversity use specially
designed space-time error correcting codes [298]. The data is encoded by
a space-time encoder that chooses the transmitted signal constellation points
so that the coding and diversity gains are maximized. The encoded data is
split into n streams that are simultaneously transmitted by using n antennas.
Bandwidth efficient space-time trellis codes have designed for PSK and QAM
constellations [298]. These techniques have been applied to IS-136 with good
results [241, 242]. Furthermore, space-time codes may be designed with
multilevel structures, and multistage decoding can be useful when the number
of transmit antennas is large. This enables us to significantly reduce the
decoding complexity.

7.1 SPACE-TIME TRANSMIT DIVERSITY
Here we describe the scheme suggested by Alamouti [10] as an example of

transmit diversity. The scheme uses two transmit antennas and one receiver
antenna, referred to as diversity. In any given baud period, two data
symbols are transmitted simultaneously from the two transmit antennas. Sup-
pose the symbols transmitted from Antennas 1 and 2 are denoted by and

respectively. During the next baud period, the symbols transmitted from
Antennas 1 and 2 are and respectively. The channel gains for the
two antennas are denoted by and If the channel stays constant over
two baud intervals then we can write

where T is the baud period. The received complex vectors are
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where and represent the received vectors at time t and  respec-
tively, and and are the corresponding noise vectors.

The diversity combiner for this scheme is shown in Fig. 6.12. The combiner
constructs the following two signal vectors

Afterwards, the receiver applies the vectors and in a sequential fashion
to the metric computer in Fig 6.4, to make decisions by maximizing the metric

Using (6.59) and (6.60) in (6.61) gives

This is to be compared with the output of the MRC metric computers in Fig. 6.4.
With
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Comparison of (6.63) and (6.64) shows that the combined signals in each case
are the same. The only difference is the phase rotations of the noise vectors
which will not change the error probability due to their circular symmetry.

diversity:. We now consider the case of 2 transmit antennas and L
receiver antennas, and show that the performance is equivalent to a receiver
diversity order of 2L. The results are illustrated for the case of  diversity,
and the extension to   diversity will be obvious. To describe the scheme,
we need to introduce the following notation

channel gain between receiver antenna j and transmit antenna i.

received signal at antenna j at time t.
received signal at antenna j at time t + T.

The encoding scheme remains the same as before: symbols and are
transmitted from from Antennas 1 and 2 at time t, and symbols and :
are transmitted from Antennas 1 and 2 at time t + T. The received signals are

The combiner shown in Fig. 6.13 constructs the following two signal vectors

Again, the receiver applies the vectors and to the metric computer in
Fig 6.4 and decisions are made by maximizing the metric in (6.62).

To compare with MRC, we substitute appropriate equations to obtain

This is to be compare with the output of the MRC in Fig. 6.4. With
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Again, we see the transmit diversity scheme is equivalent to a
diversity scheme with MRC. The extension to show that an transmit
diversity scheme is equivalent to a 2L diversity scheme with MRC is obvious.

Implementation Issues:. There are several key implementation issues with
the above transmit diversity scheme, including the following:

Since there are 2 transmit antennas, the power per antenna must be halved
to maintain a constant transmit power. This results in a 3 dB loss in
performance compared to a single transmit antenna.

With 2 transmit antennas, twice as many pilot symbols are needed compared
to the case of one transmit antenna. The pilots must alternate between the
antennas. Alternatively, orthogonal pilot sequences can be used.

In order to achieve sufficient fading decorrelation on the diversity branches,
the transmit antennas must be spaced at the same distance that would re-
quired if the same two antennas were to provide receiver diversity. We
have seen in Chapter 2.1.5.1 that the required separation is several tens of
wavelengths.
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Problems
6.1. Consider a Rayleigh random variable, X, with a pdf given by (2.42) in the

text.

a) Let be a set of independent Rayleigh random vari-
ables each with an rms value of Derive the pdf of

This result is useful for the study of selective combining diversity sys-
tems.

b) Again, using the set derive the pdf of

This result is useful for the study of maximal ratio combining diversity
systems.

6.2. Suppose that two-branch selective combining is used. However, the
branches are mismatched such that where the are
the average received symbol energy-to-noise ratios for the two branches.
Plot the cdf of against the average normalized symbol energy-to-noise
ratio where Show several curves while
varying the ratio

6.3. Consider using selective combining with coherent BPSK. For BPSK, the
probability of bit error is The instantaneous bit energy-
to-noise ratio is given by (6.8).

a) Derive an expression for the average bit error probability

b) Repeat part a) for two-branch switched diversity combining where the
pdf of  is given by (6.47).

c) Plot and compare the results in parts a) and b) for two-branch diversity.

6.4. Suppose that binary DPSK signaling   is used on a flat
Rayleigh fading channel with 3-branch diversity. The diversity branches
are assumed to experience uncorrelated fading. The signal that is received
over each diversity branch is corrupted with AWGN having a one-sided psd
of watts/Hz. The noise processes that are associated with the diversity
branches are mutually uncorrelated.
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a Suppose that a separate differential detector is used on each diver-
sity branch, yielding three independent estimates of each transmitted
bit, i.e., for the receiver generates the three independent estimates

. Majority logic combining is then used to combine the
three estimates together to yield the final decision i.e.,

Find an expression for the probability of bit error, Evaluate . for
where is the average received branch bit energy-to-noise

ratio.

b) Evaluate the probability of bit error for dB if the receiver uses
3-branch diversity with postdetection equal gain combining. Compare
with the result in part a).

c) Generalize the expression for the probability of bit error in part a) to
L-branch diversity.

6.5. Derive (6.27) for BPSK and maximal ratio combining.

6.6. Derive (6.54) for DPSK with differential detection followed by equal gain
combining.

6.7. The bit error probability MSK signaling on a Rayleigh fading channel
with additive white Gaussian noise is

a) Derive a Chernoff upper bound (see Appendix A) on the probability of
bit error for the same channel and compare the Chernoff bound with the
exact error probability.

b) Repeat part a) if the receiver employs L-branch diversity. Assume
uncorrelated diversity branches with

6.8. Suppose that BPSK modulation is used with two-branch diversity and
coherent equal gain combining. Assume uncorrelated diversity branches
with Show that the probability of bit error for a Rayleigh
fading channel is given by (6.38).

6.9. Consider a system that uses L-branch selection diversity. The instanta-
neous received signal power on each diversity branch, ,
has the non-central chi-square (Ricean fading) distribution in (2.51). The
instantaneous received signal power from each interferer on each diver-
sity branch, has the exponential (Rayleigh fading)
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distribution in (2.44). Note that all the and are all independent.
Let L be the instantaneous carrier-to-
interference ratio for each diversity branch and Derive an
expression for the probability of co-channel interference outage

Plot against for various L.

6.10. Consider a coherent MSK system that operates over a slow flat Rayleigh
fading channel in the presence of a single flat Rayleigh faded co-channel
interferer. The received carrier-to-interference ratio is where

and are independent exponentially distributed random variables with
density in (2.44). The average signal-to-interference ratio is defined as

a) Derive an expression for the probability density function of λ.. What is
the mean value of

b) To improve the bit error probability performance, L-branch antenna
diversity is employed at the receiver. Assume that the experienced
on each of the diversity branches are independent. If selective diversity
combining is used, what is the probability density function of the signal-
to-interference ratio at the output of the selective combiner?

6.11. Suppose that two-branch antenna diversity is used with selective com-
bining. However, the branches have correlated fading so that the maximum
diversity gain is not achieved. Let and be the joint pdf for the instanta-
neous bit energy-to-noise ratio for each diversity branch, and let
It is known that joint pdf of and is

where is magnitude of the covariance of the two complex, jointly Gaussian
random processes that are associated with each diversity branch. Derive an
expression for the cdf of the output of the selective combiner

Plot the cdf for various What conclusions can you make?
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Chapter 7

EQUALIZATION
AND INTERFERENCE CANCELLATION

Land mobile radio channels are modeled as fading dispersive channels,
because of the multipath propagation and the randomly changing medium
characteristics. Many types of impairments are observed on these channels
such as multipath spread (or delay spread), fading, Doppler spread, nonlinear
distortion, frequency offset, phase jitter, impulse noise, thermal noise, and co-
channel and adjacent channel interference arising from spectrum sharing. This
chapter concentrates on the effects of delay spread, fading, Doppler spread,
thermal noise, and co-channel interference. Delay spread causes interference
between adjacent symbols, known as intersymbol interference (ISI), a large
Doppler spread indicates rapid channel variations and necessitates a fast con-
vergent algorithm when an adaptive receiver is employed, and fading results
in a very low received signal-to-noise ratio or signal-to-interference ratio when
the channel exhibits a deep fade.

An adaptive equalizer is an arrangement of adjustable filters at the receiver
whose purpose is to mitigate the combined effect of ISI and noise [210, 274].
Two broad categories of equalizers have been documented extensively in the
literature; symbol-by-symbol equalizers and sequence estimators. Symbol-
by-symbol equalizers include a decision device to make symbol-by-symbol
decisions on the received symbol sequence, while sequence estimators make
decisions on sequences of received symbols. Many structures and adaptive
algorithms have been proposed for each type of equalizer for different channel
characteristics. Sequence estimators are generally more complex than symbol-
by-symbol equalizers, but can potentially offer better performance.

This chapter begins with a brief survey of adaptive equalization techniques.
This is followed by a discussion of ISI channel modeling in Section 2.. The op-
timum receiver for digital signaling on an ISI channel is presented in Section 3..
Section 4. provides a treatment of symbol-by-symbol equalizers and Section 5.
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provides a treatment of sequence estimators. Section 6. provides an analysis
of the bit error rate performance of maximum likelihood sequence estimation
(MLSE) on static ISI channels and multipath fading ISI channels. Finally,
Section 7. analyzes the performance of fractionally-spaced MLSE receivers on
ISI channels.

1. OVERVIEW
1.1 SYMBOL-BY-SYMBOL EQUALIZERS

Lucky [208, 209] was the first to develop an adaptive (linear) equalizer for
digital communication systems in the mid-1960s. This equalizer was based on
the peak distortion criterion, where the equalizer forces the ISI to zero, and it
is called a zero-forcing (ZF) equalizer. Soon after, Proakis and Miller [271],
Lucky et. al. [210], and Gersho [134] developed the linear LMS equalizer,
based on the least mean square (LMS) criterion. The LMS equalizer is more
robust than the ZF equalizer, because the latter ignores the effects of noise.
Thaper [319] examined the performance of trellis coded modulation for high
speed data transmission on voiceband telephone channels, and proposed a
simple receiver structure that used an adaptive linear equalizer. He reported
that the performance was close to ideal, but his work did not include the more
severely distorted multipath fading ISI channels.

Linear equalizers have the drawback of enhancing channel noise while trying
to eliminate ISI, a characteristic known as noise enhancement. As a result,
satisfactory performance is unattainable with linear equalizers for channels hav-
ing severe amplitude distortion. In 1967, Austin [20] proposed the nonlinear
decision feedback equalizer (DFE) to mitigate noise enhancement. Because
only the precursor ISI is eliminated by the feedforward filter of the DFE, noise
enhancement is greatly reduced. To eliminate the postcursor ISI, the estimated
symbols are fed back through the feedback filter of the DFE. However, this
introduces error propagation which can seriously degrade the performance of
the DFE and complicate analysis of its performance. Belfiore and Park [29]
proposed an equivalent DFE, called a predictive DFE, by using a linear predic-
tor as the feedback filter. This structure is useful when a DFE is combined with
a sequence estimator for equalization and decoding of trellis-coded modulation
on an ISI channel [107].

Early adaptive equalizers were implemented by using a transversal filter
with a tap-spacing equal to the signal interval, T, known as symbol-spaced
equalizers. The performance of a symbol-spaced equalizer is very sensitive to
the sampling instant and can be very poor with an improperly chosen sampling
time [42, 329, 140]. Even with perfect timing and matched filtering, the
symbol-spaced equalizer cannot realize the optimal linear receiver because of
the finite tapped delay line structure. Brady [42], Monson [230], Ungerboeck
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[329], and Gitlin and Weinstein [140] solved this problem by proposing a
fractionally-spaced equalizer (FSE), where the tap-spacing is less than T. If
a symbol-spaced equalizer is preceded by a matched filter, then an FSE and a
symbol-spaced equalizer are equivalent. However, the exact matched filter is
difficult to obtain in practical applications because its structure depends on the
unknown channel characteristics and, hence, an FSE is quite attractive. It can
also be argued that the FSE can achieve an arbitrary linear filter with a finite-
length fractionally-spaced tapped delay line. Hence, the FSE is expected to
outperform a (finite-length) symbol-spaced equalizer even with ideal matched
filtering and sampling.

In the 1980’s, Gersho and Lim [135], Mueller and Salz [237], and Wesolowski
[354] proposed an interesting decision-aided equalizer, known as an ISI can-
celler. Theoretically, ISI cancelers can eliminate ISI completely without any
noise enhancement. However, a decision-aided mechanism is employed in the
equalizer so that it suffers from error propagation, similar to a DFE.

Various adaptation algorithms have been proposed to adjust the equalizer
coefficients. The LMS algorithm, proposed by Widrow et. al. [357], and
analyzed by Gitlin et. al. [139], Mazo [220, 221], Ungerboeck [327], and
Widrow et. al. [358], is the most popular because of its simplicity and numerical
stability. However, the LMS algorithm converges very slowly for channels with
severe amplitude distortion. This slow convergence is intolerable for many
practical applications. For example, Hsu et. al. [171] reported that the LMS
algorithm is not suitable for an HF shortwave ionospheric channel, because
the channel has severe amplitude distortion when a deep fade occurs and the
channel characteristics change very rapidly.

A considerable research effort has been directed to finding a fast-convergent
algorithms for adaptive equalizers. In 1974, Gordard [146] described a fast-
convergent algorithm later known as the recursive least square (RLS) algo-
rithm. This algorithm utilizes all available information from the beginning
of processing, and converges much faster than the LMS algorithm. Unfortu-
nately, the computational complexity is proportional to where N is the
order of the equalizer, which is too high for many practical applications. To
reduce the complexity, Falconer and Ljung [113], and Cioffi and Kailath [58]
developed different fast RLS algorithms in 1978 and 1984, respectively. These
algorithms have a complexity proportional to the equalizer order N. However,
when the algorithms are implemented with finite precision arithmetic, they tend
to become unstable. Examples of this numerical instability were reported by
Mueller [236].

Another RLS algorithm, called the recursive least square lattice (RLSL)
algorithm, was investigated by Morf et. al. [232], Satorius [291, 292], Fried-
lander [124], and Ling and Proakis [200]. The RLSL algorithm has a higher
complexity that the fast RLS algorithms, but has better numerical stability.
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However, numerical instability of the RLSL algorithm was still reported by
Perl et. al. [260].

Some applications of symbol-by-symbol equalization techniques to multi-
path fading channels were studied by Monson [230, 231], Hsu et. al. [171], Ling
and Proakis [201], and Eleftheriou and Falconer [99]. For rapidly time-varying
channels, a reinitialization procedure might be needed for fast-convergent algo-
rithms in order to avoid numerical instability [97]. Finally, Wong and McLane
[363] examined the performance of trellis-coded modulation for HF radio chan-
nels having in-band spectral nulls. They considered both linear and non-linear
equalization and proposed a modified DFE (MDFE).

1.2 SEQUENCE ESTIMATION
The Viterbi algorithm was originally devised by Viterbi for maximum like-

lihood decoding of convolutional codes [341, 342]. Forney recognized the
analogy between an ISI channel and a convolutional encoder, and applied the
Viterbi algorithm for the detection of digital signals corrupted by ISI and ad-
ditive white Gaussian noise [127]. Because of the efficiency of the Viterbi
algorithm, the implementation of optimum maximum likelihood sequence
estimation (MLSE) for detecting ISI-corrupted signals is feasible.

After Forney’s initial work [127], the MLSE receiver was modified and
extended. Magee and Proakis [215] proposed an adaptive MLSE receiver that
employed an adaptive channel estimator for estimating the channel impulse
response. Ungerboeck [328] developed a simpler MLSE that also accounted
for the effect of carrier phase errors and sampling time errors. Acampora
[6] used MLSE for combining convolutional decoding and equalization, and
extended the application of MLSE to quadrature amplitude modulation (QAM)
systems [7].

MLSE has a complexity that grows exponentially with the size of signal
constellation and the length of channel impulse response. MLSE is impractical
for systems having a large signal constellation and/or having a long channel
impulse response. Considerable research has been undertaken to reduce the
complexity of MLSE while retaining most of its performance. Early efforts
concentrated on shaping the original channel impulse response into the one
having a shorter length. Then a sequence estimator with a smaller number
of states can be applied. In [275], Qureshi and Newhall employed a linear
equalizer as the shaping filter. This method is quite successful if the original
channel and the desired channel have a similar channel spectrum. Falconer and
Magee [112], and Beare [27] adaptively optimized the linear equalizer and the
desired channel response, by minimizing the mean square error between the
output of the equalizer and the desired channel. This scheme has improved
performance when the original channel is quite different from the desired one,
but it has a higher complexity. As mentioned earlier, linear equalizers enhance
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the channel noise. Lee and Hill [191] proposed using a DFE to truncate the
channel impulse response so as to reduce the system complexity and mitigate
noise enhancement.

Another approach for reducing the complexity of MLSE lies in simplifying
the Viterbi algorithm itself. By employing suitable decision regions, Vermuelen
and Hellman [337] and Foschini [120] observed that only a small number
of likely paths need to be extended to obtain a near maximum likelihood
performance. Wesolowski [355] employed a DFE to determine a small set of
likely signal points, and then used the Viterbi algorithm to find the most likely
sequence path through a reduced-state trellis. Clark et. al. [60] and Clark and
Clayden [61] also proposed some similar detection methods.

Recently, two novel reduced-state sequence estimation techniques have been
proposed. and Qureshi [109] proposed reduced-state sequence es-
timation (RSSE), a technique that is especially useful for systems with large
signal constellations. Duel-Hallen and Heegard [90, 89] proposed delayed
decision-feedback sequence estimation (DDFSE), a technique that is useful
for channels with long impulse responses (DDFSE can be applied on channels
with an infinite impulse response). Chevillat and Eleftheriou [49] indepen-
dently proposed the same algorithm, but for a finite length channel. Both
RSSE and DDFSE use the Viterbi algorithm to search for the most likely path,
and provide a good performance/complexity trade-off. In both schemes, a feed-
back mechanism must be introduced to compute the branch metrics, because
of the reduction in the number of system states. This feedback introduces error
propagation. However, the effect of the error propagation is much smaller than
with a DFE [109, 90]. and Qureshi [109] also observed that for
channels with a finite channel impulse response, DDFSE can be conveniently
modeled as a special case of RSSE. [107] and Chevillat and Eleft-
heriou [49] also suggested using RSSE for systems employing trellis-coded
modulation. Sheen and Stüber have obtained error probability upper bounds
and approximations for RSSE and DDFSE for uncoded systems [301] and
trellis-coded systems [302].

and Forney [108] proposed a combined precoding and coded
modulation technique that achieves the best coding gain of any known trellis
code. With their technique, equalization is achieved by using Tomlinson-
Harashima precoding [108], which requires that the channel impulse response
be known at the transmitter.

For decoding convolutional codes, a sequential decoding algorithm is a good
alternative to the Viterbi algorithm, especially when the encoder has a long con-
straint length and the system has a moderate-to-high SNR [199]. It is apparent
that sequential sequence estimation (SSE) can be applied for detecting ISI-
corrupted signals. Long and Bush [206, 205], and Xiong et. al. [368] reported
some results on this application. In [206, 205], the Fano algorithm [114] was
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employed as the detection algorithm, and a DFE was used to determine the path
to be extended. If the DFE makes correct decisions most of the time, then the
number of nodes visited by the Fano algorithm can be reduced. The multiple
stack algorithm [48] was employed in [368] for avoiding the erasure or buffer
overflow problem encountered with sequential detection algorithms. Systems
with an infinite impulse response were also considered in [368].

Applications of sequence estimation techniques to multipath fading ISI chan-
nels were studied by D’aria and Zingarelli [76], D’avella et. al. [77], and
Eleftheriou and Falconer [99]. MLSE was employed for equalizing UHF land
mobile radio channels in [76, 77], and employed for equalizing HF shortwave
ionospheric channels in [99]. Tight upper bound on the error probability of dig-
ital signaling on fading ISI channels with MLSE have been provided by Sheen
and Stüber for uncoded systems [300] and trellis-coded systems [303]. Katz
and Stüber [285] have applied SSE for the detection of trellis-coded signals on
multipath fading ISI channels.

1.3 CO-CHANNEL INTERFERENCE CANCELLATION
The spectral efficiency of TDMA cellular systems, such as IS-54/136 and

GSM, is limited primarily by co-channel interference (CCI). Several approaches
may be used to combat CCI. Adaptive antenna arrays that use beam and
null steering principles are one solution. Co-channel interference cancella-
tion (CCIC) is another approach where signal processing techniques are used
to cancel the CCI. CCIC receivers can use either a single antenna or multiple
antennas. Single antenna CCIC receivers treat the channel as a multiple-input
single-output (MISO) channel. The problem in this case is very similar to
CDMA multiuser detection. However for narrowband systems, such as IS-
54/136, the CCIC receivers usually employ multiple receiver antennas to gain
additional degrees of freedom. The use of multiple receiver antennas creates a
multiple-input multiple-output (MIMO) channel.

Winters [361, 362] suggested an optimum linear minimum-mean square error
(MMSE) combining technique for flat fading channels with CCI. The optimum
combiner jointly combats the effects of fading and CCI through digital beam
forming with an M-element spatial diversity combiner. For the case of two
antenna elements, direct matrix inversion (DMI) was suggested as a means of
updating the antenna weighting coefficients. Optimum linear combining has
the disadvantage that it cannot combat ISI. Co-channel interference and ISI
can be jointly combated by using symbol-by-symbol equalization techniques.
DFE-based approaches have been suggested by Duel-Hallen [91], Tidestav et
al. [320] and Uesugi et al. [326].

By extending Forney’s maximum likelihood receiver [127], Van Etten [103]
proposed MLSE for joint maximum likelihood sequence estimation. Varia-
tions of the MLSE approach have been suggested by many authors, including
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Giridhar et al. [138], Yoshino et al. [375], Yokota et al. [374], and Ranta et
al. [277]. Bottomley and Jamal [41] have developed a scheme that combines
adaptive antenna arrays and MLSE equalization. CCIC is performed in the
Viterbi metric and the receiver is equivalent to Winter’s optimum linear com-
biner under flat fading channel conditions. This work was extended by Molnar
and Bottomley to a receiver that uses horizontal and vertical polarized antenna
arrays [229]. The polarization diversity increases the diversity gain against
fading that is lost when the Viterbi branch metric is modified for the purpose
of CCIC. An interesting modification to the receiver in [41] was very recently
proposed by Bottomley and Molnar [40], where CCIC is used for both channel
and data estimation.

Finally, we note that CDMA multi-user detection techniques can be readily
extended to narrow-band to perform CCIC in narrow-band TDMA systems.
In many cases, the mathematical framework is the same or very similar. The
optimum multiuser detector for asynchronous CDMA systems was developed
by [336]. A variety of less complex suboptimal CDMA multi-user
detectors have also been developed, including the decorrelator detector [211,
212] linear MMSE detectors [367], non-linear decision feedback detectors
[92, 93], and multi-stage detectors [334, 335].

2. MODELING OF ISI CHANNELS
Chapter 4 showed that the complex envelope of any modulated signal can

be expressed in the general form

This chapter restricts attention to linear modulation schemes where

is the amplitude shaping pulse, and is a complex symbol sequence.
In general, ASK and PSK waveforms are included, but most FSK waveforms
are not.

Suppose that the signal in (7.2) is transmitted over a channel having a time-
invariant complex low-pass impulse response The received complex
envelope is

where

is the convolution of the transmitted pulse and the channel impulse
response and is a zero-mean complex additive white Gaussian noise
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(AWGN) with a power spectral density of watts/Hz. Since the physical
channel is causal, the lower limit of integration in (7.4) can be replaced by zero,
resulting in

Finally, the overall pulse h (t) is assumed to have a finite duration so that
for and where L is some positive integer.

We will show in Section 3. that the maximum likelihood receiver consists of
an analog filter that is matched to the received pulse h ( t ) , followed
by a symbol- or T-spaced sampler. Assuming that a matched filter has been
implemented, the complex low-pass signal at the output of the matched filter is

where

and

is the filtered noise. Note that the overall pulse response f (t) accounts for
the transmit filter, channel, and receive filter. The overall system as described
above is shown in Fig. 7.1.

Sampling the matched filter output every T seconds yields the sample se-
quence

where and The first term in (7.9) is the desired
term, the second term is the ISI, and the last term is the noise at the output of
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the matched filter. It follows that the overall discrete-time system in Fig. 7.1
can be represented by a discrete-time transversal filter with coefficients

This representation is depicted in Fig. 7.2.
From (7.9), the condition for ISI-free transmission is

in which case

Chapter 4.2 shows that the pulse f (t) satisfies if and only if

That is, it is sufficient and necessary that the folded spectrum be flat.
For ISI-free transmission, the pulse f (t) can be any function that has equally
spaced zero crossings.

2.1 VECTOR REPRESENTATION OF RECEIVED
SIGNALS

As discussed in Chapter 5.1, a Gram-Schmidt orthonormalization procedure
can be used to express the received signal as

where the form a complete set of complex orthonormal basis functions
defined over the interval (0, T ) and
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It can be readily shown that

where1

Since the are complex Gaussian random variables with zero-mean and
covariance the vector has the
multivariate Gaussian distribution

where

and

3. OPTIMUM RECEIVER FOR ISI CHANNELS WITH
AWGN

The maximum likelihood receiver decides in favor of the symbol sequence x
that maximizes the likelihood function p(w |x, H) or the log-likelihood function
log p(w|x,H), i.e.,

choose x if

For an AWGN channel, p(w|x, H) has the form in (7.18) and the decision rule
in (7.21) is equivalent choosing x to maximize the quantity

1As in Chapter 5.1, we assume that h (t) has duration T, although the development applies to longer pulses
as well.
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Since the term is independent of x, it may be omitted so that the
maximum likelihood receiver chooses x to maximize

where Re{z} denotes the real part of z. To proceed further, note that

where and were introduced earlier. The variables are obtained
by passing the received low-pass signal through the matched filter
and sampling the output. Note that the T-spaced samples at the output of the
matched filter must be obtained with the correct timing phase, and in the above
development perfect symbol synchronization is implied. The are called
the ISI coefficients and have the property that By using (7.24) and
(7.25) in (7.23) we have the final form

The noise samples at the matched filter output are, from (7.8),

and their discrete autocorrelation function is

3.1 DISCRETE-TIME WHITE NOISE CHANNEL
MODEL

The correlation between the noise samples poses some complications when
implementing the various equalization schemes. To overcome this difficulty,
a noise whitening filter can be employed to process the sampled sequence

as described below, resulting in an equivalent discrete-time white noise
channel model. The z-transform of the vector f is
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Using the property we can write

It follows that F(z) has 2L roots with the factorization

where G(z) and are polynomials of degree L having conjugate
reciprocal roots. There are _ possible choices for the roots of and
any one will suffice for a noise whitening filter. However, some equalization
techniques such as RSSE and DDFSE require that the polynomial of the overall
response G(z) have minimum-phase. In this case, we can choose the unique
G(z) that has minimum phase, i.e., all the roots of G(z) are inside the unit
circle. With this choice of G(z), the noise whitening filter l/G*(1/z*) is a
stable but noncausal filter. In practice, such an noncausal noise whitening filter
can be implemented by using an appropriate delay. If the overall response
G(z) need not have minimum phase, then we can choose G*(1/z*) to have
minimum phase, i.e., all the roots of G*(1/z*) are inside the unit circle. This
choice ensures that the noise whitening filter l/G*(l/z*) is both causal and
stable.
Example 7.1

Consider a simple T-spaced two-ray channel where the received pulse is

and the transmitted pulse is normalized to have unit energy. The ISI
coefficients are

and, hence,

There are two possible choices for the noise whitening filter. Under the as-
sumption that suppose that the zero of G* (1 /z*) is chosen to be inside
the unit circle. That is,
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In this case, the noise whitening filter is stable and causal, and the overall
system is characterized by the non-minimum phase polynomial

Again, under the assumption that suppose that the zero of
is chosen to be outside the unit circle. That is,

In this case, the noise whitening filter is stable and noncausal, and the overall
system is characterized by the minimum phase polynomial

For any choice of noise whitening filter, the filter output is

From (7.28), the power spectral density of the noise at the input to the noise
whitening filter is

Therefore, the power spectral density of the noise at the output of noise whiten-
ing filter is

which is clearly white. The above development leads to the system shown in
Fig. 7.3, with the equivalent discrete-time white noise channel model shown in
Fig. 7.4. The discrete-time samples at the output of the noise whitening filter
are
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It follows that the effective overall channel impulse response can be described
by the channel vector

The symbol energy-to-noise ratio is

and the bit energy-to-noise ratio is M where M is the modulation
alphabet size.

3.1.1 TIME VARYING CHANNELS WITH DIVERSITY
For time-varying channels with D-branch  diversity, the corresponding discrete

time white noise channel model is shown in Fig. 7.5. At epoch k, the tap gains
associated with diversity branch d are described by the vector

The are discrete-time complex Gaussian random processes that are
generally correlated with the covariance matrix
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where H denotes Hermitian transposition. The received sample on branch d at
epoch k is

The are independent complex zero-mean white Gaussian noise samples
with variance The average received symbol energy-to-noise
ratio for branch d is

In many cases, the branches are balanced so that The
averaged received branch bit energy-to-noise ratio is

3.1.2 T/2-SPACED RECEIVER
In practice the the matched filter outputs are often oversampled for the

purpose of extracting timing information and to mitigate the effects of timing
errors. One important example that will be considered at various points in
this chapter is when the output of the receiver filter, y(t), is sampled with rate
2/T. In this case the overall channel impulse response and sampler can be
represented by a T/2-spaced discrete-time transversal filter with coefficients

where indicates rate 2/T sampling. If it so happens that the samples in

(7.42) are obtained with the correct timing phase, i.e., then
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where and More details on timing phase sensitivity
will be provided in Section 7.4.

The T/2-spaced noise samples at the matched filter output have the autocor-
relation

The z-transform of  denoted as  has 4L roots with the factorization

where and are polynomials of degree 2L having con-
jugate reciprocal roots. The T/2-spaced correlated noise samples can be
whitened by using a filter with transfer function Once again,

can be chosen such that all its roots are inside the unit circle,
yielding a stable and causal noise whitening filter. On the other hand, we could
choose the overall response to have minimum phase, if necessary. The
output of the noise whitening filter is

where is a T/2-spaced white Gaussian noise sequence with variance

and the are the coefficients of a T/2-spaced discrete-

time transversal filter having a transfer function The sequence
is the corresponding T/2-spaced input symbol sequence and is given by

The overall system and equivalent discrete-time models are shown in Figs. 7.6
and 7.7, respectively.

Comparing (7.31) and (7.45), we have
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Notice that the samples and correspond to the nth received baud,
where

Finally, by comparing (7.35) and (7.50), we note that is not necessarily
equal to because a different noise whitening filter is used to whiten the
T/2-spaced samples.

4. SYMBOL-BY-SYMBOL EQUALIZERS
There are two broad categories of symbol-by-symbol equalizers, linear for-

ward equalizers and nonlinear decision feedback equalizers. As shown in
Fig. 7.8, a linear forward equalizer consists of a transversal filter with ad-
justable tap coefficients. The tap co-efficients of the equalizer are denoted by
the column vector

where N is the number of equalizer taps. Assuming that the equalizer is
preceded by a whitened matched filter that outputs the sequence the
output of the equalizer is

where the are given by (7.35). The equalizer output is quantized to the
nearest (in Euclidean distance) information symbol to form the decision
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Observe that the overall discrete-time white noise channel and equalizer can
be represented by a single filter having the sampled impulse response

where

with

and That is, q is the discrete convolution of g and c.
Let the component of g of greatest magnitude be denoted by Note that

any choice of noise whitening filter that does not result in an overall transfer
function G(z) with minimum phase may have Also, let the number
of equalizer taps be equal to where is an integer. Perfect
equalization means that

where d – 1 zeroes precede the “1” and d is an integer representing the overall
delay. Unfortunately, perfect equalization is difficult to achieve and does not
always yield the best performance.
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4.1 LINEAR EQUALIZER
4.1.1 ZERO-FORCING (ZF)

With a zero-forcing (ZF) equalizer, the tap coefficients c are chosen to
minimize the peak distortion of the equalized channel, denned as

where is the desired equalized channel and the delay
d is a positive integer optimized to have the value Lucky
showed that if the initial distortion without equalization is less than unity, i.e.,

then is minimized by those N tap values which simultaneously cause
However, if the initial distortion before

equalization is greater than unity, the ZF criterion is not guaranteed to minimize
the peak distortion. For the case when the equalized channel is given
by

In this case the equalizer forces zeroes into the equalized channel and, hence,
the name “zero-forcing equalizer.”

Equalizer Tap Solution. For a known channel impulse response, the tap
gains of the ZF equalizer can be found by the direct solution of a simple set of
linear equations [59]. To do so, we form the matrix

and the vector

Then the vector of optimal tap gains, satisfies

Example 7.2.
Suppose that a system has the channel vector



320

where The initial distortion before equalization is

and, therefore, the minimum distortion is achieved with the ZF solution. Sup-
pose that we wish to design a 3-tap ZF equalizer. Since is the component
of g having the largest magnitude, and the optimal equalizer delay is

Suppose that the desired response is so that
We then construct the matrix

and obtain the optimal tap solution

The overall response of the channel and equalizer is

Hence, the minimum distortion with this equalizer is

Adaptive Solution. In practice, the channel impulse response is unknown to
the receiver and a known finite length sequence x is used to train the equalizer.
During the training mode, the equalizer taps can be obtained by using the
following steepest-descent recursive algorithm:

where

is the error sequence, is the set of equalizer tap gains at epoch n, and
is an adaptation step-size that can be optimized to provide rapid convergence.
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spectral density (psd)

Therefore, the psd of the noise sequence at the output of the equalizer is

and the noise samples have variance

If E then the signal-to-noise ratio at the output of the
infinite-tap equalizer is

Finally, we can show that (see Problem 6.2)

where is the folded spectrum of F(f) defined in (7.13), and
is the Fourier transform of the pulse It is clear

from (7.72) that ZF equalizers are unsuitable for channels that have severe
ISI, where the folded spectrum has spectral nulls or very small values.
Under these conditions, the equalizer tries to compensate for nulls in the folded
spectrum by introducing infinite gain at these frequencies. Unfortunately, this
results in severe noise enhancement at the output of the equalizer. Mobile radio
channels often exhibit spectral nulls and, therefore, ZF equalizers are typically
not used for mobile radio applications.

4.1.2 MINIMUM MEAN-SQUARE-ERROR (MMSE)
The minimum mean-square-error (MMSE) equalizer is more robust and

superior to the ZF equalizer in its performance and convergence properties
[271, 270, 274]. By defining the vector

the output of the equalizer in (7.52) can be expressed in the form
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A MMSE equalizer adjusts the tap coefficients to minimize the mean square
error (MSE)

Equalizer Tap Solution. If the channel impulse response is known, the
optimum equalizer taps can be obtained by direct solution. Define

where is an Hermitian matrix and is a length N column vector.
Using these definitions and assuming that the mean-square-
error is

The tap vector c that minimizes the mean square error can obtained by equating
the gradient to zero. It can be shown that (see Problem 6.15)

Setting gives

By using the identity and the fact that is Hermitian,
the minimum mean-square-error (MMSE) is

)

Since the overall channel and equalizer can be represented as a single filter with
impulse response q in (7.53) it follows that the MMSE can also be expressed
in the form

Example 7.3
Consider a system having the same channel vector as in Example 7.2. Sup-

pose that we wish to design a 3-tap MSE equalizer. In this case

and
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where The inverse of is

where det and

Hence,

With this tap solution,

and as

Adaptive Solution.  In practice, the channel impulse response is unknown.
However, the equalizer taps can be obtained by using the stochastic gradient
algorithm

where is given in (7.64). To show that (7.84) leads to the desired solution,
note from (7.80) that

It follows that

Performance of the MSE Equalizer. The performance of an MSE equalizer
having an infinite number of taps provides some useful insight. In this case
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Since the delay d with an infinite-tap equalizer is irrelevant we can choose
so that

The equation for the optimal tap gain vector can be written in the
form

Taking the z-transform of both sides of (7.88) gives

and, therefore,

The equivalent MSE equalizer that includes the noise whitening filter
is

Notice that C'(z) has the same form as the ZF equalizer in (7.69), except for
the noise term No in the denominator. Clearly, the ZF and MSE criterion lead
to the same solution in the absence of noise.

The most meaningful measure of performance is the bit error probability.
However, for many equalization techniques, the bit error probability is a highly
nonlinear function of the equalizer co-efficients. One possibility is to evaluate
the MMSE of an infinite-length MMSE equalizer [270]

Note that and that when there is no ISI or noise and
when the folded spectrum exhibits a spectral null.

Another useful measure for the effectiveness of linear equalization tech-
niques is the signal-to-noise-plus-interference ratio (SNIR) defined as
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Although the MSE equalizer accounts for the effects of noise, satisfactory
performance still cannot be achieved for channels with severe ISI or spectral
nulls, because of the noise enhancement at the output of the equalizer [270, 107].
Another problem with a linear equalizer is the adaptation of the equalizer during
data mode. This problem is especially acute for systems that use trellis-coded
modulation, because the equalizer-based decisions are unreliable and inferior
to those in uncoded systems due to the reduced separation between the points
in the signal constellation. This problem can be partially alleviated by using
periodic training, where the equalizer taps are allowed to converge in the
periodic training modes. When the equalizer has converged, the updating
algorithm is disabled [88]. However, this approach is only suitable for fixed
channels or channels with very slow variations such as voiceband data channels.

4.2 DECISION FEEDBACK EQUALIZER (DFE)
The deleterious effects of noise enhancement that degrade the performance

of linear equalizers can be mitigated by using a nonlinear decision feedback
equalizer (DFE). The DFE consists of two sections; a feedforward section and a
feedback section. A typical DFE is illustrated in Fig. 7.9. The DFE is nonlinear
because the feedback path includes a decision device. The feedforward section
has an identical structure to the linear forward equalizer discussed earlier, and
its purpose is to reduce the precursor ISI. For reasons to be discussed later,
the input to the feedforward filter is the sampled output of the matched filter.
A separate noise whitening filter is not used in this case. Decisions made
on the equalizer outputs are propagated through the feedback filter, which is
used to estimate the ISI contributed by these symbols. The coefficients of
the feedback filter are the sampled impulse response of the tail of the system
impulse response including the forward part of the DFE.
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The output of the DFE is

where and are the tap coefficients of the feedforward and feedback
filters, respectively, and is the sequence of previously detected symbols.
Recall that the overall channel and feedforward portion of the equalizer can be
represented by the sampled impulse response in (7.53). By using (7.35), the
DFE output can be written as

If we choose

so that the second summation is zero and if correct decisions are made so that
the first summation is zero, then

The first and second summations in (7.97) are the residual ISI associated
with the feedforward and feedback filters, respectively. Note that feedback
coefficients in (7.96) result in the complete removal of ISI from the previously
detected symbols if

Equalizer Tap Solution. The co-efficients and can be adjusted
simultaneously to minimize the mean square error, sometimes called a MMSE-
DFE. Define
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and

Then the MSE can be expressed as

Since (7.104) and (7.77) have the same form it follows that the optimal tap
solution can be obtained by defining

I

I

I

Adaptive Solution. The feedforward taps of the DFE can be adjusted by
using

while the feedback coefficients can be adjusted according to

To see that this leads to the desired solution, observe that
implies that

Performance of the DFE. Since the feedback section of the DFE eliminates
the postcursor residual ISI at the output of the forward filter, it is apparent that
the optimum setting for the forward filter for an infinite length DFE is identical
to a stable, non-causal, noise whitening filter that results in a overall channel
with a minimum phase response [274]. The MMSE for the infinite length DFE
is  [289]

where



Equalization and Interference Cancellation   329

4.3 COMPARISON OF SYMBOL-BY-SYMBOL
EQUALIZERS

The typical steady-state performance for the various symbol-by-symbol
equalizers is now illustrated. Consider 4-PSK modulation on the static ISI
channels shown in Fig. 7.10, where we have plotted

Channel A is an 11-tap typical data-quality twisted copper pair telephone
channel with [363]

Channels B and C have [270]

Channels B and C have severe ISI, with Channel C having the worst spectral
characteristics because of the in-band spectral null.

Fig. 7.11 shows the performance of the linear ZF and MMSE equalizers for
Channel A. The equalizers have 21 taps and the tap gains are obtained using the
previously discussed iterative techniques. The linear ZF and MMSE equalizers
have about the same performance for Channel A.

Fig. 7.12 shows the performance for Channel B. With linear equalization,
the optimum tap weights are obtained from a direct solution that assumes a
known channel response. Obviously, the linear ZF equalizer is not suitable
for Channel B and the linear MMSE equalizer does not perform much better.
The performance of a non-linear MMSE-DFE with 11-tap forward section and
10-tap feedback section is also shown. The non-linear MMSE-DFE offers
much better performance than the linear ZF or MMSE equalizers for the same
complexity. Likewise, Fig. 7.13 shows the performance on Channel C. Again,
both the linear ZF and MMSE equalizers perform quite poorly, while the non-
linear MMSE-DFE offers much better performance.

5. SEQUENCE ESTIMATION
5.1 MLSE AND THE VITERBI ALGORITHM

Recall that the overall disrete-time white noise channel with D -branch di-
versity reception can be modeled by collection of D transversal filters that are
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T-spaced and have (L + l)-taps, as shown in Fig. 7.5. From Fig. 7.5, it can
be seen that the channel has a finite number of states. If the size of the signal
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constellation is there are total of states. The state at epoch k is

Assume that k symbols have been transmitted over the channel. Let
denote the vector of signals received on all

diversity branches at epoch n. After receiving the sequence the
ML receiver decides in favor of the sequence that maximizes the
likelihood function

or, equivalently, the log-likelihood function

Since the noise samples in (7.35) are independent, and depends only
on the L most recent transmitted symbols, the log-likelihood function (7.118)
can be rewritten as

where for If the second term on the right side of (7.119)
has been calculated previously at epoch then only the first term, called
the branch metric, has to be computed for the incoming signal vector at
epoch k.

The model in Fig. 7.5 gives the conditional pdf

so that yields the branch metric

Note that the receiver requires knowledge of the channel vectors to com-
pute the branch metrics.

Based on the recursion in (7.119) and the branch metric in (7.121), the well-
known Viterbi algorithm [342] can be used to implement the ML receiver by
searching through the -state trellis for the most likely transmitted sequence
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x. This search process is called maximum likelihood sequence estimation
(MLSE). Here, we give a very brief outline of the Viterbi algorithm followed
by an example. At epoch k, assume that the algorithm has stored surviving
sequences   (paths through the trellis) along with their associated path
metrics (distances from the received sequence) that terminate at state

The path metric is defined as

where is the sequence of branch metrics along the surviving path
After the vector has been received, the Viterbi algorithm executes the
following steps for each state for

1. Compute the set of path metrics

for all possible paths through the trellis that terminate in state

2. Find where, again, the maximization is

over all possible paths through the trellis that terminate in state

3. Store and its associated surviving sequence Drop all
other paths.

In Step 1 above, is the branch metric associated with the

transition and is computed according to the following variation of
(7.121)

where ) is a symbol that is uniquely determined by the transition

and the L most recent symbols are uniquely

specified by the previous state
After all states have been processed, the time index k is incremented and the

whole algorithm repeats. As implied in (7.119), the ML receiver waits until
the entire sequence has been received before making a decision. In
practice, such a long delay (maybe infinite) is intolerable and, therefore, a
decision about is usually made when is received and processed. It
is well known that if the performance degradation caused by the
resulting path metric truncation is negligible [342]. MLSE and the Viterbi
algorithm is best explained by example and one follows.
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Example 7.4
Suppose that the binary sequence is transmitted over a

three-tap static ISI channel with channel vector In this case
there are four states, and the system can be described the state diagram shown
in Fig. 7.14. Note that there are two branches entering and leaving each state.
In general there are such branches.

The system state diagram can be used to construct the trellis diagram shown
in Fig. 7.15, where the initial zero state is assumed to be State
transitions with a solid line correspond to an input +1, while those with adashed
line correspond to an input –1.
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,

Suppose that the data sequence is
transmitted. Then the state sequence follows the shaded path in Fig. 7.15. The
noiseless received sequence is where

Hence, for the data sequence the
noiseless received sequence is

Suppose that the noisy received sequence is

The Viterbi algorithm is initialized with for
The initial state is assumed to be Executing the Viterbi
algorithm yields the result shown in Fig. 7.16, where the X’s on the branches
in the trellis denote dropped paths and the numbers in the trellis are the path
metrics corresponding to the surviving sequences. The path metrics are equal
to the square Euclidean distance between the surviving sequence and
the corresponding received sequence v.

5.1.1 ADAPTIVE MLSE RECEIVER
The Viterbi algorithm requires knowledge of the channel vectors to

compute the branch metrics in (7.121) so that an adaptive channel estimator
is needed. Various channel estimators have been proposed in the literature
[62, 215, 98]. Usually, a transversal digital filter with the LMS algorithm is
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used for this purpose, because of its good performance, numerical stability,
and simplicity in implementation [163, 215]. Another possible adaptation
algorithm is the Recursive Least Squares (RLS) or the Kalman algorithm [163].
The RLS algorithm has a very fast convergence rate as compared to the LMS
algorithm. However, it is very complicated to implement and it is sensitive
to roundoff noise that accumulates due to recursive computations which may
cause numerical instabilities in the algorithm [270]. It has also been reported
that the tracking properties of the LMS algorithm for the purpose of channel
estimation in a fast varying environment are quite similar to those of the RLS
algorithm [98, 198, 304]. For these reasons the LMS algorithm is commonly
used during the tracking mode in adaptive MLSE receivers. During the training
mode, it is possible that the RLS algorithm could offer better performance than
the LMS algorithm.

A straightforward method for adaptive channel estimation with an MLSE
receiver is to use the final decisions at the output of the Viterbi algorithm
to update the channel estimator during the tracking mode. With the LMS
algorithm, the tap coefficients are updated according to

where is the adaptation step size, and

is the error associated with branch d at epoch k. A major problem with this
channel estimator is that it lags behind the true channel vector by the decision
delay Q that is used in the Viterbi algorithm. To see this, we can write

so that

Hence, channel time variations over the decision delay Q will cause the terms
to be non-zero, and this will degrade the tracking

performance. The decision delay Q could be reduced but this will also reduce
the reliability of the decisions that are used to update the channel
estimates in (7.124). Since decision errors will also degrade the performance
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of the estimator, the overall performance improvement obtained by reducing Q
is often minimal.

One solution to this problem is to use per-survivor processing [296, 297,
276, 197], where each state has its own channel estimator that tracks the
channel. In this case, the tap coefficients are updated according to

where is the surviving sequence associated with each state. Notice that the
individual channel estimators for each state use zero-delay symbols in their
adaptation algorithm and, therefore, good channel tracking performance is ex-
pected. These zero-delay symbols are uniquely defined by the state transitions
in the trellis diagram.

5.1.2 T/2-SPACED MLSE RECEIVER
Suppose that the matched filter output is sampled at rate 2/T and the T/2-

spaced samples are processed with a T/2-spaced noise whitening filter as
shown in Fig. 7.6. Once again, the channel can be modeled as a finite-state
machine with the states defined in (7.116). The Viterbi decoder searches for
the most likely path in the trellis based on the T/2-spaced received sequence.
For each state transition at epoch k, the samples and
are used by the Viterbi algorithm to evaluate the branch metric2

5.2 DELAYED DECISION-FEEDBACK SEQUENCE
ESTIMATION

Unfortunately, the complexity of the MLSE receiver grows exponentially
with the channel memory length. When the channel memory length becomes
large, the MLSE receiver becomes impractical. One solution is to reduce the
receiver complexity by truncating the effective channel memory to terms,
where is an integer that can be varied from 0 to L. Thus, a suboptimum
decoder is obtained with complexity controlled by parameter This is the
basic principle of delayed decision-feedback sequence estimation (DDFSE).

2 For notational simplicity we assume D = 1.
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Let the z transform of the overall discrete-time white noise channel, G(z),
be represented as a rational function where and are
polynomials. It is assumed that has degree and If L is finite
then The polynomial G(z) can be written as

where

From (7.130), is a rational function that can be written as
where is a polynomial of degree satisfying the equality

Let where X (z) is the z-transform of the input sequence.
Then

and

From (7.134) and (7.135), the system state at epoch k can be decomposed into
the state

and a partial state

There are   states in (7.136).
The DDFSE receiver can be viewed as a combination of the Viterbi algorithm

and a decision feedback detector. For each state transition  the
DDFSE receiver stores estimates of the partial states associated with

The DDFSE receiver uses the branch metric
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The estimate of is obtained from the estimate of the partial
state using (7.134). For finite length channels, the DDFSE branch metric can
be written as

where is the component of the surviving sequence Since
each path uses decision-feedback based on its own history, the DDFSE receiver
avoids using a single unreliable decision for feedback. Hence, error propagation
with a DDFSE receiver is not a severe as with a DFE receiver. When
the DDFSE receiver is equivalent to Driscoll’s decoder [88] and when
the DDFSE receiver is equivalent to the MLSE receiver.

Finally, since only the most recent symbols are represented by the state
in (7.136), it is important to have most of the signal energy contained in these
terms. Hence, it is very important that the noise whitening filter be selected
so that the overall channel G(z) has minimum phase. This requirement can
present some practical problems. For example, if one of the zeros is close to the
unit circle, then the non-causal noise whitening filter has a very long impulse
response and will be hard to approximate. Also, when the channel is time-
varying or unknown, the receiver cannot ensure that G(z) will have minimum
phase. Without G(z) having minimum phase, DDFSE does not work well.
This point will be repeated again in Chapter 8.
Example 7.5

Consider again the system in Example 7.4, where the received sequence is

Recall that so there are 4 system states. However, we
wish to apply DDFSE with the state The initial state

is assumed to Since the channel has finite length, (7.139) gives
the branch metric
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Applying DDFSE with the Viterbi algorithm gives the result shown in Fig. 7.17.
Once again, the X's on the branches in the trellis denote dropped paths and the
numbers in the trellis denote the path metrics.

5.3 REDUCED-STATE SEQUENCE ESTIMATION
For large signal constellations the number of states with DDFSE, is

substantial even for small One possible remedy is to reduce the number of
states by using Ungerboeck-like set partitioning principles. As described in
[109], for each element in a set partitioning is
defined where the signal set is partitioned into   subsets in a way of increasing
intrasubset minimum Euclidean distance3.

The subset in the partitioning to which belongs is denoted by
The subset partitioning is constrained such that is a finer

partition of and In this case this
following subset-state can be defined

Note that the RSSE subset-state does not completely specify the most recent
symbols Rather, the subset-state only specifies the subsets to which
these symbols belong.

The constraints on the subset partitioning ensure a properly defined subset-
trellis. Given the current subset-state and the subset to which the
current symbol belongs, the next subset-state is uniquely determined.
Since can only assume possible values, there are  subset-
states which could be much less than Note that if there are
parallel transitions associated with each subset-transition. The number of

3 If then RSSE becomes DDFSE.
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the parallel transitions is equal to the number of symbols in the corresponding
subset.

The Viterbi algorithm used to search the subset-trellis is the same one used
for MLSE except for a different branch metric and the possibility of parallel
transitions associated with the subset-transitions.4 When there are parallel tran-
sitions, the Viterbi algorithm chooses the parallel transition with the maximum
branch metric first5 and then execute steps for the Viterbi algorithm as defined
in Section 5.1.

With RSSE, the branch metric in (7.121) is not uniquely determined by
the associated pair of subset-states. This is solved by introducing a decision
feedback mechanism for the branch metric calculation [109, 90]. The RSSE
branch metric for a particular parallel transition associated with the subset-
transition is

where is the source symbol corresponding to the particular

parallel transition, and : is the lth component of the source symbol
sequence that corresponds to the surviving path leading to the subset-
state Similar to DDFSE, each path uses decision-feedback based on its
own history.

6. ERROR PROBABILITY FOR MLSE ON ISI
CHANNELS

Let x and be the transmitted and estimated symbol sequences, respectively.
For every pair x and the error sequence can be formed by defining

We arbitrarily assume that the bit error probability at epoch is
of interest, so that for all error sequences that are considered. For each
error sequence define the following useful error events.

The sequence is the maximum likelihood sequence.
The sequence has a larger path metric than sequence x.

It is also convenient to define the events

4With DDFSE there are no parallel transitions.
5 If the signal constellation has some symmetries, this step can be easily done by using a slicing operation
[109].
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and

where G is the set of all possible error sequences having and
is the set of error sequences containing no more than L – 1 consecutive zeroes
amid nonzero elements.

Let and be the system state sequences corresponding to
the symbol sequences x and respectively. An error event occurs between

and of length if

where , The symbol error probability at epoch j1 is

where is the set of symbol sequences that can have as the error sequence.
For different the set might be different. The third equation in (7.145)
is obtained by using the property that the events are disjoint for
Unfortunately, (7.145) does not admit an explicit expression and, hence, upper
bounding techniques are needed for the performance evaluation. A union bound
on the error probability will be employed in our analysis.

To obtain a tighter union bound, we now prove that the symbol error proba-
bility at epoch is

Consider the typical trellis diagram as shown in Fig. 7.18, where x denotes the
transmitted symbol sequence, and and denote two different symbol
sequences. It can be seen that the error sequence associated with
and the error sequence associated with belong to sets F and
respectively. For every there always exists an If the
sequence is the ML sequence, i.e., the event has occurred, then
the sequence has a larger path metric than the sequence x, i.e., the
event has occurred. This means that implies On the other hand,
if and the sequence has a larger path metric than sequence
x, then there exists a sequence such that the sequence   is the ML
sequence. Therefore, implies , and (7.146) is proven.
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The union bound on (7.146) yields

or, equivalently,

where is the set of error sequences that have the first non-zero element
starting at time and is the number of symbol errors associated with the
error sequence To obtain (7.148), we have used the following observations;
i) there are places for the error sequence to start such that
and ii) the error probability is independent of the place where the
error sequence starts. If the transmitted symbol sequence is long enough,
then the symbol error probability is independent of the time index
and, therefore, the time index will be omitted hereafter. Finally, for a given
transmitted symbol sequence x, the events for in (7.147) might
overlap. The reason is that there may be multiple symbol sequences that
simultaneously have a larger path metric than the path metric of the transmitted
symbol sequence. When the system is operating at a low SNR, there are more
overlapping events and, hence, the union bound (7.147) becomes looser.

From the definition of event the union bound (7.148) becomes
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where is the path metric associated with the input sequence x. To obtain
the bit error probability, (7.149) can be easily modified as

where n is the number bits transmitted per unit time, and is the number
of bit errors associated with the error sequence The probability

is called pairwise error probability.
We will see in the following two sections that the pairwise error probability

is independent of the transmitted symbol sequence x. Therefore, the union
bounds (7.149) and (7.150) simplify to

and

respectively. The expressions in (7.152) and (7.153) are easier to calculate than
those in (7.149) and (7.150), because not all of the symbol sequences have to
be considered in the calculation.

6.1 STATIC ISI CHANNELS
The pairwise error probability associated with the error event of length in

(7.144) is (see Problem 6.16)

\

where

and is the squared Euclidean path distance. At high signal-to-noise ratios
the error event probability is approximately
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where is the minimum value of and denotes the average number
of error events at distance

The squared Euclidean path distance in (7.155) can be rewritten as

where

is the squared branch distance and

is the branch distance matrix having elements
Define the error vector It follows

that and, hence, has rank one. Note that
and, therefore, is an eigenvector of and the only eigenvalue of is

The path distance matrix of the length error event in
(7.144) is defined as

Using (7.116) and (7.144), the elements of  E are

where

It follows that (7.157) has the Hermitian form Eg. Since E
is a positive definite matrix with all eigenvalues being real and positive. The
matrix E depends on the signal constellation and the length of the channel

By using (7.37) and the normalization the squared Euclidean
path distance can be expressed in the form

The ratio of the Hermitian form g to the inner product is called the
Rayleigh quotient of the vector g and is denoted R(g) [163]. The eigenvalues
of E are equal to the Rayleigh quotient of the corresponding eigenvectors. The
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Rayleigh quotient of E satisfies The minimum value of
R(g) occurs when and the maximum value occurs when
The eigenvalues of E are bounded by [163]

The condition number of E is defined as

6.2 FADING ISI CHANNELS
For fading ISI channels with D-branch diversity reception and maximal

ratio combining, the pairwise error probability is still given by (7.154) but the
squared Euclidean path distance associated with an error event of length is
[300]

where

The above expression can be written in the form

In general, the covariance matrix defined in (7.39) is not diagonal. A
non-diagonal matrix leads to considerable analytical difficulty and loss
of insight. However, if is diagonal, then a normalized channel vector

can be defined such that As a result, (7.167) can be
rewritten as

where

and where

with It follows that where and,
hence, is a rank one matrix and is an eigenvector of The only
nonzero eigenvalue of
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For slowly time-variant channels it is reasonable to assume that re-
mains constant over the length of the dominant error events, i.e.,
This assumption holds even for relatively large Doppler frequencies and error
event lengths. For example, if the channel exhibits 2-D isotropic scattering
and then error events up to length 20 have ,

By using the above assumption, (7.168) can be
written as

where

The matrix is also positive definite with all its eigenvalues real and positive.
The elements of are given by where

is given by (7.162). The trace of the matrix is

where the are the eigenvalues of The last eaualitv in
(7.173) is obtained by using (7.41) along with the normalization
Since is Hermitian, there exists a diagonalization such that

is a unitary matrix and is a diagonal matrix consisting of the eigenvalues
of be the corresponding diagonal transformation. Hence,

where so that the are independent zero-mean unit-
variance Gaussian random variables. Using (7.165) and (7.174) gives

where The are chi-square distributed with 2 degrees of
freedom and, therefore, the characteristic function of  is
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where Finally, the pairwise error probability is

where is the probability density function of Note that if some
of the eigenvalues are the same, then there will be repeated poles in the
characteristic function in (7.176). This can be expected to be the case for
balanced diversity branches, and will also be the case if the channel vector
has equal strength taps. Consider the case where D-branch antenna diversity is
used and the channel taps are not of equal strength. In this case,
1 , . . . , D and the characteristic function in (7.176) has the form

where

and The pdf of is

From (7.177) and (7.180), the exact pairwise error probability is

where

From (7.173), the have the sum value constraint
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Define as the set of all -component vectors
The set 5 is convex, since for any pair of vectors and the

convex combination is contained in S for any
If the pairwise error probability is treated as a mapping from S to R, then it
is a convex function of and, hence, has a unique minimum. For example,
Fig. 7.19 shows the pairwise error probability for a three-tap channel

with equal strength taps Note that the value of
is determined uniquely by the values of and , and that is why a

three dimensional graph is used. By using variational calculus, it is shown in
Appendix 6A that the pairwise error probability is minimized when the  are
all equal, i.e., resulting in the minimum pairwise
error probability

where

For a given error event, the pairwise error probability is minimized when
is perfectly conditioned, i.e., Recall that

where represents the ratio of the maximum and min-
imum channel tap variances We have seen that E depends
only the signal constellation being used and the channel vector length
However, has information about the signal constellation and power distri-
bution of the fading ISI channel. It follows that with equality
if and only if the channel has equal strength taps. This means that any system
has the best performance when the fading ISI channel has equal strength taps.

6.3 COMPUTING THE UNION BOUND
Many algorithms have been suggested for evaluating the union bound on the

error probability. One technique is to obtain a union-Chernoff bound by finding
the transfer function of the error-state diagram and imposing a Chernoff upper
bound on the complementary error function appearing in (7.177). This approach
has three draw backs i) the Chernoff bound is very loose when the channel
exhibits a deep fade, ii) the transfer function is difficult to obtain for large-state
systems, and iii) if the exact pairwise error probability is available, then the
transfer function approach cannot be used. To overcome these difficulties, a
method based on the error-state transition matrix can be used for calculating
the upper bound [7], but it demands a very large amount of computer memory.
Here we discuss another alternative that uses an error-state diagram with a
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one-directional stack algorithm. Note that other types of algorithms could also
be used for this calculation [284].

6.3.1 ERROR-STATE DIAGRAM
To evaluate the upper bound, the error-state diagram must be defined. As-

sume a system with error-states, By splitting the zero
state, an -node error-state diagram can be constructed such that the
initial and final nodes, and respectively, are zero-error states and the
intermediate nodes are non-zero error states. Let denote the branch-weight
associated with the to transition, defined as follows:

where

and are intermediate (dummy) variables.

is the fraction of correct symbols such that the transition from  to
is possible.

is the number of  bit errors associated with the transition from to

is given by (7.169)6, but we emphasize that it is a function of the to
transition.

6Here we assume equal diversity branches, i.e., so that .
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From the definition of in (7.186), the weight of a particular path in the
error-state diagram is

where {(i, j)} denotes the set of state transitions associated with the path under
consideration. Note that each path beginning at the initial node and ending at
the final node in the error-state diagram represents an error sequence
where the set E is defined in (7.148). From (7.187)

and

These values are required in the calculation of (7.152) or (7.153).

6.3.2 THE STACK ALGORITHM

The union bounds in (7.152) and (7.153) require the calculation of an infinite
series. In practice, the mathematical rigor must be sacrificed by truncating the
series at an appropriate point. The basic idea of the stack algorithm is to include
the R error sequences that correspond to the R largest terms in (7.152) or
(7.153). The value of R is chosen so that the rest of the terms in the union bound
are insignificant. Alternatively, the union bound can be truncated by excluding
all paths that have a pairwise error probability less than a threshold

The stack algorithm maintains a stack with each path (entry) containing the
following information; terminal node,
and the intermediate bit error probability Here, is calculated by

where is calculated by using (7.181) along with the
eigenvalues associated with the matrix

The stack is ordered (from top-to-bottom) in order of decreasing intermediate
bit error probability The algorithm first checks if the top path has terminated
at the final node. If it has, then the algorithm outputs which is one of the R
terms that will be included in the calculation of (7.152) or (7.153); otherwise,
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the top path is extended and the stack is reordered. Since the top path has the
largest it is likely that the extensions of this path will correspond to one or
more of the R dominant terms that are of interest. All paths with the same
can be grouped together for easier sorting of the stack. The complete algorithm
is given in Fig. 7.20 and is described as follows.

1. Load the stack with the initial node, set all the parameters equal to zero, and
input the threshold value (described below) or R.

2. Determine if the top path terminates at the final node. If it does, then go to
Step 3; otherwise go to Step 4.

3. Output and determine if the algorithm should be terminated. If yes,
then terminate the algorithm; otherwise delete the top path and go to Step
2.

4. Extend the top path and calculate
and for all of the extension paths.

5. Delete the top path.

6. Insert the new extension paths and rearrange the stack in the order of
decreasing intermediate bit error probability

7. Go to Step 2.

6.4 EXAMPLES
Union bounds will now be evaluated and compared with computer simula-

tions for two example systems by using the above procedure. In the simulations,
The tap coefficients are generated by passing independent

complex white Gaussian noise through a digital Butterworth filter with a nor-
malized 3-dB cut off frequency equal to Hz, typical of an
HF channel [201]. All analytical results are obtained by setting the threshold

is the maximum term in the upper bound in
(7.153).
Example 7.6 BPSK Modulated System

A three-tap channel with BPSK modulation is analyzed in this example,
where There are three different error symbols in this case, i.e.,

The error-state diagram is shown in Fig. 7.21. Observe that the
error-state diagram is symmetrical in that there are always two paths having the
same set of parameters and A. Combining all such pairs of
paths together, results in the simplified error-state diagram shown in Fig. 7.22.
For equal strength taps, where is given by (7.159). The
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branch weights for the error-state diagram are defined in Table 6.1. Since
is Hermitian, only the lower triangular elements of the matrix are given.

Fig. 7.23 compares the union bound with simulation results. The received
branch bit energy-to-noise ratio     can be obtained from (7.41). For  D = 1,
the union bound is loose by about 2 dB for bit error probabilities less than

However, for D = 2, the union bound is tight to within 1 dB. This is
reasonable because the channel is unlikely to experience a deep fade on both
diversity branches where the union bound becomes loose. In general, the bound
is tighter for larger and D.

Example 7.7 QPSK Modulated System
This example considers QPSK on a two-tap channel model. The are

complex taking on the values exp There
are nine different error symbols in this case, i.e.,

It is left as an exercise to the reader that Fig. 7.24 represents a simplified
error state diagram. The branches labeled with “2” represent two error-state
transitions. For example, the branch 612 represents the error-state transitions

and The transition-gains are shown
in Table 6.2, where only the lower triangular elements of are given. Fig. 7.25



354

compares the union bound with simulation results. For D = 1, the difference
is about 4 dB. However, for D = 2 the difference is only 1.5 dB.
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7. ERROR PROBABILITY FOR T/2-SPACED MLSE
RECEIVER

Referring to Fig. 7.6, let X(z), V(z), and V(2) (z) be the z-transforms
of the input sequence x, the T-spaced received sequence v and the T/2-
spaced received sequence respectively. The mappings from X(z) to
V(z) and from X(z) to  are one-to-one and both the T-spaced and
T/2-spaced MLSE receivers operate on noisy sequences that are corrupted
by noise samples with variance No. Therefore, we only need to compare the
Euclidean distances between allowed sequences of channel outputs to determine
the relative performance of the T- and T/2-spaced receivers.

7.1 T-SPACED MLSE RECEIVER
From the definition of the error event in (7.144), the z-transform of the error

sequence is
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where The z-transform of the signal error sequence associated
with the error event is

and we have

From (7.155), the squared Euclidean distance of the error event in (7.144)
is [127]

where is the coefficient of

7.2 T/2-SPACED MLSE RECEIVER
For the same error event described in (7.144), the corresponding z-transform

of the T/2-spaced error sequence is
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Notice that is zero for even k. Therefore,
The corresponding z-transform of the T/2-spaced signal error sequence

associated with the error event in (7.144) is

From (7.155), the squared Euclidean distance of the error event in (7.144) is

Note that polynomial has the property that the odd powers
of z have zero coefficients. Therefore, the contributions to the coefficient

arise only from the coefficients of as-
sociated with even powers of z. Note also from (7.42) and (7.43) that the

coefficients of associated with even powers of z are equal to the
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coefficients Therefore,

Consequently, the error probability performance of the T- and T/2-spaced
MLSE receivers are identical.
Example 7.8

Let

Then

Therefore,

and

Hence,

7.3 PRACTICAL T/2-SPACED MLSE RECEIVER
The receivers in Figs. 7.3 and 7.6 use a filter that is matched to the received

pulse Since this filter requires knowledge of the unknown channel
impulse response, it is impractical. One solution is to implement an ‘ideal’
low-pass filter with a cutoff frequency of 1/T and sample the output at rate 2/T.
The noise samples at the output of this filter will be uncorrelated and, therefore,
the T/2-spaced MLSE receiver can be implemented. Vachula and Hill [332]
showed that this receiver is optimum; however, it has some drawbacks. First,
it is not suitable for bandwidth efficient systems that are affected by adjacent
channel interference such as the North American IS-54 and Japanese PDC
systems, because the cutoff frequency of the low-pass filter will extend signifi-
cantly into the adjacent band. Second, the ideal low-pass filter is nonrealizable
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and difficult to approximate. One solution is to use a receiver filter that is
matched to the transmitted pulse as suggested by Hamied and Stüber
[159]. Chugg and Polydoros have suggested a similar approach [53]. If the
received pulse h(t) is time-limited, then such front-end processing is optimal
only if the channel rays themselves are T/2 spaced. However, if the transmitted
signals are strictly bandlimited with at most 100% excess bandwidth, then rate
2/T sampling satisfies the sampling theorem and the T/2-spaced samples will
provide sufficient statistics as we now show.

Let and be the of the T/2-spaced
discrete-time signals corresponding to c(t), and h(t), respectively. The

of the autocorrelation function of the noise samples at the output of

the receive filter where
Using the factorization

the T/2-spaced noise sequence can be whitened by using a filter with transfer

function The resulting system is shown in Fig. 7.26. We
now show that the receivers in Figs. 7.6 and 7.26 yield identical performance.

The of the overall T/2-spaced discrete-time channel that in-
cludes the noise-whitening filter is

On the other hand, referring to the conventional system shown in Fig. 7.6, we
have

and
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Let

be a factorization of such that has min-
imum phase. Using (7.200), (7.203) and (7.204) yields

The transfer function of the noise-whitening filter must be chosen as

Therefore, the overall transfer function at the output of the noise whitening
filter is

The equivalent response in (7.201) has the same amplitude as
but different phase. Also

Therefore, the Euclidean distance between sequences of channel outputs for
the T-spaced and T/2-spaced systems are the same. It follows that the system
shown in Fig. 7.26 has maximum likelihood performance. The main advantage
of the system in Fig. 7.26 is that the noise-whitening filter does not depend on
the unknown channel and has a fixed structure. The channel estimation can
be performed after the noise-whitening filter and the Viterbi algorithm can be
implemented using the metric in (7.129). Although the number of computations
needed in the T/2-spaced MLSE receiver is twice that of a T-spaced receiver,
the latter can not be implemented for unknown channels. Moreover, a T-spaced
MLSE receiver has poor performance when it is implemented with a matched
filter that is derived from an inaccurate channel estimate [252].

7.4 TIMING PHASE SENSITIVITY
The conventional MLSE receiver based on T-spaced sampling at the output

of the matched filter suffers from sensitivity to the sampler timing phase [274].
We now show that a T/2-spaced MLSE receiver is insensitive to the sampler
timing phase.

For a given a timing offset t0 , the sampled impulse response at the output of
the matched filter is represented by the vector where

and Note that in this case. The DTFT of is
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where If the sampler phase is known, then a discrete-time filter
with response after the sampler will give the symmetric signal at
its output. However, as we now show, there is no need to correct the phase.

The power spectrum of the noise at the output of the matched filter is
independent of the timing offset and is given by

Since the DTFT of the noise-whitening filter is

and we have

it follows from (7.210) that the noise is white at the output of the noise-whitening
filter. The DTFT of the message signal at the output of the noise-whitening
filter is

and we have

This means that

Therefore, the distances between allowed sequences of channel outputs with the
T/2-spaced MLSE receiver is insensitive to the sampler phase Since
the noise remains white the performance is also insensitive to the sampler phase.

8. MIMO MLSE RECEIVERS
In this section, we derive the optimum and suboptimum MLSE receivers for

co-channel demodulation of digital signals corrupted by intersymbol interfer-
ence (ISI). By modeling the overall system as a discrete-time multiple-input
multiple-output (MIMO) channel, the optimum MIMO MLSE receiver is de-
rived. By following the same arguments used for single-input single-output
(SISO) channels, a T/2-spaced MIMO MLSE receiver is shown to have the
same performance as the T-spaced receiver, but with insensitivity to timing
phase errors. The optimality of a practical T/2-spaced receiver is shown, that
consists of a filter that is matched to the transmitted pulse, followed by a rate-
2/T sampler, a T/2-spaced noise whitening filter and a Viterbi algorithm. The
optimum MIMO MLSE receiver requires complete knowledge of all co-channel
signals. In many cases, this is impractical or even infeasible. For such cases,
we discuss an interference rejection combining MLSE (IRC-MLSE) receiver.
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8.1 SYSTEM AND CHANNEL MODEL
Consider a system where the signals from K co-channel signals are re-

ceived by J antenna elements. This system can be modeled by a multiple-input
multiple-output (MIMO) channel, where the channel inputs are the symbol
sequences from the K co-channel users and the channel outputs are the com-
bination of the signals that are received from the co-channel users at each of
the J receiver antenna elements. The problem is similar to CDMA multiuser
detection. However, while each user in a CDMA system uses a unique spread-
ing sequence, the K co-channel transmitters in a TDMA system all use the
same pulse shaping filter The impulse response of the channel between
the kth user and the jth antenna element is denoted by where we
have assumed that the channels can be modeled as time-invariant linear filters.
The case of time varying channels will be considered later. While the channel
introduces fading and time dispersion into the received signals, these same
effects allow the co-channel signals to be distinguished at the receiver, since
the received pulses are all distinct.

The received signal at the jth antenna element is

where is the random transmission delay due to asynchronous
users and is additive white Gaussian noise (AWGN) assumed to be
independent on the different antenna branches. For our purpose, the channel

is modeled by arriving rays so that the impulse response has the
form

where and are the amplitude, phase, and delay of the nth
arriving ray from the kth transmitter at the jth antenna element. The parameters

and vary with time, but the explicit time dependency is not
shown here since these parameters vary slowly compared to the baud duration.

It is safe to assume that the channel impulse responses
are uncorrelated for fixed j; however, the

for fixed k are usually correlated, especially on the reverse link of a cellular
system where the signals arrive at the base station with a narrow angle of arrival
spread.
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8.2 JOINT MAXIMUM LIKELIHOOD SEQUENCE
ESTIMATION

The joint maximum likelihood sequence estimation (J-MLSE) receiver pro-
cesses the total received vector

to generate the ML estimate of the information sequence

where To derive the structure of the joint ML receiver, we
follow the same approach used in Section 2.1. Let denote a complete
set of orthonormal basis functions defined over the interval (0,T ). Then

where

where

Define the received vector

where Since the noise components associated with the J
antenna elements are uncorrelated zero-mean complex Gaussian random vari-
ables with variance the received vector has the multivariate
Gaussian density

The optimum receiver chooses x to maximize or, equivalently, the
metric
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Since is independent ofx, maximizing (7.223) is equivalent
to maximizing

To proceed further, define

giving

It follows that the ML receiver processes the and to deter-
mine the most likely sequence. The integral in (7.225) represents the output
of the kth matched filter at the jth antenna element and the  are the
ISI coefficients for the jth antenna element. It follows that the ML receiver
employs a bank of K matched filters at each of the J antenna elements and
combines together all JK matched filter outputs to generate the ML estimate
of the transmitted sequence. From (7.225) and (7.226), we note that the ML
receiver requires knowledge of the and the

The noise samples at the output of the matched filter (t) are

which from (7.226) have autocorrelation function
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This leads to the overall discrete-time model

If we define

then (7.230) has the convenient matrix form

The above development leads to the overall system model shown in Fig. 7.27.

8.3 DISCRETE-TIME MIMO CHANNEL MODEL
Analogous to the discrete-time model for digital signaling on a single input –

single output (SISO) ISI channel, the MIMO ISI channel can also be described
by a collection of J parallel discrete-time white noise channel models. A matrix
noise whitening filter is used to whiten the noise samples at the outputs of the
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bank of matched filters for each antenna element. Suppose that the channel
impulse response has length and

Then the channel matrix filter for the jth antenna element can be
defined as [93]

where This is a straight forward extension of the conven-
tional SISO ISI channel where An asynchronous
MIMO channel is described by a matrix filter and the range of summation in
(7.236) must be expanded from in order to
account for the random user delays. For an ideal channel (with no ISI) the
channel matrix filter in (7.236) is

where NT is the length of the transmitted pulse, i.e., and
For a synchronous ideal MIMO channel

By using (7.226), it can be shown that the ISI coefficients have the symmetric
property

and, therefore, where H denotes Hermitian transposition.
Hence, has the symmetric form

It follows that the channel matrix filter can be factored as

Example 7.9
Consider a two user system with a single receiver antenna. Since     ,  we

can omit the index and be
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The matrix spectral factorization of has the form

and can be represented by

where is lower triangular and is upper triangular with zero diagonal.
In turn, must be upper triangular with zero diagonal. This results in the
spectral factorization

The matrix noise whitening filter is anticausal and stable with
an infinite length.

In practice the filter can be approximated as a finite length filter
with sufficient delay. Finally, the overall discrete-time white noise matrix
channel has transfer function

As an alternative, it is possible to choose as the matrix noise whitening
filter. In this case the matrix noise whitening filter is stable and causal. This fact
makes no difference in the performance of an MIMO MLSE receiver. However,
it is important to choose the matrix noise whitening filter as
for some reduced complexity co-channel receivers such as those that employ
reduced-state sequence estimation (RSSE) [110], delayed decision feedback
sequence estimation (DDFSE) [90], or symbol-by-symbol co-channel receivers
that employ decision feedback MIMO equalization.

If the sequence is input to the matrix noise whitening filter, the output
is
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where is white Gaussian noise with power spectral density

In the time domain

where

The optimum receiver consists of a bank of K matched filters at the output of
each antenna element, followed by a baud-rate sampler and a   matrix
noise whitening filter. With J-branch diversity reception, the overall matrix
channel consisting of the transmit filters, channels, matched filters, samplers,
and matrix noise whitening filters, can be modeled as a parallel collection of
J T-spaced matrix filters with independent white noise sequences as shown
in Fig. 7.28. To determine the number of states in the overall channel model,
we first define as the length of the channel memory for the

k th input. Then there are states, where is the size of the signal
constellation.

Similar to the receiver derived by Ungerboeck [328], it is possible to im-
plement the ML receiver by directly operating on the sequences at the
outputs of the matched filters, thus eliminating the need for the matrix noise
whitening filters. The metric for Ungerboeck’s receiver can be obtained from
(7.227).
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8.4 THE VITERBI ALGORITHM
Suppose that m symbols from each of the K transmitters have been trans-

mitted over the channel. Let where
denote the collection of vectors at the outputs of the matrix

noise whitening filters on each of the J antenna branches at epoch n. After
receiving the output sequence the ML receiver decides in favor of the
sequence of input vectors that maximizes the log-likelihood function

The first term on the right hand side of (7.247) is the branch metric used
in the Viterbi algorithm. The discrete-time white noise matrix channel model
leads to the conditional density function

where Note that some elements in the matrix may be zero
if in which case the branch metric computation can be
simplified. The density in (7.248) leads to the branch metric

8.5 PAIRWISE ERROR PROBABILITY
Let x and be the transmitted and estimated symbol sequences, respectively,

and define the error sequence The pairwise error probability is the
probability that the receiver decides in favor of sequence   when sequence x
was transmitted, equal to

where is the path metric associated with the input sequence x
with the branch metric defined in (7.249). From (7.249),
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Define

It can be shown that is a zero-mean Gaussian random variable with variance
Therefore, the pairwise error probability becomes

8.6 T/2-SPACED MIMO MLSE RECEIVER
Suppose that the matched filter outputs are sampled at the correct

timing phase but with rate 2/T. In this case, the discrete-time channel from
the kth input to the jth output can be described by a T/2-spaced transversal
filter with coefficients and where the
tilde denotes rate 2/T sampling. Since the timing phase is correct, we have

It follows that the overall discrete-time matrix channel
filter, denoted by , has the factorization

As with baud-rate sampling, the T/2-spaced correlated noise samples can be
whitened by using a stable anticausal matrix noise whitening filter with the

transfer function The output of the matrix noise whitening
filter is
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or in the time domain

where is a T/2-spaced white noise sequence with power spectrum
, The sequence is the corresponding T/2-spaced input

symbol sequence and is given by

The overall system and equivalent discrete-time white noise models are shown
in Figs. 7.29 and 7.30, respectively.

Note that the vector samples and correspond to the received
baud, where
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With T/2-spaced fractional sampling there are two samples per baud and the
branch metric becomes

Once again, if then some of the may be zero. No-
tice that T/2-spaced fractional sampling doubles the number of computations
in forming the branch metrics as compared to T-spaced sampling.

8.6.1 ERROR PROBABILITY
We now generalize the result for SISO channels, and show that the T-spaced

and T/2-spaced MIMO MLSE receivers have identical performance. For T-
spaced sampling, define

Then

and
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For T/2-spaced sampling, define

Since is zero for even k, we have Also,

Therefore

where is the coefficient of Since the odd powers of
are zero and we have Therefore, the T-spaced and
T/2-spaced receivers have identical bit error probability performance.

8.6.2 TIMING PHASE SENSITIVITY
The T-spaced MIMO MLSE receiver must have knowledge of the set of

delays to generate the branch metrics. One of the greatest advantages
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of a T/2-spaced MIMO MLSE receiver is its insensitivity to timing phase.
Section 7. showed this property for SISO channels and here we generalize the
result to MIMO channels.

Suppose that the timing phase offset for the kth sampler and the jth antenna
branch is seconds. The T/2-spaced sampled impulse response at the
output of the matched filter
where Due to the timing phase offset, the ISI coefficients are not

symmetric, i.e., . Define the matrices

The discrete-time Fourier transform (DTFT) of is

where
Since the noise is circularly symmetric, the psd of the noise at the output of

the jth matched filter is independent of the timing offset t and is given by

The DTFT of the matrix noise whitening filter is

and we have

Hence, the noise at the output of the matrix noise whitening filter is white.
Since the input data sequence is white, the DTFT of the message vector at the
output of the noise whitening filter is

and we have
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This implies that

It follows that the distances between allowed sequences of channel outputs with
the T/2-spaced MLSE receiver is not sensitive to the sampler phase
Since the noise remains white, the error rate performance is insensitive to the
sampler phase. Finally, we note that (7.278) does not hold for the T-spaced
receiver due to aliasing of the signal spectrum.

8.6.3 PRACTICAL RECEIVER

Section 7. showed that the optimal front-end processing for a SISO ISI
channel can be realized by a receiver filter that is matched to the transmitted
pulse followed by a rate-2/T sampler and a T/2-spaced noise whitening
filter. Here we generalize this concept to MIMO ISI channels. For a MIMO
system where all input signals have the same form, a significant complexity
reduction is realized by using this receiver. No longer is a matched filter bank
required at each antenna element. As shown in Fig. 7.31, the receiver simply
consists of a single matched filter for each antenna element followed by a rate-
2/T sampler and a T/2-spaced noise whitening filter. Although the T-spaced
samples at the output of the filter ) are white, the T/2-spaced samples
are not and, therefore, the noise whitening filter is necessary. However, the
structure of the noise whitening filter is completely known because it depends
on the known filter

We now establish that the systems shown in Figs. 7.29 and 7.31 yield identical
performance. Assuming that rate-2/T sampling satisfies the sampling theorem,
the two systems can be completely represented by their T/2-spaced discrete-
time signals. This is achieved, for example, by using raised cosine pulse
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shaping with less than 100% excess bandwidth. Define

Let and be the z-transforms of the T/2-spaced sample signals
corresponding to and c(t) and h(t), respectively. The z-transform of the
autocorrelation function of the noise samples at the output of the receive filter

is where Using the factorization

the T/2-spaced noise sequence at the output of the matched filter can be
whitened by using a filter having the transfer function as shown
in Fig. 7.31. Note that the noise whitening filter is not a matrix filter, but just a
scalar filter.

The z-transform of the overall T/2-spaced discrete-time channel in Fig. 7.31
that includes the noise-whitening filter is

Referring to the conventional system shown in Fig. 7.29, we have

and

Let

be a factorization of the matrix suchthat has minimum
phase. Combining (7.282), (7.285) and (7.286) gives

The transfer function of the matrix noise-whitening filter is chosen as

Therefore, the overall transfer function at the output of the matrix noise whiten-
ing filter is
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Finally, we note that

Therefore, the Euclidean distance between sequences of channel outputs for
the system in Fig. 7.31 is the same as those for the T/2-spaced MLSE re-
ceiver in Fig. 7.29. Consequently, the system shown in Fig. 7.31 achieves
ML performance. The main advantage of the system in Fig. 7.31 is that the
noise-whitening filter does not depend on the unknown channel and has a fixed
structure. Of course, the implementation of the noise whitening filter will still
require substantial complexity.

The receiver shown in Fig. 7.31 has a scalar output, while the receiver in
Fig. 7.29 has a vector output and, furthermore, is a vector while is
a matrix. As a result, the branch metric used in the Viterbi algorithm needs to
be modified accordingly. From (7.261)

Although the T/2-spaced receiver is optimum, there are several key issues
that must be resolved before it can be implemented. First, the receiver must be

trained to derive an initial estimate of the chance vectors This synchro-
nization and training problem is particularly challenging for an asynchronous
TDMA cellular system where the training sequences are not coincident. With
an asynchronous system different elements of the channel matrices are trained
at different times. Second, the receiver must be able to track the channel vectors

during data demodulation. Perhaps a per-survivor processing approach
such as the one suggested in Section 5.1.1 could be used.

8.7 INTERFERENCE REJECTION COMBINING
MLSE

In many cases, the structure of the CCI is often unknown. This is true for
example with licensed cellular systems that use different common air interfaces
in the same band. For example, AMPS, IS-54/136, and CDPD users all share
the same band. Here we derive a MIMO MLSE receiver, called the interference
rejection combining MLSE (IRC-MLSE) receiver, for such conditions.

Once again, we assume that the receiver filter on each antenna element is
matched to the transmitted pulse and followed by rate 2/T sampling. Since
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the CCI has an unknown form, a matched filter is only required for the desired
signal. The overall pulse response consisting of the transmit filter, channel,
and receiver filter is where is
the overall response of the transmit and receive filters. The vector of matched
filter outputs from the J antenna elements is

where

and where LT is the length of the pulse The vector z(t) is the
impairment at the output of the matched filter due to the K co-channel signals
plus AWGN, and has the form

where

The matched filter outputs are sampled at rate 2/T and passed to a noise
whitening filter. The noise whitening filter is sub-optimum in the presence
of CCI, since the CCI at the input to the receiver filter can be viewed as
colored noise. However, the noise whitening filter ensures maximum likelihood
performance in the absence of CCI. The noise whitening filter is obtained
by using the same procedure leading to the overall T/2-spaced discrete-time
channel with the transfer function defined in (7.283). It follows that the overall
channel consisting of the transmit filter, channel, and receiver filter, and T/2-
spaced sampler can be modeled as a T/2-spaced tapped delay line with tap
coefficients

where is the length of the pulse Define
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Then the vectors and at the output of the noise whitening filter
corresponding to the kth received baud are

To derive a feasible receiver structure, we now assume that the sampled
impairment vector at the output of the noise whitening filter is a vector of J
correlated complex Gaussian random variables having the joint pdf

where is the determinant of and

Assuming an MLSE-like algorithm, the branch metric should be related to the
likelihood of the impairment vector. At epoch k, the samples and
are used by the Viterbi algorithm to evaluate the branch metric

where

Notice that the metric calculation requires the correlation matrix and its
inverse, and the subchannel impulse responses

Computing the inverse of can be computationally intensive for large J,
the number of computations required being proportional to However, when

(two receiver antenna elements) the inverse can be obtained by using
direct matrix inversion (DMI), i.e., the inverse of the matrix is
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Division by the determinant is unnecessary provided that remains
constant over the decision delay in the Viterbi algorithm, since the determinant
just scales all the path metrics. In this case, the Viterbi algorithm can use the
simplified branch metric

which only requires multiplications and additions.
Finally, a metric combining MLSE (MC-MLSE) receiver is one that zeroes

the off diagonal elements of the matrix The metric combining receiver is
equivalent to maximal ratio combining when the channel is affected by additive
white Gaussian noise.

8.8 EXAMPLES
The performance of the J-MLSE, IRC-MLSE and MC-MLSE receivers dis-

cussed in the previous sections is now compared and contrasted. For this
purpose, and EDGE (Enhanced Data for GSM Evolution) burst format is as-
sumed. The EGDE burst format is the same as the GSM burst format described
in Fig. 1.2. However, instead of the GMSK modulation used in GSM, EDGE
uses 8-PSK modulation with square-root raised cosine pulse shaping with a
roll-off factor of For illustrative purposes, a T-spaced two equal ray
model is assumed for the desired signal. The interference impairment consists
of a single flat faded EDGE interferer. In all cases, the receiver front-end
consists of a receiver filter that is matched to the transmitted pulse followed
by a rate 2/T sampler and a noise whitening filter. The J-MLSE receiver has
512 states, as defined by 2 symbols for the desired signal and 1 symbol for the
co-channel interferer. The MC/IRC-MLSE receivers have 64 states, as defined
by 2 symbols for the desired signal. Each simulation run consists of 3000
frames of 142 8-PSK symbols.

Fig. 7.32 shows the performance of the three receivers for a fixed
dB. The J-MLSE receiver is the optimum receiver in the maximum

likelihood sense and achieves the best possible performance in AWGN. The
MC-MLSE receiver is also optimum for AWGN channels, but exhibits some
degradation at higher due to the co-channel interference that is present.
The IRC-MLSE receiver give the worst performance.

Fig. 7.33 shows the C/I performance of the three receivers for
30 dB. Observe that the MC-MLSE receiver gives the worst performance, while
the J-MLSE receiver and IRC-MLSE receivers offer huge C/I performance
gains. The best performance is realized with the IRC-MLSE receiver. Hence,
the IRC-MLSE receiver sacrifices a small amount of performance for a
large gain in C/I performance.
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It is curious that the IRC-MLSE receiver outperforms the J-MLSE receiver.
First the J-MLSE receiver that we have implemented, does not have a sufficient
number of receiver states due to pulse truncation effects. Hence, there is some
residual intersymbol interference that can be significant at low C/I. Second, the
overall signal constellation produced by the combination of the desired signal
and the co-channel signal may degenerate such that the constellation points
overlap. In this case, errors can occur even for large values.

APPENDIX 7.A: Derivation of Equation (7.184)
Assume that (7.176) has M different poles Then the

pairwise error probability is equal to

Define the function - where C is a constant. The
method of Lagrange multipliers suggests that
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for any real number It can be shown by induction that

By solving (7-7.A.2) and observing the symmetry of and the derivative
(7-7.A.3) with respect to the permutations of it is apparent that the minimum
of is achieved when •

Problems
7.1. Assume that a received signal is given by
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where and f ( t ) is a the minimum bandwidth pulse satisfying
Nyquist’s criterion for zero ISI, i.e.,

and

There are two problems associated with this pulse shape. One is the problem
of realizing a pulse having the rectangular spectral characteristic F(f) given
above. The other problem arises from the fact that the tails in f ( t ) decay as
1/t. Consequently, a sampling timing error results in an infinite series of
ISI components. Such a series is not absolutely summable and, hence, the
sum of the resulting interference does not converge.

Assume that for where N is a positive integer. In spite
of the restriction that the channel is band-limited, this assumption holds in
all practical communication systems.

a) Due to a slight timing error, the received signal is sampled at
where Calculate the response for Separate the
response into two components, the desired term and the ISI term.

b) Assume that the polarities of are such that every term in the ISI is
positive, i.e., worst case ISI. Under this assumption show that the ISI
term is

and, therefore, as

7.2. Starting with

show that

7.3. Suppose that the impulse response of an overall channel consisting of the
transmit filter, channel, and receive filter, is

a) Find the overall impulse response f ( t ) .
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b) Is it possible to transmit data without ISI?

c) How do the magnitudes of the tails of the overall impulse response
decay with large values of t?

d) Suppose that binary signaling is used with this pulse shape so that the
noiseless signal at the output of the receive filter is

where What is the maximum possible magnitude that
y(t) can achieve?

7.4. Show that the ISI coefficients may be expressed in terms of the
channel vector coefficients as

7.5. Suppose that BPSK is used on a static ISI channel. The complex envelope
has the form

where and is the amplitude shaping pulse. The non-
return-to-zero pulse is used and the impulse response of the
channel is

where and are complex numbers and

a) Find the received pulse h(t).

b) What is the filter matched to h(t)?

c) What are the ISI coefficients

7.6. Suppose that BPSK signaling is used on a static ISI channel having impulse
response

The receiver employs a filter that is matched to the transmitted pulse
and the sampled outputs of the matched filter are
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where Decisions are made on the without any
equalization.

a) What is the variance of noise term

b) What are the values of the
c) What is the probability of error in terms of the average received bit-

energy-to-noise ratio?

7.7. A typical receiver for digital signaling on an ISI channel consists of a
matched filter followed by an equalizer. The matched filter is designed
to minimize the effect of random noise, while the equalizer is designed to
minimize the effect of intersymbol interference. By using mathematical
arguments, show that i) the matched filter tends to accentuate the effect of
ISI, and ii) the equalizer tends to accentuate the effect of random noise.

7.8. Consider an ISI channel, where for . Suppose that the
receiver uses a filter matched to the received pulse and
the T-spaced samples at the output of the matched filter, are filtered
as shown in Fig. 7.A.1. The values of and are chosen to satisfy

Find an expression for the filter output in terms of and
the noise component at the output of the digital filter,

7.9. The z-transform of the channel vector g of a communication system is
equal to

A binary sequence x is transmitted, where The received
samples at the output of the noise whitening filter are
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where is a white Gaussian noise sequence with variance

a) Evaluate the probability of error if the demodulator ignores ISI.

b) Design a 3-tap zero-forcing equalizer for this system.

c) What is the response for the input sequence

What is the response at the output of the equalizer?

d) Evaluate the probability of error for the equalized channel.

7.10. Suppose that a system is characterized by the received pulse

A receiver implements a filter matched to h(t) and generates T-spaced
samples at the output of the filter. Note that the matched filter is actually
noncausal.

a) Find the ISI co-efficients
b) What is the transfer function of the noise whitening filter that yields a

system having an overall minimum phase response?

c) Find the transfer function of the equivalent zero-forcing equalizer

d) Find the noise power at the output of the zero-forcing equalizer, and
find the condition when the noise power becomes infinite.

7.11. Consider M-PAM on a static ISI channel, where the receiver employs
a filter that is matched to the received pulse. The sampled outputs of the
matched filter are

where the source symbols are from the set De-
cisions are made on the without any equalization by using a threshold
detector. The ISI pattern can be written as

and is maximum when and each of the
takes on the maximum signaling level, i.e., for M even.
The maximum distortion is defined as
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a) Discuss and compare error performance M-ary signaling with
binary signaling using as a parameter.

b) Suppose that the channel has ISI coefficients

Plot the probability of error against the signal-to-noise ratio and compare
with the ideal channel case, i.e., Show your results for
and

7.12. Consider a linear MSE equalizer and suppose that the tap gain vector c
satisfies

where is the tap gain error vector. Show that the mean square error that
is achieved with the tap gain vector c is

7.13. The matrix has an eigenvalue and eigenvector if

Prove that the eigenvectors are orthogonal, i.e.,

7.14. Show that the relationship between the output SNR and for an
infinite-tap mean-square error linear equalizer is

where the subscript on indicates that the equalizer has an infinite
number of taps. Note that this relationship between and holds
when there is residual intersymbol interference in addition to the noise.

7.15. In this question, we will show in steps that
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Define

a) By using the Hermitian property show that

b) Show that

where is the gradient with respect to vector x.

c) If we define the gradient of a real-valued function with respect to a
complex vector c as

show that

7.16. Show that the pairwise error probability for digital signaling on an ISI
channel is given by (7.154).

7.17. Consider the transmission of the binary sequence x, over
the equivalent discrete-time white noise channel model shown in Fig. 7.A.2.
The received sequence is
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a) Draw the state diagram for this system.
b) Draw the trellis diagram.
c) Suppose that the received sequence is

Show the surviving paths and their associated path metrics after has
been received.

7.18. Suppose that BPSK signaling is used on a frequency selective fading
channel. The discrete-time system consisting of the transmit filter, channel,
receiver filter, and baud-rate sampler can be described by the polynomial

The samples at the output of the receiver filter are processed by a noise
whitening filter such that the overall discrete-time white noise channel
model has minimum phase.

a) Find

b) Draw the state diagram and the trellis diagram for the discrete-time
white noise channel model.

c) A block of 10 symbols is transmitted over the channel and
it is known that Assume that and the suppose
that the sampled sequence at the output of the matched filter is

What sequence x was most likely transmitted?



Chapter 8

ERROR CONTROL CODING

Channel coding and interleaving techniques have long been recognized as an
effective technique for combating the deleterious effects of noise, interference,
jamming, fading, and other channel impairments. The basic idea of channel
coding is to introduce controlled redundancy into the transmitted signals that
is exploited at the receiver to correct channel induced errors by means of for-
ward error correction. Channel coding can also be used for error detection in
schemes that employ automatic repeat request (ARQ) strategies. ARQ strate-
gies must have a feedback channel to relay the retransmission requests from
the receiver back to the transmitter when errors are detected. ARQ schemes
require buffering at the transmitter and/or receiver and, therefore, are suitable
for data applications but are not suitable for delay sensitive voice applications.
Hybrid ARQ schemes use both error correction and error detection; the code
is used to correct the most likely error patterns, and to detect the more infre-
quently occurring error patterns. Upon detection of errors a retransmission is
requested.

There are many different types of error correcting codes, but historically they
have been classified into block codes and convolutional codes. To generate a
codeword of an (n, k) block code, a block of k data bits is appended by
redundant parity bits that are algebraically related to the k data bits, thereby
producing a codeword consisting of n code bits. The ratio is called
the code rate, where Convolutional codes, on the other hand, are
generated by the discrete-time convolution of the input data sequence with the
impulse response of the encoder. The memory of the encoder is measured by
the duration of the impulse response. While block encoder operates on k-bit
blocks of data bits, a convolutional encoder accepts a continuous sequence of
input data bits.



392

Both block codes and convolutional codes find potential applications mobile
radio systems. Some second generation digital cellular standards (e.g., GSM,
IS-54) use convolutional codes, while others (e.g., PDC) use block codes.
Although hard decision block decoders are easy to implement, there exist some
very simple soft decision decoding algorithms (e.g., the Viterbi algorithm) for
convolutional codes. As a result convolutional codes are often preferred over
block codes.

In the early application of coding to digital communications, the modulator
and coder were treated a separate entities. Hence, a block code or a convo-
lutional code was employed to obtain a coding gain at the cost of bandwidth
expansion or data rate. Although this may be a feasible approach for power
limited channels where bandwidth resources are plentiful, it is undesirable and
sometimes not even possible for bandwidth limited applications such as cellular
radio. If no sacrifices of data rate or bandwidth can be made, then schemes
that separate the operations of coding and modulation require a very powerful
code just to break even with an uncoded system. In 1974, Massey [219] sug-
gested that the performance of a coded digital communication system could be
improved by treating coding and modulation as a single entity. Ungerboeck,
later developed the basic principles of trellis-coded modulation (TCM) [330]
and identified classes of trellis codes that provide substantial coding gains on
bandwidth limited additive white Gaussian noise (AWGN) channels.

TCM schemes combine the operations of coding and modulation and can be
viewed as a generalization of convolutional codes. While convolutional codes
attempt to maximize the minimum Hamming distance between allowed code
symbol sequences, trellis-codes attempt to maximize the Euclidean distance
between allowed code symbol sequences. By jointly designing the encoder
and modulator Ungerboeck showed that, for an AWGN channel, coding gains
of 3-6 dB could be obtained relative to an uncoded system by using trellis
codes with 4-128 encoder states, without sacrificing bandwidth or data rate.
This property makes TCM very attractive for cellular radio applications where
high spectral efficiency is needed due to limited bandwidth resources and good
power efficiency is needed to extend battery life in portable radios. TCM
experienced an almost immediate and widespread application into high-speed
power-efficient and bandwidth-efficient digital modems. In 1984, a variant
of the Ungerboeck 8-state 2-D trellis code was adopted by CCITT for both
14.4 kb/s leased-line modems and the 9.6 kb/s switched-network modems [38].
In 1985, a TCM-based modem operating at 19.2 kb/s was introduced by Codex
[331].

Ungerboeck’s work [330] captured the attention of the coding community
and laid the foundation for intensified research. Calderbank and Mazo in-
troduced an analytic description of trellis codes [43]. They showed how to
realize the two operations (coding and mapping) in Ungerboeck’s codes by
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using a single-step procedure. Calderbank and Sloane [44], and Wei [352],
proposed multi-dimensional trellis codes. Spaces with larger dimensionality
are attractive, because the signals are spaced at larger Euclidean distances [38].
Calderbank and Sloan [44], and Forney [128], made the observation that the
signal constellation should be regarded as a finite set of points taken from an in-
finite lattice, and the partitioning of the constellation into subsets corresponds
to the partitioning of the lattice into a sub-lattice and its cosets. They then
developed a new class of codes, called coset codes, based on this principle.

Many studies have examined the performance of TCM on interleaved flat
fading channels [82, 83, 94, 45]. Divsalar and Simon [83, 84] constructed trellis
codes that are effective for interleaved flat Ricean and Rayleigh fading channels.
Interleaving randomizes the channel with respect to the transmitted symbol
sequence and has the effect of reducing the channel memory. Consequently,
interleaving improves the performance of codes that have been designed for
memoryless channels. Moreover, trellis codes that are designed for flat fading
channels exhibit time diversity when combined with interleaving of sufficient
depth. It was reported in [45] that interleaving with reasonably long interleaving
depths is almost as good as ideal infinite interleaving. The design of trellis codes
for interleaved flat fading channels is not guided by the minimum Euclidean
distance used for AWGN channels, but rather by the minimum product squared
Euclidean distance and the minimum built-in time diversity between any two
allowed code symbol sequences. Wei [353] introduced an additional design
parameter called the minimum decoding depth, and proposed a set of efficient
codes for interleaved flat Rayleigh fading channels.

Many studies have also considered the effect of intersymbol interference
(ISI) on the performance of trellis codes that have been designed for AWGN
channels [319, 363, 88, 107]. The coded performance on static ISI channels
may be significantly degraded compared to that on ISI-free channels. Receivers
for trellis-coded modulation on static ISI channels typically use a linear for-
ward equalizer followed by a soft decision Viterbi decoder. For channels with
severe ISI, a more appropriate approach is to use a decision feedback equalizer
(DFE) in front of the TCM decoder to avoid the problems of noise enhance-
ment. However, the feedback section of the DFE requires that decisions be
available with zero delay. Since the zero-delay decisions are unreliable, the
performance improvement by using the DFE is marginal [49]. It is possible that
the performance can be improved if equalization and decoding is performed in
a joint manner by using maximum likelihood sequence estimation (MLSE) or
some other form of sequence estimator. However, the complexity of an MLSE
receiver grows exponentially with the number of encoder states and the length
of the channel vector.

In 1993, Berrou et al., introduced parallel concatenated convolutional codes
(PCCCs), called Turbo coding [36]. When used in conjunction with an iter-
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ative decoding scheme, PCCCs achieve near Shannon limit performance on
both the AWGN channel and the interleaved flat fading channel. Simulations
of a rate-1/2 Turbo code have shown a bit error probability of at an

which is only 0.5 dB from the Shannon limit! Although, the
performance of Turbo codes is remarkable at low their performance at
high is unimpressive. There is a perceivable change in the slope of the
bit error rate (BER) curves, which has been loosely termed an “error floor.” In
1997, Benedetto et al., showed that iterative decoding of serially concatenated
interleaved convolutional codes (SCCCs) can provide large coding gains with-
out the problem of an error floor [288]. In general, SCCCs outperform PCCCs
at high whereas the opposite is true for low

The remainder of the chapter is organized as follows. Section 1. gives
an introduction to block codes. Sections 2. and 3. introduce convolutional
codes and trellis codes. This is followed by a consideration of the design and
performance analysis of trellis codes for various types of channels that are found
in mobile radio applications. These include the AWGN channels in Section 4.,
interleaved flat fading channels in Section 5., and non-interleaved fading ISI
channels in Section 6.. The evaluation of error probability upper bounds is
important for performance prediction and Section 6.4 presents a technique for
union bounding the error probability of TCM on a fading ISI channel; flat
fading channels and static ISI channels can be treated as special cases. Finally,
section 7. provides an introductory treatment of Turbo coding.

1. BLOCK CODES
1.1 BINARY BLOCK CODES

A binary block encoder accepts a length-k input vector
where and generates a length-n codeword
where through the linear mapping where
is a matrix called the generator matrix. The matrix G has full row
rank k, and the code is generated by taking all linear combinations of the
rows of the matrix G, where field operations are performed by using modulo-2
arithmetic. The code rate is and there are codewords. The whole
task of designing a block code is to find the generator matrices that yield codes
that are both powerful and easy to decode.

For any block code with generator matrix G, there exists an
parity check matrix such that The
matrix H has full row rank and is orthogonal to all codewords, i.e.,

The matrix H is the generator matrix of a dual code
consisting of codewords. The parity check matrix of is the matrix G.

A systematic block code is one having a parity check matrix of the form
where P is a matrix. For a systematic block
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code, the first k coordinates of each codeword are equal to the k-bit input
vector a, while the last coordinates are the parity check bits. By using
elementary row operations, the generator matrix of any linear block code can
be put into systematic form. A systematic block code has the parity check
matrix For a systematic block code,

Example 8.1 The parity check matrix
of an (n, k) Hamming code consists of all non-zero binary -tuples. For
example, the systematic (7,4) Hamming code has the parity check matrix

which consists of all non-zero binary 3-tuples. The generator matrix of the
(7,4) systematic Hamming code is

The 16 codewords of the (7,4) Hamming code are generated by taking all
linear combinations of the rows of G using modulo-2 arithmetic.

1.1.1 MINIMUM DISTANCE
Let denote the Hamming distance between the codewords and
, equal to the number of coordinates in which they differ. For linear block

codes, where is the weight of
equal to the number of non-zero coordinates of The free Hamming
distance, of a linear block code is the minimum number of coordinates

in which any two codewords differ. For a linear code, the sum of any two
codewords is another codeword. Hence, the free Hamming distance is

Therefore, is equal to the weight of the minimum weight non-zero code-
word.

To derive an upper bound on recall that any linear block code can be
put into systematic form, where P is a matrix. It
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is certainly the case the number of non-zero elements in any row of P cannot
exceed n – k. Hence, the number of non-zero elements in any row of G cannot
exceed n – k + 1. Since all rows of G are valid codewords,

a result known as the Singleton bound.. A code that has is
called a maximum distance separable (MDS) code.

An example of a simple block code that meets the Singleton bound is the
binary repetition code

In this case, The repetition code is the only
MDS binary code. The non-binary Reed-Solomon codes are also MDS codes.

1.1.2 SYNDROMES
Suppose that the codeword c is transmitted and the vector

is received, where e is defined as the error vector. The syndrome of the
received vector y is defined as

If then y is a codeword; conversely if then an error must have
occurred. Note that if y is a codeword, then Hence, does
not mean that no errors have occurred. They are just undetectable. Since for
a linear code the sum of any two codewords is another codeword, it follows
that the number of undetectable error patterns is equal to the number
of non-zero codewords. The syndrome only depends upon the error vector
because

In general, is a system of n – k equations in n variables. Hence, for
any given syndrome s, there are solutions for e. However, the most likely
error pattern e is the one that has minimum Hamming weight.

1.1.3 ERROR DETECTION
A linear block code can detect all error patterns of or fewer error. If

is a codeword, then no errors are detected. There are undetectable
error patterns, but there are possible non-zero error patterns. Hence, the
number of detectable error patterns is
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Usually, is a small fraction of For the (7,4) Hamming code
considered in Example 8.1, there are undetectable error patterns
and detectable error patterns.

1.1.4 WEIGHT DISTRIBUTION
Consider a block code C and let be the number of codewords of weight i.

The set is called the weight distribution of C. The weight
distribution can be expressed as a weight enumerator polynomial

For the (7,4) Hamming code in Example 8.1,

Hence,

1.1.5          PROBABILITY  OF  UNDETECTED  ERROR
The probability of undetected error is

The error probability depends on the coding channel, defined as
that portion of the communication system that is seen by the coding system.
The simplest coding channel is the binary symmetric channel (BSC), where

For a BSC, and, hence,

The (7,4) Hamming code in Example 8.1 has an undetected error probability
of

For a raw channel error rate of . Hence,
the undetected error rate can be very small even for a fairly simple block code.
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1.1.6 ERROR CORRECTION
A linear block code can correct all error patterns of t or fewer errors, where

and is the largest integer contained in x. A code is usually capable of
correcting many error patterns of t + 1 or more errors. In fact, up to error
patterns may be corrected, which is equal to the number of syndromes.

For a BSC, the probability of codeword error is

1.1.7 STANDARD ARRAY DECODING
One conceptually simple method for decoding any linear block codes is

standard array decoding. The standard array of an (n, k) linear block code
is constructed as follows:

1. Write out all codewords in a row starting with

2. From the remaining n-tuples, select an error pattern of weight 1
and place it under Under each codeword put

3. Select a minimum weight error pattern e3 from the remaining unused n-
tuples and place it under Under each codeword put

4. Repeat Step 3 until all n-tuples have been used.

Note that every n-tuple appears once and only once in the standard array.
Example 8.2

Consider the (4,2) code with generator matrix

The standard array is
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The standard array consists of disjoint rows of elements. These
rows are called cosets and the ith row has the elements

The first element, is called the coset leader. The standard array also consists
of disjoint columns. The jth column has the elements

To correct errors, the following procedure is used. When y is received, find
y in the standard array. If y is in row i and column j, then the coset leader from
row is the most likely error pattern to have occurred and y is decoded into

A code is capable of correcting all error patterns that are coset
leaders. If the error pattern is not a coset leader then erroneous decoding will
result.

1.1.8 SYNDROME DECODING
Syndrome decoding relies on the fact that all in the same coset

of the standard array have the same syndrome. This is because the syndrome
only depends on the coset leader as shown in (8.8). To perform syndrome
decoding

1. Compute the syndrome

2. Locate the coset leader

3. Decode y into

This technique can be used for any linear block code. The calculation in Step 2
can be done by using a simple look-up table. However, for large n – k it
becomes impractical because syndromes and error patterns must be
stored.

2. CONVOLUTIONAL CODES
2.1 ENCODER DESCRIPTION

The encoder for a rate-l/n binary convolutional code can be viewed as a
finite-state machine (FSM) that consists of an v-stage binary shift register with
connections to n modulo-2 adders, and a multiplexer that converts the adder
outputs to serial codewords. The constraint length of a convolutional code is
defined as the number of shifts through the FSM over which a single input data
bit can affect the encoder output. For an encoder having a v-stage shift register,
the constraint length is equal to A very simple rate-1/2, constraint
length-3, binary convolutional encoder is shown in Fig. 8.1.
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The above concept can be generalized to rate-k/n binary convolutional
code by using k shift registers, n modulo-2 adders, along with input and
output multiplexers. For a rate-k/n code, the k-bit information vector

is input to the encoder at epoch to generate the n-bit code

vector If denotes the constraint length of the ith shift
register, then the overall constraint length is defined as Fig. 8.2
shows a simple rate-2/3, constraint length-2 convolutional encoder.

A convolutional encoder can be described by the set of impulse responses,
is the jth output sequence that results from the ith input

sequence The impulse responses can have a duration of

at most K and have the form Sometimes the

are called generator sequences. For the encoder in Fig. 8.1

(8.16)
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and for the encoder in Fig. 8.2

It follows that the jth output, corresponding to the ith input sequence

is the discrete convolution where denotes modulo-2
convolution. The time domain convolutions can be conveniently replaced by
polynomial multiplications in a D-transform domain according to

where

is the ith input data polynomial,

is the jth output polynomial corresponding to the ith input, and

is the associated generator polynomial. It follows that the jth output sequence
is

The above expression leads to the matrix form

where
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is the generator matrix of the code. For the encoder in Fig. 8.1

while for the encoder in Fig. 8.2

After multiplexing the outputs, the final codeword has the polynomial repre-
sentation

Systematic convolutional codes are those where first k encoder output se-
quences, are equal to the k encoder input sequences

2.2 STATE AND TRELLIS DIAGRAMS, AND WEIGHT
DISTRIBUTION

Since the convolutional encoder is a FSM, its operation can be described by
a state-diagram and trellis diagram in a manner very similar to the treatment
of ISI channels in Chapter 7. The state of the encoder is defined by the shift
register contents. For a rate-k/n code, the ith shift register contains previous
information bits. The state of the encoder at epoch is defined as

There are a total of encoder states, where is defined
as the total encoder memory. For a rate-l/n code, the encoder state at epoch

is simply
Figs. 8.3 and 8.4 show the state diagrams for codes in Figs. 8.1 and 8.2,

respectively. The states are labeled using the convention
where represents the encoder state corresponding to the
integer . In general, for a rate-k/n code there are branches
entering and leaving each state. The branches in the state diagram are labeled
with the convention For
example, the state transition in Fig. 8.3 has the label 1/01. This
means that the input to the encoder in Fig. 8.1 with state
gives the output and transitions the encoder to state

Convolutional codes are linear codes, meaning that the sum of any two
codewords is another codeword and the all-zeroes sequence is a codeword. It
follows that the weight distribution and other distance properties of a convo-
lutional code can be obtained from the state diagram. Consider, for example,
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the encoder in Fig. 8.1 along with its state diagram in Fig. 8.3. Since the
self-loop at the zero state corresponds to the all-zeroes codeword, we can
split the zero state into two nodes, representing the input and output of the
state diagram. This leads to the modified state diagram shown in Fig. 8.5.
The branches in the modified state diagram have labels of the form
where i is the number of 1’s in the encoder output sequence corresponding to a
particular state transition, and j is the number of input 1’s into the encoder for
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that transition. Every branch is labeled with the letter L, and the exponent of
L is unity because each branch has length one.

The distance properties of a convolutional code can be obtained by com-
puting the transfer function T(D, N, L) of the modified state diagram. Any
appropriate technique can be used to obtain the transfer function, such as Ma-
son’s formula [218]. For the example shown in Fig. 8.5, the transfer function
is

The term appearing in the transfer function means
there are paths at Hamming distance k + 5 from the all-zeroes path, caused
by k + 1 input ones. Of these paths, ) have length k + n + 3.

Sometimes the transfer function can be simplified if we are only interested in
extracting certain distance properties of the convolutional code. For example,
the weight distribution of the code can be obtained by setting and
in the transfer function. For the particular transfer function in (8.29) this leads
to

I

meaning that there are codewords at Hamming distance 5 + k from the all-
zeroes codeword. Notice that no non-zero codeword exists with a Hamming
distance less than 5 from the all-zeroes codeword. For the code in Fig. 8.1, we
see that from (8.30). The free Hamming distance can also be seen by
inspecting the trellis diagram in Fig. 8.6. The branches in the trellis diagram
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are labeled with the encoder output bits that correspond to the various state
transitions.

Convolutional codes are designed to have the largest possible for a
given code rate and total encoder memory. Tabulation of convolutional codes
that are optimal in this sense can be found in many references, e.g., Proakis
[270], Lin and Costello [199], and Clark and Cain [63].

2.3 RECURSIVE SYSTEMATIC CONVOLUTIONAL
(RSC) CODES

Forney [126] and Costello [70] showed that it is possible to construct a
recursive systematic convolutional (RSC) encoder from every rate
feed-forward non-systematic convolutional encoder, such that the weight dis-
tributions of the codes are identical. Consider a rate-l/n code with generator
polynomials The output sequences are described by the
polynomials

To obtain a systematic code, we need to have To do this,
suppose that both sides of (8.31) are divided by so that
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Sometimes the (D) are called the feed-forward polynomials, while
is called the feed-back polynomial. Define a new input sequence as

so that

Observe that the transformation between a(D) and in (8.34) is that
of a recursive digital filter with modulo-2 operations. This transformation
simply reorders the input sequences a(D). Since the input sequences consist
of all possible binary sequences, the filtered sequences also consist of all
possible binary sequences. Hence, the set ofcoded sequences is the same
as the set of coded sequences b(D) and thus the non-systematic and systematic
codes have the same weight distribution functions. However, the input weight
distributions for the two codes are completely different as we will see.
Example 8.3

Consider, for example, the rate-1/2 encoder in Fig. 8.1 with generators

By following the above described procedure a RSC code is obtained with
generators

The RSC is shown in Fig. 8.7

Similar to their feed-forward counterparts, the weight distribution and other
distance properties of RSC codes can be obtained by constructing their corre-
sponding modified state diagram and computing the transfer function
T(D, N, L). The RSC encoder in Fig. 8.7 has transfer function

By setting and we obtain the weight distribution of the code,
T(D), which is identical to the weight distribution of the corresponding feed-
forward non-systematic encoder in (8.30). However, by comparing the first
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few terms in their respective transfer functions in (8.29) and (8.40) it can
be observed that the input weight distributions are completely different. In
particular, codewords can be generated by weight-1 input sequences for the
feed-forward non-systematic encoder, while the RSC requires input sequences
having at least weight-2 to generate codewords. In fact, any finite weight
codeword for the RSC code in Fig 8.7 is generated by an input polynomial
a(D) that is divisible by We will see later that these properties
are crucial for Turbo codes.

Finally, both the feed-forward non-systematic and RSC codes are time in-
variant. This means that if the input sequence a(D) produces codeword b(D),
then the input sequence produces the codeword . Note that
the codewords b(D) and have the same weight.

3. TRELLIS CODED MODULATION
3.1 ENCODER DESCRIPTION

Conventional convolutional codes realize a coding gain at the expense of data
rate or bandwidth. Although, such coding schemes are attractive for power-
limited applications, they are not suitable for bandwidth-limited applications.
Ungerboeck showed that a coding gain can be achieved without sacrificing data
rate or bandwidth by using a rate-m/(m + r) convolutional encoder, and map-
ping the coded bits onto signal points through a technique called mapping
by set partitioning [330]. This combination of coding and modulation, called
trellis coded modulation (TCM), has three basic features;

1. An expanded signal constellation is used that is larger than the one necessary
for uncoded modulation at the same data rate. The additional signal points
allow redundancy to be inserted without sacrificing data rate or bandwidth.
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2. The expanded signal constellation is partitioned such that the intra-subset
minimum squared Euclidean distance is maximized at each step in the
partition chain.

3. Convolutional encoding and signal mapping is used so that only certain
sequences of signal points are allowed.

Fig. 8.8 shows the basic encoder structure for Ungerboeck’s trellis codes.
The n-bit information vector is transmitted at epoch k.
At each epoch, information bits are encoded into m + r code bits by
using a rate-m/ (m+r) linear convolutional encoder. The m+r code bits select
one of subsets of a -point signal constellation. The uncoded n – m
information bits select one of the signal points within the selected subset.
This principle is best explained by example, and Fig. 8.9 shows a 4-state 8-PSK
Ungerboeck trellis code. The equivalent uncoded system is 4-PSK which has a
bit rate of 2 bits/symbol. The 4-state 8-PSK code uses a rate-1/2 convolutional
code along with one uncoded bit to select signal points in an expanded 8-PSK
signal constellation. Note that the overall rate is still 2 bits/symbol. Fig. 8.10
shows an 8-state 8-PSK Ungerboeck trellis code. The equivalent uncoded
system is again 4-PSK with 2 bits/symbol. The 8-state 8-PSK code uses a
rate-2/3 convolutional code to select one of the points in an expanded 8-PSK
signal constellation so that the overall rate is again 2 bits/symbol.

3.2 MAPPING BY SET PARTITIONING
The critical step in the design of Ungerboeck’s codes is the method of

mapping the outputs of the convolutional encoder to points in the expanded
signal constellation. Fig. 8.11 shows how the 8-PSK signal constellation is
partitioned into subsets such that the intra-subset minimum squared Euclidean
distance is maximized for each step in the partition chain. In the 8-PSK
signal constellation there are 8 signal points equally spaced around a circle



of unit radius. Notice that the minimum Euclidean distance between signal
points in the 8-PSK signal constellation is while the minimum
Euclidean distances between signal points in the first and second level partitions
are respectively. The minimum Euclidean distance
increases at each level of partitioning.

The advantages of using TCM can most easily be seen by considering
the trellis diagram. For both the 4-state and 8-state 8-PSK trellis codes the
equivalent uncoded system is 4-PSK. The trellis diagram for uncoded 4-PSK
is shown in Fig. 8.12. The trellis only has one state and there are 4 parallel

Error Control Coding 409
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transitions between the states. The subsets are used as
the signal points. The label means that the branches in the
trellis diagram are labeled from top to bottom with signal points taken from
the sets The minimum Euclidean distance between any two
paths through the trellis is

The trellis diagram for the 4-state 8-PSK code is shown in Fig. 8.13. Each
branch in the 4-state trellis is labeled with one of the four subsets
and Again, the label associated with a state means that the branches
in the trellis diagram originating from that state are labeled from top to bottom
with the subsets and As shown in Fig. 8.11, each subset  contains
two signal points. Thus, each branch in the trellis diagram actually contains
two parallel transitions. For example branches with the label have two
parallel transitions that are labeled with the signal points 0 and 4. For the
4-state 8-PSK code, it is possible that two coded sequences could differ by
just a single parallel transition and, hence, their minimum Euclidean distance is

Also, any two signal paths that diverge from a state and remerge with the
same state after more that one transition have a minimum Euclidean distance
of For example, the closest non-parallel code
sequence to the all-zeroes sequence is the sequence
at distance Hence, the minimum Euclidean distance of the code
over all parallel and non-parallel pairs of sequences for the 4-state 8-PSK code
is

At high signal-to-noise ratio (SNR), the bit error rate performance on an
AWGN channel is dominated by the minimum Euclidean distance error events.
The pairwise error probability between two coded sequences x and separated
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by Euclidean distance is

The asymptotic coding gain is defined by [38]

where is the average energy per symbol in the signal constellation. For the
4-state 8-PSK code, the asymptotic coding gain is

The concept of mapping by set partitioning was developed by Ungerboeck
as a method for maximizing the minimum Euclidean distance of a code and
optimize the performance on an AWGN channel. Ungerboeck’s construction
of the optimum 4-state 8-PSK code was based on the following heuristic rules
[331];

1. Parallel transitions (when they occur) are assigned signal points having the
maximum Euclidean distance between them.

2. The transition starting or ending in any state is assigned the subsets
or which have a maximum distance between them.

3. All signal points are used in the trellis diagram with equal frequency.
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It is clear that the performance of the 4-state 8-PSK code is limited by
the parallel transitions. Larger asymptotic coding gains can be obtained by
introducing more code states so that the parallel transitions are eliminated. For
example, the above design rules can be applied to the 8-state 8-PSK code to
obtain the code trellis shown in Fig. 8.14. In this case, the minimum Euclidean

distance is This yields an asymptotic
coding gain of 3.6 dB over uncoded 4-PSK.

4. CODED PERFORMANCE ON AWGN CHANNELS
Viterbi originally exploited the trellis structure of convolutional codes and

developed the Viterbi algorithm for ML decoding of convolutional codes [341].
Given the similarity between the trellis structures of ISI channels, convolutional
codes, and trellis codes (e.g., compare Figs. 7.15, 8.6 and 8.13), it is not
surprising that the union bounding techniques that were developed to evaluate
the error probability of digital signaling on ISI channels with an MLSE receiver
in Chapter 7.6 can also be applied, with some modification, to evaluate the error
probability of convolutional and trellis codes with an MLSE receiver.

To develop the union bound, let denote the transmitted information
sequence. For any other sequence define the corresponding error
sequence as where denotes modulo-2 addition. Since the
bit error probability at epoch is of interest, for all error sequences.
An error event occurs between of length
and and

are the system state sequences associated with a
and respectively. Let E be the set of error sequences corresponding to all
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possible error events at epoch Then, the average bit error probability is
bounded by

where is the path metric of a , and is the number of bit errors
associated with e. The factor 1/n appears in front of the first summation,
because n information bits are transmitted per epoch (or per branch in the trellis
diagram). The second summation is over all possible information sequences,
because each sequence a can have e as the error sequence. This is necessary for
trellis codes because the signal mapping and, hence, the codes are nonlinear.

Another way of writing the bound on the bit error probability in (8.43) is

where C is the set of all coded symbol sequences, is the number of bit
errors that occur when the sequence x is transmitted and the sequence
is chosen by the decoder, P(x) is the a priori probability of transmitting x, and

is the pairwise error probability.
For convolutional codes the upper bound in (8.43) simplifies because the

codes are linear, meaning that the sum of any two codewords is another code-
word and that all-zeroes sequence is a codeword [ 199]. Because of this property,
we can assume that a = 0, so that the union bound becomes

Note that we divide by k rather than n in front of the summation, because a
convolutional code transmits k bits per epoch whereas a trellis code transmits
n bits per epoch.

4.1 UNION BOUND FOR CONVOLUTIONAL CODES
Evaluation of the error probability upper bound for trellis codes is compli-

cated by the fact that trellis codes are nonlinear and, therefore, all possible
correct sequences must be considered when computing the upper bound. We
will defer treatment of the coded error probability upper bound for trellis codes
until Section 6.4, where we will consider the more general case of TCM on
a fading ISI channel. In this section we will show how the error probability
upper bound can be computed for convolutional codes with Viterbi decoding.

For convolutional codes the set E in (8.45) consists of all sequences that
begin and end at the zero-state in the state diagram. The enumeration of these
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sequences (or codewords) along with their associated Hamming distances, in-
formation weights, and lengths, was obtained earlier by computing the transfer
function, T(D, N, L), of the augmented state diagram. When a particular in-
correct path through the trellis is selected over the all-zeroes path at a given
node in the trellis, the corresponding number of bits errors, is given by
the exponent of N in the transfer function. Multiplying by the pairwise
error probability for that path and dividing by the number
of input bits per branch, k, gives the bit error rate for that path. Summing over
the set of all possible incorrect sequences E yields a union bound on the bit
error probability.

In general, the transfer function T(D, N) for a convolutional code has the
form

where f(d) is the exponent of N as a function of d. For the example in (8.29),
and Differentiating T(D, N) with respect to N and

setting gives

Once again, for the example in (8.29) this leads to

The pairwise error probability in (8.45) depends on the type of modulation,
detection, and decoding that is employed. The code bits are mapped onto
symbols taken from a signal constellation, and transmitted over the channel.
The sampled output of the receiver matched filter at epoch k is

where is one of the M low-pass points in the signal constellation and
is a zero-mean complex-valued Gaussian random variable with variance
For convolutional codes, two types of decoding can be used, hard decision
decoding and  soft decision decoding. Soft decision decoders do not make
symbol by symbol decisions on the received symbols, rather, the decoder
operates directly on the sequence of matched filter outputs y. For an AWGN
channel, the MLSE receiver searches for the symbol sequence that is closest
in Euclidean distance to the received sequence y. Following the same argument
used in Chapter 5.2, the MLSE receiver decides in favor of the sequence that
maximizes the metric
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The sequence corresponds to a unique sequence that is the final estimate
of the transmitted information sequence a.

In general, the pairwise error probability for an AWGN channel that is
associated with an error event of length beginning at epoch is

where

and x = are the symbol sequences corresponding to the
information sequences a and respectively. The parameter is the squared
branch Euclidean distance associated with branch is the squared
path Euclidean distance associated with the error event. Clearly, the pairwise
error probability depends on the particular mapping between the encoder output
bits and the points in the signal constellation. Suppose for example that code
bits are mapped onto a BPSK signal constellation. Then the pairwise error
probability between the two codewords b and that differ in d positions is

where , is the received bit energy-to-noise ratio1. Therefore, the union bound
on bit error probability becomes

Note that we have explicitly shown the pairwise error probability to be a func-
tion of the Hamming distance between the codewords in (8.54). However, it is
very important to realize that this property does not apply to all convolution-
ally encoded systems. For example, suppose that the outputs of the rate-2/3
convolutional encoder in Fig. 8.2 are mapped onto symbols from an 8-PSK
signal constellation. In this case, the pairwise error probability depends not
only on the Hamming distance between codewords, but also upon the particular
mapping between the 8-PSK symbols and the encoder outputs.

Hard decision decoders make symbol by symbol decisions on the received
sequence of matched filter outputs to yield the received symbol

1The received symbol energy-to-noise ratio is
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sequence A minimum distance decoder decides in favor of the symbol
sequence that is closest in Hamming distance to the received symbol sequence

Again, the pairwise error probability depends on the particular mapping
between the encoder outputs and the points in the signal constellation. If BPSK
signaling is used, for example, then the pairwise error probability between two
codewords b and at Hamming distance d is

where

is the probability of symbol error. Once again, the pairwise error probability
for BPSK is a function of the Hamming distance between the codewords.

The union bound in (8.55) can be simplified by imposing a Chernoff bound
(see Appendix A) on the pairwise error probability. First consider the case of
soft decision decoding. Suppose that sequence x is transmitted and y is the
received sequence. Then the pairwise error probability between sequences x
and with an ML receiver can be Chernoff bounded by

Substituting taking the expectation over the Gaussian random
vector and simplifying gives

The tightest upper bound is obtained with yielding

Finally, if the signal constellation is normalized so that then the
Chernoff bound can be written in the form

where is the received symbol energy-to-noise ratio.
For the case of BPSK signaling on an AWGN channel, the Chernoff bound

on the pairwise error probability becomes
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Likewise, if BPSK signaling is used with hard decision decoding, then the
pairwise error probability has the Chernoff bound

Notice that the Hamming distance d appears in the exponent of the pairwise
error probability. The resulting upper bound on bit error probability is called a
union-Chernoff bound and has the simple form

where

At high SNR, the performance is dominated by the error events with min-
imum Hamming distance. Since the minimum distance error events are not
necessarily mutually exclusive, the bit error probability at high SNR is approx-
imately

The above procedure for upper bounding the error probability is called the
transfer function approach, because it relies upon the transfer function of
the state diagram. The transfer function approach, however, has its limita-
tions. First, if the number of encoder states is large, then obtaining the transfer
function T(D, N) quickly becomes intractable. Second, if the pairwise error
probability is not just a function of the Hamming distance between allowable
code sequences, then the branch labeling in the augmented state diagram must
be done differently and the Chernoff bound cannot be employed. These prob-
lems can be overcome by a using a different approach to compute the upper
bound, such as the stack algorithm presented in Section 6.4.

5. CODED PERFORMANCE ON INTERLEAVED FLAT
FADING CHANNELS

Fig. 8.15 is a block diagram of a coded communication system operating
on an interleaved flat fading channel. The information sequence a is encoded
and mapped onto a signal set to generate the symbol sequence x by using
either convolutional coding or trellis coded modulation. The symbol sequence
is then interleaved (or scrambled), and the resulting sequence is filtered for
spectral shaping and transmitted over the channel. The receiver employs a filter
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that is matched to the transmitted pulse and symbol- or T-spaced samples are
taken at the output of the matched filter. With hard decision decoding, these
outputs are applied to a decision device and deinterleaved to yield the received
code sequence With soft decision decoding, the received samples are
deinterleaved to generate the sequence y which is then input to the Viterbi
decoder.

The channel is characterized by flat Ricean fading, so that the sampled output
of the matched filter is

where the pdf of is

where The are independent zero-mean complex Gaussian
random variables with variance .

The interleaver serves to reduce the correlation between the fades expe-
rienced by successive source symbols that are transmitted over the channel.
There are a variety of interleaver structures [63], and the interleaver that we
consider here is a block interleaver. A block interleaver can be regarded as
a buffer with J rows and M columns, where J represents the interleaving
depth and M represents the interleaving span. The length of the interleaver
is JM symbols. Source symbols are fed into the buffer in successive rows
and transmitted out of the buffer in columns. The deinterleaver performs the
reverse operation. In practise, the interleaver depth J should be chosen so that
successive source symbols, which are actually transmitted J symbol durations
apart, are independently faded. In a 2-D isotropic scattering environment, the
fades experienced at two different locations separated by a half wavelength
are approximately uncorrelated. If the signals are received by a mobile station
(MS) traveling with a speed of v km/h relative to the base station (BS), then
the spatial distance associated with one symbol duration T is equal to
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Therefore, we should have is the carrier wavelength.
For example, a carrier frequency of 900 MHz yields

where R is the signaling rate (symbols/s), v is the vehicle speed (km/h) and
J is in units of symbols. Observe that the required interleaving depth is
inversely proportional to the speed and, therefore, slow moving MSs require
large interleaving depths. For ks/sand symbols.

The basic objective of any interleaver is to at least separate any
successive source symbols as far apart as possible, where is the decoding
depth. Hence, M should be at least equal to yielding an interleaving
delay of

For example, with symbols and a MS speed of 30 km/h, the inter-
leaving delay should be at least 280 ms. This delay is quite large, especially
for voice applications, and the problem is exasperated by lower MS speeds.
One possible solution is to design codes that minimize the decoding depth,
The other solution is to use better interleaving techniques so that the effective
interleaving length is longer than the actual interleaving length JM.

For analytical purposes, an infinite interleaving depth is often assumed so
that the deinterleaved sequence is a sequence of independent random
variables. In this case the conditional density of y has the product from

Suppose that sequence x is transmitted and the vector is received.
An ML receiver having perfect knowledge of a chooses the sequence that
maximizes the metric

The pairwise error probability between the sequences x and has the Chernoff
bound

Once again, if we assume the normalization then the Chernoff
bound becomes
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Averaging (8.74) over the probability density function in (8.68) gives [82]

where is the average received symbol energy-to-noise ratio,
and At sufficiently high (8.75) simplifies to

It follows that the bound in (8.43) will be dominated by the error event path
having the smallest number of elements in set A. Divsalar and Simon [82, 83]
called this path the shortest error event path and defined its length as
Based on previous arguments, the bit error probability can be approximated as

where C is a constant that depends on the distance structure of the code.
Observe that varies inversely with yielding a diversity effect of
order Wei [353] called the minimum built-in time diversity
(MTD). The MTD dominates the performance of TCM on an interleaved flat
fading channel, and the maximization of the MTD is the major design criterion
for TCM on interleaved flat fading channels.

The pairwise error probability in (8.75) can be written in the form

where

Two special cases are associated with (8.79),
(no fading),

and, therefore, becomes the sum of the squared Euclidean distances over
the error event path. Maximizing under this condition is the TCM design
criterion for AWGN channels.
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For (Rayleigh fading),

For reasonably large SNR, is the sum of the logarithms of the squared
Euclidean distances, each weighted by In this case, the pairwise error
probability is given by

which is inversely proportional to the product of the squared Euclidean dis-
tances along the error event path. The minimum product squared Euclidean
distance (MPSD) between any two valid sequences,

is another design parameter for Rayleigh fading channels. For values of K
between 0 and the equivalent squared Euclidean distance of (8.79) becomes
a mixture of the two limiting cases given above.

If interleaving is not used, then the assumption that the fading is independent
from symbol to symbol is no longer valid. If the fading is slow enough to be
considered constant over the duration of the minimum distance error event path,
then for coherent detection with a Gaussian metric the bit error probability at
high SNR is, approximately,

where is the received symbol energy-to-noise
ratio, is the minimum Euclidean distance of the code, and the averaging
is over the density in (8.68). Taking this average gives

which can be approximated at large by

Observe that without interleaving, is asymptotically inverse linear with
independent of the trellis code. If follows that interleaving is required to achieve
diversity with TCM on a flat fading channel.
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5.1 DESIGN RULES FOR TCM ON FLAT FADING
CHANNELS

According to the previous section, when TCM is used on Ricean fading
channel with interleaving/deinterleaving, the design of the code for optimum
performance is guided by the minimum built-in time diversity (MTD) of the
code. For Rayleigh fading channels, the design of the code is also guided by
the minimum product squared distance (MPSD) of the code. The minimum
Euclidean distance, which is the principal design criterion for trellis coded
modulation AWGN channels, plays a less significant role on Ricean fading
channels as the K factor decreases, and no role for Rayleigh fading channels

A third design criterion is to minimize the decoding depth of the
code.

The design of trellis codes for interleaved flat fading channels is based on
Ungerboeck’s principle of mapping by set partitioning, but now the partitioning
is done to maximize the MTD and MPSD of the code. This can be accomplished
by maximizing the intra-subset MTD and MPSD, but it should be pointed out
that large MTD and MPSD can be sometimes achieved even if the partitioning
is done to maximize the minimum Euclidean distance as in Ungerboeck’s codes
for AWGN channels.

In general, the following guidelines are followed when designing trellis
codes for interleaved flat fading channels;

1. All signals occur with equal frequency and with regularity and symmetry.

2. Transitions originating from the even and odd numbered states are assigned
signals from the first and second subsets, respectively, of the first partitioning
level.

3. Whenever possible, the transitions joining in the same state receive signals
from either the first or second subset of the first partitioning level.

4. Parallel transitions receive signals from the same subset of the finest parti-
tioning level.

5. The state transitions originating from each current state and going to even-
numbered next states are assigned signals from subsets whose inter-subset
MTD and MPSD are maximized. The same applies for the transition
originating from each current state and going to odd-numbered next states.

The first four rules are similar to those suggested by Ungerboeck [330], but
now the subsets used may be different. The fifth rule is used to reduce the
decoding depth of the code. Wei [353] developed several codes based on
minimizing the decoding depth of a code. He defined two minimum decoding
depths (MDD1, MDD2) to characterize a code. MDD1+1 is defined as the
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length (in symbols) of the longest valid sequence of signal points, say
which originates from the same state as another valid sequence x and merges
into the same last state as x and whose Hamming distance from x is the same as
the MTD of the code. Note that the performance of a code is mainly governed
by the pairs of sequences which determine the MTD of the code. Each such
pair of sequences differ in at most MDD1+1 successive symbols. The farther
these symbols are separated, the better the performance of the code. Hence, to
benefit from the MTD of the code, the interleaver should separate the symbols
in each sequence of MDD1+1 input symbols as far as possible.

MDD2 is defined as the length of the longest unmerged valid sequence of
signal points, say which originates from the same state as another valid
sequence, say x, and whose Hamming distance from x is not greater than the
MTD of the code. In case the Hamming distance between the two sequences
is equal to the MTD of the code, the squared product distance between the two
sequences must be less than the MPSD of the code. Since MDD2 is greater
than MDD1, the decoding depth should be at least equal to MDD2 to realize
the MTD and MPSD of a code. It suffices if the decoding depth is few symbols
longer than MDD2. Finally, to benefit from both the MTD and MPSD of a
code, the interleaver should separate the symbol in each sequence of MDD2+1
input symbols as far as possible.

5.1.1 MULTIDIMENSIONAL TCM

Recall that the length of the shortest error event with conventional trellis
codes (one symbol per trellis branch) is equal to the number of branches
along that error event path. If the trellis code has parallel transitions, then
MTD = 1. Unfortunately, parallel transitions are inevitable when the size of
the signal constellation exceeds the number of states. In this case, the bit error
probability for Rayleigh fading channels has an inverse linear dependency on
the bit energy-to-noise ratio. To solve this problem, multidimensional TCM
techniques can be used.

Multidimensional TCM uses signal spaces having a larger dimensionality so
as to increase the minimum Euclidean distance between signal points. Another
feature of multidimensional trellis codes is noticed when comparing the coding
gain of these codes to 1- or 2-D codes. When the size of the signal constellation
is doubled with respect to uncoded modulation, the average signal energy may
also increase. For example, doubling the size of a 2-D M-QAM constellation
implies a 3 dB increase in average signal energy. However, if this increase
in average signal energy can be avoided, then the TCM coding gain would be
greater. This 3 dB cost falls to 1.5 dB when four dimensions are used, and to
0.75 dB when eight dimensions are used [38]. Multidimensional TCM is also
attractive for fading channels. 4-D TCM schemes are special because they can
be implemented in radio communications without any increase in bandwidth,
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by transmitting on the same carrier frequency with two spatially orthogonal
electric field polarizations [38].

A 2N -D constellation is formed by first selecting a constituent 2-D con-
stellation and then concatenating N such constellations together in the time
domain. If the size of the 2N-D constellation is larger than needed, then some
of the less desirable points are deleted [353]. The resulting constellation is
then partitioned into a chain of increasingly large numbers of subsets. The
partitioning is performed first to maximize the intra-subset MTD, and then to
maximize the MPSD between any pair of 2N-D signal points within the same
subset having that MTD.

When N > 1, an MTD of at least two is easily achieved for each subset in
the finest partition. Fig. 8.16 shows a 32-point 4-D 8-PSK constellation that is
partitioned into 8-subsets. The 4-D constellation is formed by concatenating a
pair of 2-D 8-PSK constellations in the time domain and deleting those points
having the form (even,odd),(odd,even). The intra-subset MTD within each of
the finest partitions is 2 with an intra-subset MPSD of 4. Fig. 8.17 shows a
rate-2/3, 4-D, 4-state, 8-PSK trellis code with 2 bits/symbol. The bits
are used to select one of the 8 subsets in Fig. 8.16 and bits are used to
select one of the four 4-D elements within each subset. The MTD and MPSD
of the code are the same as the intra-subset MTD and MPSD and, hence, are
maximized for the partitioning in Fig. 8.16.

Fig. 8.17 also shows the trellis diagram of the code, along with examples of
the longest sequences which determine the values of MDD1, and MDD2. Note
that MDD1 and MDD2 are measured in units of 2-D symbols. Since there are
parallel transitions of length 2 symbols, MDD1 = 1. To find MDD2, suppose
that the all zeroes sequence is the reference sequence. Note that the 2-D se-
quence {1, 5, 0, 0, 0} associated with the 4-D sequence {(1,5), (0,0), (0,2)}
has a time diversity of 2 (which is equal to the MTD) and an MPSD of

and, hence, MDD2 = 5. Wei [353] in-
vestigated different multi-dimensional codes. He found that multi-dimensional
TCM requires longer decoding depths than 2-D TCM. This longer decoding
depth has proven to be very detrimental and, therefore, Wei considered only
4-D codes.

5.1.2 MULTIPLE TCM (MTCM)

Multiple TCM is implemented by using a rate-b/s encoder, where the en-
coder outputs are mapped onto k M-ary symbols in each transmission interval,
as shown in Fig. 8.18. The s encoder output symbols are divided into k groups
of M symbols each, in this case . Another method is
to divide the s binary symbols into k groups of symbols where each group
now corresponds to a signal constellation of different size
for the ith group, then Notice that k = 1 corresponds to conven-
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tional Ungerboeck trellis codes. MTCM codes can be designed with parallel
transitions, while still achieving an asymptotic bit error probability on fading
channels that decays faster than an inverse linear function of
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Fig. 8.19 shows the code trellis for the rate-4/6, 4-state, 8-PSK MTCM code
reported in [84]. The signal point sets are obtained using the above method and
they are the same as those used in the 4-D code and shown in Fig. 8.16. There
are 16 paths emanating from each node and, hence, there are four parallel paths
between nodes. This code has the same MTD and MPSD as the previous 4-D
code. However, MDD1 = 5 and MDD2 = 5 and, therefore, the previous 4-D
code remains a better choice since MDD1 is smaller.

5.1.3 2-D TRELLIS CODES
It is surprising that Ungerboeck’s 2-D 8-state and 16-state 8-PSK trellis

codes that were originally designed for AWGN channels, remain good for
interleaved flat fading channels. In fact, Ungerboeck’s 2-D, rate-2/3, 8-state
8-PSK trellis code shown in Fig. 8.20, has an MTD of two (the thick lines)
and the corresponding product squared Euclidean distance is 8 which is better
than the previous codes. Note that the shortest error event is not necessarily the
minimum distance error event. In Fig. 8.20, the minimum squared Euclidean
distance is 4.585, corresponding to an error event of length 3 (the dashed
path). Note also that MDD1 = 3 and MDD2 = 3. It is obvious that the set
partitioning for this code was intended to maximize the minimum squared
Euclidean distance. Finally, we note that good 2-D TCM codes for interleaved
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flat fading channels will not have parallel transitions and the connectivity
between the states will be as low as possible.

6. CODED PERFORMANCE ON ISI CHANNELS
Fig. 8.21 shows a model for digital signaling on a non-interleaved fading

ISI channel. Chapter 7.3.1 showed that the overall channel with D-branch
diversity can be replaced with the model in Fig. 7.5, consisting of D (L + 1)-
tap transversal filters, the outputs of which are corrupted by AWGN samples

For TCM, this leads to the equivalent discrete-time
model shown in Fig. 8.22. As discussed in Chapter 7.3.1.1, the tap gains are
modeled as uncorrelated complex Gaussian processes, and with 2-D isotropic
scattering the tap gain vector
covariance matrix is the zero-order
Bessel function of the first kind and is the maximum Doppler frequency, and

Here, we assume the
have zero-mean so that the magnitudes are Rayleigh distributed.

Assuming that the branches are balanced, the average received branch bit
energy-to-noise ratio is

where n is the number of bits per symbol.
As discussed earlier, the rate-m/(m + r) linear convolutional encoder con-

tains m shift registers and is characterized by a set of generator polynomials
The length of the ith shift register is and

the total number of memory elements in the encoder is Since
both the trellis encoder and ISI channel are finite state machines, it follows
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that the combined trellis encoder and ISI channel is also a finite state machine
having super-states

There are super-states and is the encoder state defined
in (8.28). An equivalent definition of the super-state is [50]

The overall system also has state and trellis diagram descriptions. With MLSE,
the Viterbi algorithm searches for the most likely path in the super-trellis based
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on the sequence of received samples v at the output of the matched filter. An
error event of length occurs between epochs in the
super-trellis if the actual super-state and the estimated super-state satisfy

Associated with every error event in the super-trellis is a pairwise error probabil-
ity representing the probability that the receiver chooses sequence

when x is transmitted.

6.1 TCM ON STATIC ISI CHANNELS
As shown in Chapter 7.6.1, the pairwise error probability is a function of

the path distance matrix E defined in (7.160). The matrix E depends only
on the trellis code and the length of the channel L + 1. Equations (7.163)
and (eigenbound) provide a guideline for designing trellis codes for static ISI
channels. The design criterion should be to maximize for the dominant
error event. If the dominant error event has length then this criterion implies
that min is maximized, where is the squared Euclidean distance
between two allowable sequences of length in the super-trellis. The other
design criterion should be to minimize the condition number c(E). The matrix
E is perfectly conditioned, or c(E) = 1, only when In this
case E has the form where I is the identity matrix. AWGN channels
of the form represent the eigenvectors of this matrix.

If the dominant error event of a trellis code has a perfectly conditioned
path distance matrix E, then the asymptotic performance of the code is the
same for any channel vector g, including the AWGN channel. An interesting
phenomenon occurs when the dominant error event associated with a trellis
code does not have a perfectly conditioned path distance matrix. In this case
the asymptotic performance of the trellis code over the channel described by
the vector is better than its asymptotic performance on an AWGN
channel! The code has the worst performance on the channel described by the
vector

6.2 TCM ON NONINTERLEAVED FADING ISI
CHANNELS

As mentioned before, c(E) = 1 if and only if . It
is impossible to obtain a code where c(E) = 1 for all error events. The
cross terms in the path distance matrix E of any error event will
degrade the performance. The next section shows an example where the cross
terms cause an error event with a smaller to have a lower pairwise error
probability than another error event having a larger It is very difficult
to control the cross terms of the dominant error events and, therefore, a less
stringent criterion would be useful for predicting the performance of a trellis
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code. We now show that if the squared Euclidean distance min does
not increase linearly with then a trellis code will not have good performance
on a non-interleaved fading ISI channel. We require the following definition
and two properties to develop this criterion.

Definition: Define as the set of all distinct pairs of sequences
in the code-trellis that originate from the same state at epoch and merge into
the same state at epoch Each pair of sequences in set may
also merge into the same state between epochs and possibly stay
merged for at most L – 1 branches in the code-trellis and then diverge, thus
forming one or more error events in the code-trellis.

Property 8.1: If an error event of length i having a squared Euclidean
distance occurs in the code-trellis, then an error event of length
having a squared Euclidean distance occurs in the super-trellis.
Conversely, if an error event occurs in the super-trellis between epochs and

having length and a corresponding squared path distance
then there exists a pair of sequences

code-trellis having a squared Euclidean distance equal to
Proof: Using the definition of the error event in the super-trellis in (8.90), and

using the two equivalent forms of the super-state (8.88) and (8.89), it follows
directly that an error event in the code-trellis and

and
and,

hence,
Conversely, suppose that an error event occurs in the super-trellis between

epochs It follows directly from (8.90), and the fact that
that there exists a pair of sequences

in the code-trellis that originate from the same state at epoch
and merge into the same state at epoch The

two sequences may merge into the same state between epochs say
at epoch and possibly stay merged for at most L – 1 branches;
otherwise, , and the length of error event is shorter than

. It also follows from (7.162) that the
squared Euclidean distance between is equal to

Property 8.2: Let denote the squared minimum distance of all error
events in the code-trellis of length i. Then min

Proof: An error event in the super-trellis between epochs
and the corresponding pair of sequences may result from either a single
error event in the code-trellis between epochs or multiple error
events of shorter lengths, e.g., i error events of length one (parallel transitions)
or, in general, m error events of lengths Note that m can take any
value between one and i. Also, for any m, the lengths can assume
different values with the constraint It
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follows that

where the minimization goes over all with the above
constraint. If there exists a single error event of length i in the code-trellis, then
the theorem is immediate. Also, if there are no error events of length i in the
code-trellis then, by definition, and the above inequality in (8.91)
is satisfied.

If we treat the uncoded system as a trellis-coded system with a single state and
parallel transitions, then, for two-tap channels min
1 ,2 , . . . , where is the minimum squared Euclidean distance in the signal
constellation of the uncoded system. The important point is that for the
uncoded system grows linearly with the length of the error event. Properties 8.2
and 8.2 suggest that if a trellis code has a dense distance spectrum [284], then
the set of min will also have a dense spectrum. Therefore, if the
minimum squared Euclidean distance of a trellis code does not grow linearly
with the length of the error events, then the uncoded system is expected to
outperform the trellis-coded system for a non-interleaved fading ISI channel.

6.3 EXAMPLES
This section illustrates the above concepts by focusing on the 4-state 8-PSK

and the 8-state 8-PSK Ungerboeck codes [330]. The corresponding uncoded
system is 4-PSK. We have seen earlier that the 8-state code is suitable for
interleaved flat fading channels, having MTD = 2 and MPSD = 8. Two ISI
channels are considered i) a two-tap, T-space, static ISI channel and, ii) a
two-tap, T-spaced, Rayleigh fading ISI channel.

6.3.1 STATIC ISI CHANNELS
For a two-tap static ISI channel, the path distance matrix is

Tables 8.1, 8.2, and 8.3, tabulate the values associated with matrix E for all
error events of up to length 8 for the uncoded system and the two coded
systems. Notice that the minimum squared Euclidean distance is
for the uncoded system, for the 4-state trellis code, and

for the 8-state trellis code. Also, the matrix E associated with
the minimum distance error event is perfectly conditioned for both the uncoded
system and the 4-state trellis code, but not for the 8-state trellis code.

We now consider the coded performance for seven different channels with
impulse responses listed in Table 8.4. Channels G, Al, and A2 were chosen
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arbitrarily and have the best spectral characteristics. Channels Bl and B2
are equal to the eigenvectors associated with the minimum and maximum
eigenvalues, respectively, for one of the length 3 and 4 error events in the
uncoded system, and one of the error events of length 4 in the 8-state trellis
code. Channels Cl and C2 are equal to the eigenvectors associated with the
maximum and minimum eigenvalues, respectively, for some of the minimum
distance error events that are associated with the 8-state trellis code.
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Simulation results for the uncoded 4-PSK system, the 4-state trellis code,
and the 8-state trellis code are shown in Figs. 8.23, 8.24, and 8.25, respectively.
Although channel C2 has an in-band spectral null, making it perhaps the most
difficult channel to equalize, the performance of uncoded 4-PSK on this channel
is better than that on channels Bl and B2. The 4-state trellis code performs
better on channels Bl and B2 than on channels Cl and C2, although channel
B1 has a band-edge null while channel B1 does not. The 8-state trellis code
performs better on channel Cl than C2. This makes sense because channel Cl
is the eigenvector associated with . for one of the dominant error events of
the 8-state code. In general, Tables 8.1, 8.2, and 8.3 show that the coded systems
have a larger than the uncoded systems. Therefore, it is reasonable that
the coded systems have better performance than the uncoded system, although
c(E) for the dominant error event is greater for the 8-state code.

6.3.2 MULTIPATH FADING ISI CHANNELS
Consider a 2-tap fading ISI channel with matrix

and corresponding eigenvalues

where
and For the case when < , the eigenvalues are given by

Fig 8.26 plots the pairwise error probability of the 8-state code against the
normalized energy in the first tap for different values of as
described in Table 8.3. Notice that the pairwise error probability is minimized
for equal energy taps. Fig. 8.26 also shows how the pairwise error probability
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decreases with an increase in the squared Euclidean distance, Finally,
Fig. 8.26 shows the effect of the eigenvalue spread. For example, the pairwise
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error probability associated with the error event having and
is better than that with

2.83 (c = 2.79), although the squared Euclidean distance is larger for the latter.
Fig. 8.27 plots the bit error probability of the uncoded 4-PSK system, and

the 4- and 8-state 8-PSK trellis codes on a two-tap, T-spaced, fading channel
with The performance is completely reversed from that on an AWGN
channel. The uncoded system outperforms either trellis-coded system and,
moreover, the 4-state trellis code outperforms the 8-state trellis code. This
behavior is consistent with the parameters listed in Tables 8.1, 8.2 and 8.3.
Although the uncoded system has a smaller squared Euclidean distance,
for the uncoded systems grows faster with the length of the error events than
either the 4- or 8-state trellis codes. By comparing the parameters of the 4- and
8-state trellis codes in Tables 8.2 and 8.3, respectively, it is not surprising that
the 4-state trellis code outperforms the 8-state trellis code.

As a final example, consider the simple rate-1/2, 2-state, 4-PSK trellis code
shown in Fig 8.28. The equivalent uncoded system is BPSK having a mini-
mum squared Euclidean distance growth given by the values
{4.0, 8.0, 12.0, 16.0, 20.0, 24.0, 28.0, ... }. Table 8.5 lists the parameters
of the code. Note that the code has a minimum squared Euclidean distance that
grows linearly with the length of the error event but at a slower rate than that
of the uncoded system. Fig. 8.29 shows the performance of the code. Unlike
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the Ungerboeck codes, the code at least offers slightly better performance than
the equivalent uncoded system despite its simplicity.

6.4 EVALUATION OF UNION BOUNDS FOR TCM
The pair-state approach is one method for evaluating the error probability

upper bound for TCM on intersymbol interference (ISI) channels [85, 37].
Unfortunately, there are pair-states, where is the number of super-
states. A simpler method that uses the transfer function of an . -state error
diagram has been proposed for linear filter channels [204]. Both of these
techniques require a Chernoff bound on the pairwise error probability which
can be loose, especially for fading channels.2 Here we describe a method
for evaluating the union bound that uses an error-state diagram and a one-
directional stack algorithm. The proposed method does not require the transfer
function and, therefore, i) an exact expression for the pairwise error probability
can be used yielding a tighter upper bound, and ii) the method is useful for
large-state systems.

2The union bound may also be loose for fading channels.
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The bit error probability for TCM on an ISI channel has the bound in (8.43),
where E is the set of error sequences that correspond to all error events in the
super-trellis at epoch j1. For a static ISI channel, the pairwise error probability
is given by (7.154) with the squared Euclidean path distance in (7.157). By
following the same procedure as in Chapter 7.6.3, the parameters needed to
evaluate the upper bound for a static ISI channel are the probability P{a},
the number of bit errors and the squared Euclidean path distance
Likewise, for a fading ISI channel with equal diversity branches, the exact
pairwise error probability is given by (7.181), and the parameters needed to
evaluate the union bound are P{a}, and the matrix
is defined in (7.172).

The overall system has super states
defined in (8.89). Define the error state as for some i and j. An
error-state diagram can be constructed such that the initial and final nodes in the
error-state diagram are zero-error states and each intermediate node represents
a distinct non-zero error-state. A directed line from indicates an
allowable error-state transition There is one-to-one correspondence
between the set E in (8.43) and the set of paths from the initial to final node in
the error-state diagram.
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Table 8.5. Error events in the code-trellis for the rate-1/2, 2-state, 4-PSK code in Fig. 8.28;
is the number of error events of length i having a squared Euclidean distance of

To evaluate the union bound (8.43), we define an appropriate transition-gain
for each transition in the error-state diagram as follows. Given an error-state
transition each branch from in the overall trellis diagram is
assigned the appropriate branch distance (or branch distance matrix),
and number of bit errors This assignment can be conveniently
described by an transition matrix with elements

Note that in (8.95) does not depend on the branch from but
only on the error-state transition

Consider the following simple example, consisting of a two-state 4-PAM
trellis code with a two-tap channel (L = 1). The encoder has generators

and the signal mapping is
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Fig. 8.30 shows the error-state diagram. As an example of how to obtain
consider the error sequence

in Fig. 8.31. The error sequence corresponds to the path
in the error-state diagram. Fig. 8.31 shows the

super-trellis, along with the symbol error . Note that all
branches merging at the same node in Fig. 8.31 have the same symbol error
Given the pair the squared branch distance can be calculated
by using (7.158) and (7.159), and the matrix in (7.169) can be calculated
from the branch distance matrix . For example, consider a static
ISI channel with The transition-gains are,
respectively,

3In general, the squared branch distance and branch distance matrix are calculated using
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and

Likewise, for a two-tap fading ISI channel, the transition gain is

where

For the error-state transition , the distance polynomial [284] as-
sociated with the node is the sum of the ith-row elements of the matrix

where we have assumed that the information vector is trans-
mitted with equal probability If the sum of row elements is the same
for every row, then the matrix is row-uniform [204]. If the matrix is
row-uniform for all error-state transitions, then the trellis code has the uniform
property. For AWGN channels, many trellis codes including the Ungerboeck
codes have the uniform property, meaning that the error probability can be eval-
uated by just considering the set of information sequences that originate from
a particular state, say . However, for ISI channels the uniform property is
lost and all possible information sequences must be considered. For example,
the matrix does not have the row-uniform property in our example sys-
tem, although the trellis-code is uniform for AWGN channels. Nevertheless,
some symmetry properties of the trellis code and trellis structure can still be
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exploited to simplify the performance analysis. Considering again the error
sequence in Fig. 8.31,
the following observations can be made:

Observation 8.1:. Only half of the sequences originating from each state
must be considered, because there is always a pair of correct sequences having
the same probability P{a}, number of bit errors and path distance
(or path distance matrix), e.g., the information sequences a and This
symmetry property exists for every TCM system.

Observation 8.2:. Only the information sequences originating from states
must be considered, because for each information sequence origi-

nating from the state there always exists an information sequence

originating from the state having the same set of parameters.
This type of symmetry usually exists but depends on the particular trellis code.
The algorithm discussed below exploits this type of symmetry by combining
together all paths attached to the same node that have the same set of parameters.

The stack algorithm maintains an ordered stack where each entry represents
one or more paths in the error-state diagram and contains the following informa-
tion: terminal node, terminal state the number of branches

and the intermediate bit error probability The
set {(l, m)} is the set of error-state transitions associated with the path under
consideration. is calculated according to
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where is computed by using the squared path dis-
tance for a static ISI channel and the matrix for
a fading ISI channel. The stack is ordered according to decreasing For a
path from the initial to final node, we have

and
A key feature of the stack algorithm is that paths having the same terminal node,
terminal state number of branches .

are combined together, because from that point on they can be
treated as a single path. These combinations reduce the computation required
to evaluate the upper bound as discussed in Observation 8.2. The number
of paths represented by a stack entry is called the path multiplicity, M. The
detailed stack algorithm is shown in Fig. 8.32 an operates much the same as
the stack algorithm described in Section 6.6.3.
Example 8.4

Consider a system that uses the 4-state 8-PSK Ungerboeck trellis code in
Fig. 8.33 on a two-tap multipath-fading channel. In the simulations, the tap

coefficients are generated by passing independent complex white Gaus-
sian noise through a digital Butterworth filter having a 3-dB cut-off frequency
equal to 0.4 Hz. The transmission rate is assumed to be 2400 symbols/sec and

for all i and d. Once again, the analytical results are



Error Control Coding 443

obtained by setting the threshold where  is the largest
term in the upper bound. For TCM on multipath-fading channels, the aver-
age received bit energy-to-noise ratio per diversity branch is given by (8.87).
Fig. 8.34 compares analytical and simulation results for this system. Without
diversity (D = 1), the difference is about 2 dB for However, for
two-branch diversity (D = 2), the difference is within 1 dB.

7. TURBO CODES
The principle of Turbo coding or concatenated coding is to construct long

random-like codes that have a structure that permits practical decoding [26].
Turbo codes are interleaved concatenated codes that are constructed from sim-
ple component codes and pseudo-random interleavers. The interleaver makes
the code appear random. Since the component codes are easy to decode, the
overall code can be decoded by iteratively decoding the component codes.
There are two basic types of Turbo codes depending on the type of concatena-
tion, namely parallel concatenated codes and serial concatenated codes. The
component codes can be either convolutional codes or block codes. Here we
just consider convolutional component codes. Parallel concatenated convolu-
tional codes (PCCCs) use recursive systematic convolutional (RSC) component
codes. Serial codes. Serial concatenated convolutional codes (SCCCs) use a re-
cursive or non-recursive convolutional outer code and a recursive convolutional
inner code.
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7.1 PCCC ENCODER
Fig. 8.35 shows a PCCC encoder structure which is a parallel concatenation

of two RSC component codes4. The component codes must be recursive for
reasons we will see later. If the component codes have rates and

then the PCCC has code rate

The input data sequence a is first encoded by RSC1. The feedforward and
feedback generator polynomials of RSC1 are

respectively, where v
is the encoder memory. The outputs of RSC1 are the systematic component

and the parity component defined by

4The parallel concatenation of more than two component codes is possible, but we will consider only two
component codes for simplicity.
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where

The data sequence a is interleaved by the interleaver of size . into
the sequence and encoded using RSC2 to produce the parity sequence
The interleaving operation can be defined by a mapping of the input
bit position i to output bit position For example, the interleaver might
perform the mapping

For Turbo codes the choice of interleaver is crucial. In many cases, random
interleavers are employed, where the interleaving mapping is completely ran-
dom. In other cases, an S-random interleaver is used, where interleaver inputs
that are separated by less than S positions, are interleaved into
interleaver outputs that are separated by at least S positions,

A PCCC code word is formed by the parallel con-
catenation (or interleaving) of the systematic component and the two parity
sequences. If higher code rates are desired, then the parity outputs of the RSC
component encoders can be punctured. A punctured Turbo code is obtained by
starting with a rate-l/n Turbo code and deleting or puncturing specified parity-
check symbols. For example, the puncturing pattering in Fig. 8.35 produces
a rate-1/2 code from a rate-1/3 code5. Note that the systematic component of
RSC2 is not transmitted. Tail bits are typically added to the data sequence to
terminate RSC1 in the all-zeroes state while the trellis of RSC2 is left ‘open’.

5A “1” in the puncturing pattern means that the bit is transmitted, while a “0” means that the bit is not
transmitted
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7.2 PCCC DECODER
The Turbo decoder is an iterative structure consisting of many identical

stages, each consisting of two soft-input/soft-output SISO decoding units. The
decoder structure for PCCCs is shown in Fig. 8.36. The (SISO) modules
generate a-posteriori probabilities (APPs)

or, for binary codes, log-likelihood ratios (LLRs)

of each information bit based on the received signal sequence
and the extrinsic information passed between the two SISO modules.

The iterative decoding operation of parallel Turbo codes can be explained
as follows, using LLRs as an example. At the mth iteration, the LLRs
generated by the SISO decoders for data bit are

where is the LLR due to the systematic component, and

are the extrinsic information for each bit generated
at the mth decoding stage by SISO1 and SISO2, respectively, and can be
expressed as

where f denotes the SISO decoding unit. The iterative procedure is started
with initial condition The final bit decision for is determined
by the sign of

A variety of SISO algorithms have been proposed to either generate or
approximate the APPs or LLRs. Berrou et al. [36] and Robertson [283] used a
modified version of the Bahl, Cocke, Jelinek and Raviv (BCJR) algorithm [25]
to generate APPs. Hagenauer et al. [154], [156] introduced the soft-output
Viterbi algorithm (SOVA) [155] to generate soft outputs based on the LLR.

As mentioned previously, Turbo codes can provide near Shannon limit per-
formance. Fig. 8.37 shows the typical performance of a rate-1/2, 16-state,
PCCC on an AWGN channel for different random interleaver sizes. Also in-
cluded, is a -state convolutional code for comparison. Observe that a simple
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16-state PCCC can easily outperform a very complex 216-state convolutional
code, at low At high the BER slope of PCCCs is shallow,
loosely termed an “error floor.” The error floor is not actually an error floor, but
rather a change in the slope of the error rate curve due to the relatively small
free distance of Turbo codes.
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7.3      SCCC   ENCODER  AND  DECODER
Fig. 8.38 shows a SCCC encoder which is a serial concatenation of two

component codes separated by an interleaver. In a SCCC scheme, the input
data sequence of length is first encoded by an outer convolutional code

with rate The output of is interleaved using a pseudo-
random interleaver of length , and then encoded using an inner
convolutionalcode The SCCC has code rate

The codewords of the outer and inner codes are referred to as outer and in-
ner codewords, respectively. Consequently, the inner codewords are also the
codewords of the SCCC. With SCCCs, the inner encoder must be recursive for
reasons to be seen later. The outer code does not have to be recursive.

The structure of the SCCC decoder is shown in Fig. 8.39. It operates in an
iterative fashion similar to the PCCC decoder. However, the SISO modules
now produce APPs or LLRs for the information bits, and the code bits
from the outer coder.

7.4 WEIGHT DISTRIBUTION
It is sometimes useful to view PCCCs and SCCCs as equivalent block codes

with input sequences of length respectively, where
N is the interleaver size. Like block codes, Turbo codes can be described by
a distance spectrum where is the number of codewords of weight
Hamming weight d. The conditional weight enumerating function (CWEF) of
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a block code defined as [32]

where is the number of weight-d codewords having information-weight
Note that The smallest non-zero value of d is the free

Hamming distance of the code, denoted by The union bound on the
probability of bit error is

where is the pairwise error probability between two coded sequences
separated by Hamming distance d.

To obtain a low there are generally two approaches; we can either
decrease or increase With convolutional codes, increases rapidly

with . As a result, convolutional codes are said to have a “dense distance
spectrum.” Also, with convolutional codes, due to their time invariant
property. Hence, for convolutional codes a decrease in ) is usually obtained
by increasing < which ultimately obtained by increasing the total encoder
memory. Turbo codes take other approach by drastically decreasing . This
property is called “spectral thinning.”

The spectral thinning property of Turbo codes can be explained intuitively
as follows. Considering PCCCs, the total weight of a PCCC codeword is equal
to the weight of the systematic and parity components

Consider for example a RSC with generator matrix and the ran-
dom interleaver shown in Fig. 8.40. Certain input sequences a will lead to low
output weights from the first encoder RSC1. For example, the input
sequence a produces the output
from the first encoder RSC1. However, the interleaved sequence will
usually lead to a high output weight from the second encoder RSC2.
Consequently, most codewords have large weight. However, some input se-
quences that produce low weight codewords in one encoder, after interleaving
will also produce low weight codewords in the other encoder. Therefore, there
are a few codewords with small weight. For most random interleavers, this oc-
curs with high probability [87]. At high the error events corresponding

6It is important to realize that is not equal to (in our earlier discussion of convolutional codes), since
the Turbo codewords can consist of multiple error events.
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to these low-weight codewords dominate the BER performance with the result
that the BER curves of PCCCs flatten at high This has been loosely
termed as an “error floor” [32, 71].

In the sequel, convolutional codes, PCCC and SCCC are discussed simul-
taneously and, to avoid confusion, the quantities associated with them are
distinguished by the superscripts c, T, and S, respectively.

For convolutional codes, every non-zero codeword corresponds to an error
event or a concatenation of error events. The weight of a codeword equals the
sum of the weights of the error events. Let denote the number of weight-
d codewords having information and formed by the concatenation
of i error events. Then, the number of weight-d codewords with information

is where is the maximum number of
possible error events for a input sequence.

The distance spectrum of Turbo codes is difficult to determine for a particular
Turbo interleaver. Fortunately, Benedetto and Montorsi [32] solved this prob-
lem by introducing a hypothetical interleaver called uniform interleaver that
permutes a given sequence onto any of the possible interleaved
sequences with equal probability. The distance spectrum of a Turbo code with
a uniform interleaver can be obtained by averaging the distance spectrum over
all possible interleaver mappings. At least half the random interleavers are
guaranteed to yield a weight distribution that is as good as the average weight
distribution. Furthermore, most of the randomly generated interleavers have a
weight distribution that is close to the average weight distribution. Hence, the
typical performance of a Turbo code with a randomly chosen interleaver can
be obtained from the average weight distribution with a uniform interleaver.

7.4.1 WEIGHT DISTRIBUTION OF PCCCS
With a uniform interleaver the number of weight-d Turbo codewords with

input sequences is, for large N, [31]
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Using the approximation gives

Observe that the multiplicity, of the PCCC codewords is inversely pro-
portional to the interleaver length N. Consequently, increasing N results in
very small multiplicity, a phenomenon called spectral thinning, and is the
reason for the remarkable performance of Turbo codes. In contrast, we note
that the time-invariant property of convolutional codes implies that

The uniform interleaver is hypothetical and impractical. For reasonably large
interleaver sizes N, random interleavers perform very well [87]. To see why,
consider a rate-1/3, 8-state, PCCC code where the RSC component encoders
have generator matrices . Since the component codes are recur-
sive, all weight-1 input sequences produce infinite-weight output sequences.
The minimum distance error event at the output of each RSC encoder corre-
sponds to an input error sequence of the form However, the
random interleaver permutes such sequences very effectively so that the output
of the other encoder has high weight [87]. Weight-2 input error sequences to
RSC1 of the form . will produce a finite-weight output sequence
having the form However, the random interleaver per-
mutes these sequences into sequences which are not of the form .
with high probability [87]. However, an occasional bad mapping occurs, where
input sequences of the form are permuted into input sequences
of the form for some i, j. This is illustrated in Fig. 8.41. Such
input sequences produce low-weight outputs from both encoders and define the
minimum Hamming distance of the PCCC code. The probability that an input
sequence a of weight-w is interleaved into a sequence of the form
for at least one pair i, j is proportional to [87]. Hence, bad mappings
are very likely to occur for weight-2 input sequences and very unlikely to oc-
cur for weight input sequences. So the minimum distance error event
corresponds to a weight-2 input sequence with very high probability. If the
smallest weight RSC output corresponding to all weight-2 input sequences is

then the free Hamming distance of the PCCC code is
For our example PCCC code, the free distance is = 2 + 4 + 4 = 10,
which is rather small. This small free Hamming distance is typical of PCCCs
precisely the reason for the so called BER and FER floor of PCCCs. Finally,
we note that other types of interleavers, such as the S-random interleaver, are
generally very difficult to analyze, but most of the above arguments are valid.

PCCCs inherently provide unequal error protection, because the bad inter-
leaver mappings define certain bit positions are affected by th dominant error
events. Such bad mappings affect only a very few bit positions, but they nev-
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ertheless result in a BER floor. In contrast, for convolutional codes all bit
positions in the input sequence are affected by the same error events. Con-
sequently, all bit positions are equally likely to be in error. So PCCCs are
inherently unequal error protecting (UEP) codes.

It is instructive to understand how the expected number of bad mappings
changes with the interleaver size, N. The total number of possible interleaver
mappings for a block of N bits is N! The number of bad mappings, where
a sequence of the form is mapped into a sequence of the form

is approximately The approximation is due
to the fact that edge effects have been ignored which is a valid assumption for
large N. Therefore, the probability that a sequence of the form is
mapped onto a sequence of the form is

Assuming that the mappings for the different bit positions are independent
and ignoring the edge effects, the distribution of the total number of such
bad mappings k, in a block of length N, can be approximated by a binomial
distribution for small k, i.e., 7

P (total number of bad mappings

The mean number of bad mappings is which converges to 2 for large N.
Therefore, the mean number of data bits affected by bad mappings converges
to 4 for large N, since the bad mappings correspond to weight-2 input error
sequences.

7The case of large k is not of interest because the probability of many bad mappings is extremely small and
therefore, does not contribute significantly to the mean of the distribution.
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7.4.2 WEIGHT DISTRIBUTION OF SCCCS
Consider the serial concatenation system in Fig. 8.38. Let the input block

length is bits. The length of the outer codeword and, therefore, the inter-
leaver size and length of the input to the inner encoder is
bits. Under the assumption of a uniform interleaver, the number of weight-h
code words that are generated by input sequences is [287]

where is the minimum free distance of the outer code, and  refer
to the maximum number of error events possible for the outer and inner codes,
respectively. By using the approximation

where is the minimum-weight of all input sequences that will produce an
error event for the outer code.

Observe from (8.117) that the contribution of each codeword to the BER
is multiplied by the term                      .  Therefore, when
0, increasing N decreases the BER exponentially. This effect is called the
interleaver gain. Consider a weight-l outer codeword which is a result of
error events of the outer code. If the inner encoder is non-recursive, then a
weight-l outer codeword can result in a maximum of l error events (each ‘1’ in
the outer codeword can cause an error event). Therefore, can be equal to l.
In this case, the exponent of N will be , the exponent
of N will be positive. Consequently, increasing N increases the contribution
of such codewords to the final BER [287]. When the exponent of N
will be zero, implying that the interleaver does not impact the multiplicity of
such codewords or, equivalently, no interleaving gain is possible.

When the inner encoder is recursive, only input sequences having weight-2
or greater can cause error events. Therefore, a weight-l outer codeword can
cause at most error events for the inner code. Consequently, the exponent
of N is        –1.  If all outer codewords corresponding to one error event
of the outer code have weight or, equivalently, the free distance
of the outer code is greater than 2, the exponent of N is always negative. This
implies that increasing N will always decrease the BER.

Problems
8.1. Consider a rate-1/3 convolutional code with generators = (111),
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a) Draw a block diagram of the encoder structure.

b) Draw the state diagram and trellis diagram.

c) Determine the output sequence corresponding to the input sequence
1110101.

8.2. The output of a rate-1/3 convolutional encoder with constraint length 3 to
the input a = (1,1,0,...) is b = (111, 110, 010,...)

a) Determine the transfer function T(D,N,L).

b) Determine the number of paths through the state diagram or trellis that
diverge from the all-zeroes state and remerge with the all-zeroes state
7 branches later.

c) Determine the number of paths of Hamming distance 20 from the all
zeroes sequence.

8.3. Consider the rate-1/3 code in Problem 8.1.

a) Determine the transfer function T(D, N, L) of the code. What is the
free Hamming distance

b) Assuming the use of BPSK signaling and an AWGN channel, derive a
union-Chernoff bound on the decoded bit error probability with i) hard
decision decoding and ii) soft decision decoding.

c) Repeat part b) assuming an interleaved flat Rayleigh fading channel,
where the receiver has perfect knowledge of the channel.

8.4. Consider the 8-PAM and 32-CROSS signal constellations in Fig. 8.42.

a) Construct the partition chain as in Fig. 8.11 and compute the minimum
Euclidean distance between signal points at each step in the partition
chain.

b) What is the average symbol energy for each of the signal constellations.

8.5. Consider the 2-state, rate-1/2, trellis encoder shown in Fig. 8.43. By using
this encoder with a 4-PAM and 8-PAM signal constellation we can construct
a TCM systems having bandwidth efficiencies of 1 bit/s/Hz and 2 bits/s/Hz,
respectively.

a) Determine the appropriate partitions for the signal constellation for the
2-state, 4-PAM and 8-PAM trellis codes.

b) Construct and label the trellis diagrams for the 2-state 4-PAM and 8-
PAM trellis codes.
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c) Determine the minimum Euclidean distance for each trellis code, and the
asymptotic coding gain on an AWGN channel relative to the equivalent
uncoded systems.

8.6. Construct and label the trellis diagram for a two-state MTCM system using
8-PSK. What is the asymptotic coding gain for this system on an AWGN
channel relative to the equivalent uncoded system.

8.7. For the MTCM code shown in Fig. 8.19, show how the values of MDD1
and MDD2 are determined. Repeat for the 2-D code shown in Fig. 8.20.

8.8. To simplify the calculation of performance bounds a Chernoff bound is
often imposed on the pairwise error probability.

a) Derive the Chernoff bound on the pairwise error probability for an
AWGN channel with soft decision decoding, given by (8.61).
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b) Derive the Chernoff bound on the pairwise error probability for an
AWGN channel with hard decision decoding, given by (8.63).

c) Derive the Chernoff bound on the pairwise error probability for an
interleaved flat fading channel with soft decision decoding, given by
(8.75).

8.9. Suppose that the 2-state, 4-PAM trellis code in Problem 8.5 is used on a
2-tap ISI channel characterized by the channel vector

a) Construct the super-trellis diagram.

b) What is the minimum distance error event in the super-trellis?

c) Determine the condition number of the path distance matrix E for the
minimum distance error event found in part b).

d) Determine the channel vectors that minimize and maximize the pairwise
error probability.



Chapter 9

SPREAD SPECTRUM TECHNIQUES

Spread spectrum systems were originally developed for military applica-
tions, to provide antijam and low probability of intercept communications by
spreading a signal over a large frequency band and transmitting it with a low
power per unit bandwidth [86], [262], [306]. Recently, code division multiple
access (CDMA) based on spread spectrum technology has been recognized as
a viable alternative to both frequency division multiple access (FDMA) and
time division multiple access (TDMA) for cellular systems. During the late
1980s and early 1990s, Qualcomm, Inc.’s efforts, along with those of many
other organizations such as Motorola and AT&T, have lead to the North Amer-
ican IS-95 cellular standard [96]. A detailed description of the IS-95 CDMA
cellular approach can be found in a number of papers, including those by Lee
[193] and Gilhousen et al. [136]. The book by Viterbi [344] provides a good
coverage of the spread spectrum concepts that form the foundation of the IS-95
CDMA cellular system.

Spread spectrum signals have the distinguishing characteristic that the band-
width used is much greater than the message bandwidth. This band spread
is achieved by using a spreading code or pseudo-noise (PN) sequence that is
independent of the message and is known to the receiver. The receiver uses
a synchronized replica of the PN sequence to despread the received signal al-
lowing recovery of the message. Since the PN sequence is independent of the
message, the bandwidth expansion does not combat additive white Gaussian
noise (AWGN), unlike some other modulation techniques such as wide band
analog FM. Nevertheless, the wide band character of spread spectrum signals
can be utilized to mitigate the effects of interference and multipath fading.

While there are many different types of spread spectrum systems, the two
predominant types are direct sequence (DS) spread spectrum and frequency
hopped (FH) spread spectrum. DS spread spectrum achieves the band spread
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by using the PN sequence to introduce rapid phase transitions into the carrier
containing the data, while FH spread spectrum achieves the band spread by us-
ing the PN sequence to pseudo-randomly hop the carrier frequency throughout
a large band. An excellent tutorial treatment of spread spectrum can be found
in the books by Simon et al. [306] and Ziemer and Peterson [381]. Some of
the early proposals that applied CDMA to cellular radio, such as the system
proposed by Cooper and Nettleton [65], were based on FH spread spectrum
while most of the recent standards, such as IS-95, favor DS spread spectrum.
As a result, the focus of this chapter is on DS CDMA.

While it appears that any cellular system can be suitably optimized to yield a
competitive spectral efficiency regardless of the multiple access technique being
used, CDMA offers a number of advantages along with some disadvantages.
The advantages of CDMA for cellular applications include i) universal one-cell
frequency reuse, ii) narrow band interference rejection, iii) inherent multipath
diversity in DS CDMA, iv) ability to exploit silent periods in speech voice
activity, v) soft hand-off capability, vi) soft capacity limit, and vii) inherent
message privacy. The disadvantages of CDMA include i) stringent power con-
trol requirements with DS CDMA , ii) hand-offs in dual mode systems, and iii)
difficulties in determining the base station (BS) power levels for deployments
that have cells of differing sizes, and iv) pilot timing.

This chapter begins with an introduction to DS and FH spread spectrum in
Section 1., along with a comparison between these two types of spread spec-
trum systems. Such a comparison is important if we are to determine the best
CDMA approach for a given environment. PN sequences are fundamental to
all spread spectrum systems and are the subject of Section 2.. The remainder
of the chapter concentrates on DS spread spectrum. Section 5. discusses the
performance of point to point DS spread spectrum on frequency selective fad-
ing channels and shows how a RAKE receiver can be used to gain multipath
diversity. Error probability upper and lower bounds and approximations are es-
sential for predicting the performance of CDMA systems. Section 6. considers
an accurate analysis of the error probability of DS CDMA on AWGN chan-
nels. Several Gaussian approximations to the error probability are derived. The
chapter concludes with a performance evaluation of cellular DS CDMA. Unfor-
tunately, DS CDMA cellular systems are very complex systems with intricate
interactions between system functions. Therefore, the analytical evaluation of
system capacity typically requires simplifying assumptions, while focusing on
a particular parameter or effect. Usually we can obtain relative performance
comparisons, while the true capacity of a suitably optimized CDMA system in
a realistic deployment scenario remains elusive.
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1. BASIC PRINCIPLES OF SPREAD SPECTRUM
1.1 DIRECT SEQUENCE (DS) SPREAD SPECTRUM

A simplified DS/QPSK spread spectrum system is shown in Fig. 9.1. The
pseudo-random (PN) sequence generator produces a spreading sequence a =
{ajt}, which is actually a periodic deterministic sequence with period N. This
spreading sequence is used to generate the spreading waveform

where is a complex spreading sequence, is the
PN symbol or chip period, and is a real chip amplitude shaping function
having a peak amplitude of unity. The energy per chip is

since Notice that spectral control is achieved with DS
spread spectrum by shaping the PN chips rather than the data symbols.

The data symbol sequence is used to generate the waveform

where A is the amplitude, is the complex
data symbol sequence, and T is the data symbol duration. It is necessary that T
be an integer multiple of and the ratio is called the processing
gain, defined here as the number of PN chips per data symbol. There are two
types of spreading codes, distinguished by the relative values of N and G. A
short code has G = N, so that each data symbol is spread by a full period of
the spreading sequence. A long code has so that each data symbol is
spread by a subsequence or partial period of the spreading sequence.

The DS/QPSK complex envelope, obtained by multiplying a(t) and x(t), is
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where

The  complex spreading operation is illustrated in Fig. 9.2. Notice that the
DS/QPSK signal can be thought of as a QPSK signal where the nth data
symbol is shaped with the amplitude shaping pulse in (9.5). For short
codes is the same for all data symbols. The advantage of complex
spreading is a reduction in the peak-to-average ratio of the magnitude of the
complex envelope. OQPSK should not be used with complex spreading, since
it will actually increase the peak-to-average ratio. The complex envelope
is applied to a quadrature modulator to produce the bandpass waveform

where

During the time interval the DS/QPSK complex envelope can
assume one of the four possible values

Using the basis function

where is the symbol energy, we can write

and it follows that the complex DS/QPSK signal vectors are

Notice that the basis function is indexed with the baud epoch n.
Besides complex spreading, other types of PN spreading are possible. We

could use dual-channel quaternary spreading as shown in Fig. 9.3. Usually
this scheme is used with OQPSK modulation to reduce the peak-to-average
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ratio of the magnitude of the complex envelope. If only one data sequence is to
be transmitted, then we could use either simple binary spreading or  balanced
quaternary spreading, as shown in Fig. 9.4. Balanced quaternary spreading
is known to be less sensitive to interference than simple binary spreading.

Fig. 9.1 also shows a simplified DS/QPSK receiver. In general, the DS spread
spectrum receiver must perform three functions; synchronize with the incoming
spreading sequence, despread the signal, and detect the data. Consider the
received complex envelope in the time interval This signal
can be despread and detected by using the correlator detector in Fig. 5.2 or the
matched filter detector in Fig. 5.3, where is defined in (9.10). The output
of the correlator or matched filter despreader/detector is

where is a zero-mean Gaussian random variable with variance
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The ML receiver observes and decides in favor of the signal vector that
minimizes the squared Euclidean distance

It follows that the bit error probability of DS/QPSK with Gray coding is identical
to QPSK, given by

where is the received bit energy-to-noise ratio. Note that spread
spectrum signaling does nothing to improve the error rate performance on an
AWGN channel. However, in the sequel we will show that spread spectrum
signaling offers significant error rate performance gains against additive inter-
ference, multipath-fading, and other types of channel impairments.

1.2 FREQUENCY HOP (FH) SPREAD SPECTRUM
Frequency hopping spread spectrum systems hop the carrier frequency

pseudo-randomly throughout a finite set of hop frequencies. The most common
type of modulation with frequency hopping is orthogonal M-ary frequency shift
keying (MFSK). The MFSK complex envelope is

where is the frequency separation, and
FH/MFSK waveform can be generated by using a digital frequency synthesizer
whose inputs consist of the data sequence and the contents of a pseudo-noise
sequence generator. A conceptual FH/MFSK spread spectrum system is shown
in Fig. 9.5.
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There are two basic types of FH spread spectrum modulation, fast frequency
hopping (FFH) and slow frequency hopping (SFH). SFH systems transmit
one or more (in general L) data symbols per hop. The SFH/MFSK complex
envelope is

where the first sum indexes the sequence of hop frequencies and the second
sum indexes the vector of L data symbols
that are transmitted at the nth hop.

FFH systems transmit the same data symbol on multiple (in general L)
hop frequencies. If independent interference is experienced on each of the
hop frequencies then a diversity gain is achieved. The FFH/MFSK complex
envelope is

where the first sum indexes the sequence of data symbols, and the second
sum indexes the sequence of  hop frequencies
that are used for the nth data symbol.

With orthogonal MFSK the required frequency separation depends on
the type of detection that is used. Coherent detection requires a frequency
separation , while non-coherent detection requires (see
Problem 4.5). If coherent detection can be used, then the error probability
of SFH/MFSK or FFH/MFSK on an AWGN channel is given by (5.103).
However, FH/MFSK is often detected non-coherently because of the difficulty
in achieving rapid carrier synchronization when the carrier frequency is hopped.
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The error probability of SFH/MFSK on an AWGN channel with non-coherent
square-law detection is given by (5.174). If FFH/MFSK is used on an AWGN
channel, then the error probability assumes a more complicated form, (see
[270]).

2. SPREADING SEQUENCES
CDMA systems achieve their multiple-access capability by using large sets

spreading sequences that are chosen to have three desirable attributes; i) the se-
quences are balanced so that each element of the sequence alphabet occurs with
equal frequency, ii) the autocorrelations have small off-peak values, to allow
for rapid sequence acquisition at the receiver and to minimize self interference
due to multipath, iii) the cross-correlations are small at all delays, to minimize
multiple-access interference.

Spreading sequences are often characterized in terms of their discrete-time
correlation properties. Let a(k) denote the kth complex spreading sequence1.
For spread spectrum systems that employ short codes, each data symbol is
spread by a full period of the spreading sequence. In this case the full period
correlation properties are of interest. The full period autocorrelation of the
sequence

and the full period cross-correlation between the sequences is

where N is the length or period of the spreading sequences.
The aperiodic autocorrelation of is defined as

For spread spectrum systems that employ long codes, each data symbol is
spread by only a portion of the spreading sequence. In this case, the par-
tial period correlations are of interest. The partial period auto- and cross-

1The following development also applies to real spreading sequences.
2Throughout this section complex spreading sequences are assumed. For real spreading sequences, the
correlation functions are similar but are normalized by N rather than 2N .
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correlations are

The partial period correlations are not only a function of the delay n, but also
depend upon the point in the sequence(s) where the summation actually starts.
The partial period correlations are difficult to derive analytically, except for
certain types of sequences. Therefore, we often resort to a statistical treatment
under the assumption that the sequences are randomly generated, i.e., the
sequence elements are chosen from the set independently and with
probability. For random sequences

Hence, the mean value of the partial period autocorrelation is

where

l an integer. The variance of the partial period autocorrelation is

Likewise, the mean and variance of the partial period cross-correlation are
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2. 1 SPREADING WAVEFORMS
The full period cross-correlation between two spreading waveforms

and is

The integral in (9.30) is nonzero only where the chip pulses and
overlap. Since the delay can assume any value let

where is an integer and If the chip pulses are chosen
to have duration then the chip pulses overlap only for

so that

The  continuous-time partial autocorrelation functions of the chip waveform
are defined as [272]

allowing us to write

where is the full period cross-correlation defined in (9.20). As an
example, if then

When the partial correlations in (9.22) and (9.23) must be used.
In this case the cross-correlation in (9.34) becomes a random variable that (for
random spreading sequences) has mean and variance
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Likewise, the autocorrelation is also a random variable that (for random spread-
ing sequences) has mean and variance

where i is an integer.

2.2 M-SEQUENCES
One very well known class of spreading sequences are the maximal length

sequences or m-sequences. As shown in Fig. 9.6, an m-sequence
is generated by using a linear feedback shift register (LFSR)

of length m. The sequence is obtained by using the level shift
The feedback or connection polynomial is a primitive polynomial

of degree m over GF(2), having the form

where and denotes modulo 2 addition. Tables of primitive
polynomials, p(x), are tabulated in many texts, e.g., [199]. Notice that
since this represents the feedback connection tap. Also, otherwise, if

we are effectively using a shift register of length less than m.
Maximal length sequences are by definition the longest sequences that can

be generated by an LFSR of a given length. For a shift register of length m, a
sequence of of length is generated. As a m-sequence generator
cycles through one full period of length the contents of the m-
stage shift register go through all possible non-binary m-tuples values
or states. The all-zeroes state is the only forbidden m-tuple, since the LFSI
would lock in this state.

The m-sequences have many remarkable properties, and every full period
of an m-sequence satisfies some important randomness properties. First, the
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sequence is balanced with ones and zeros. A run is defined
as a string of consecutive zeros or ones, and a sequence can be characterized
in terms of its run length distribution. For m-sequences the number of runs of
length P, nP, is

The full period autocorrelation of an m-sequence is

For large values of so that m-sequences are almost ideal when
viewed in terms of their full period autocorrelation. For a rectangular chip
shaping function the corresponding spreading waveform a(t)
has autocorrelation function

This function is plotted in Fig. 9.7.
The mean and variance of the partial period autocorrelation of an m-sequence

can be obtained in a straight forward fashion by replacing the expectations in
(9.25) and (9.27) with averages over all possible starting positions. This gives

Unfortunately, m-sequences also have a number of undesirable properties.
First, the number of m-sequences that can be generated by a LFSR of length m
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is equal to the number of primitive polynomials of degree m over GF(2), and
is given by is the Euler Totient function

where the product is over all primes p that divide n. Hence, there are relatively
few m-sequences for a given shift register length m. Second, only for certain
values of m, do there exist a few pairs of m-sequences with low full period
cross-correlations. In general, m-sequences do not have good cross-correlation
properties. Consider the full period cross-correlation between two m-
sequences . Let us define the average full period cross-correlation

The value of depends on the particular pair of m-sequences that are selected.
The best and worst case values of are shown in Table 9.1. Notice that the
worst case full period cross-correlations are very large even for long sequence
lengths.

2.3 GOLD SEQUENCES
A set of Gold sequences [141] consists of sequences each with a

period of that are generated by using a preferred pair of m-
sequences obtained as follows. Let be an extension field of GF(2).
Let a be a primitive Nth root of unity in the extension field where

be a pair of primitive polynomials over GF(2)
each having degree m such that for some integer d.
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Consider the case when mod 4. If  and
if e = GCD(m , h) is such that m/e is odd, then constitute
a preferred pair of polynomials. Note that may not be unique. For
example, with m = 5, both h = 1 and h = 2 will work, so that we can choose

To find the corresponding polynomials we can refer
to Peterson’s table of irreducible polynomials [261]. The two m-sequences a(1)

and a(2) that are generated by using are known as a preferred
pair of m-sequences. Their cross-correlation function is three-valued with the
values {–1, – t(m), t(m) – 2} where

By using the preferred pair of sequences a(1) and a(2), we can construct a
set of Gold sequences by taking the sum of a(1) with all cyclically shifted
versions of a(2) or vice versa. A typical Gold sequence generator is shown in
Fig. 9.8, where the preferred pair of polynomials are and

This above procedure yields N new sequences
each with period These sequences along with the original two
sequences gives a set of sequences.

It is important to note that all the Gold sequences are balanced
with ones and zeros. In fact, it can be shown that only

of the Gold sequences are balanced. The balanced Gold
sequences are the most desirable. With the exception of the preferred pair of
sequences a(1) and a(2), the Gold sequences are not m-sequences and, therefore,
their autocorrelations are not two-valued. However, Gold sequences have three-
valued off-peak autocorrelations and cross-correlations, with possible values
{–1, –t(m), t(m) – 2}, where t(m) is defined in (9.48).
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2.4 KASAMI SEQUENCES
The construction of  Kasami sequences proceed as follows [177], [178]. Let

m be even. Let p1 (x) be a primitive polynomial over the binary field GF(2) with
degree m and a as a root, and let  p2 (x) be the irreducible minimal polynomial of

where Once again, these polynomials can be identified using
Peterson’s table of irreducible polynomials [261]. Let a(1) and a(2) represent
the two m-sequences of periods that are generated by p1 (x)
and p 2(x), respectively. The set of Kasami sequences is generated by using the
two m-sequences in a fashion similar to the generation of Gold sequences, i.e.,
the set of Kasami sequences consists of the long sequence a(1) and the sum of
a(1) with all cyclic shifts of the short sequence a(2). The number
of Kasami sequences in the set is each having period
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In fact, this set is known as the small set of Kasami sequences. A typical
Kasami sequence generator is shown in Fig. 9.9 with generator polynomials

Like Gold sequences, the off-peak autocorrelation and cross-correlation
functions of Kasami sequences are also three-valued, however, the possible
values are {—1, —s(m ), s(m) – 2} where

2.5 BARKER SEQUENCES
Barker sequences exist for lengths 2, 3, 4, 5, 7, 11, and 13, given as follows:

The mirror images (or time reversed) sequences are also Barker sequences.
Barker sequences of other lengths do not exist.

Barker sequences are specially designed sequences that have almost ideal
aperiodic autocorrelation functions, defined in (9.21). For the Barker sequences
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2.6 WALSH-HADAMARD SEQUENCES
Walsh-Hadamard sequences are obtained by selecting as sequences the rows

of a Hadamard matrix . For M = 2 the Hadamard matrix is

Larger Hadamard matrices are obtained by using the recursion

For example,

The rows in the Hadamard matrix define the Walsh-Hadamard sequences,
and have the property that they are all orthogonal to each other.

The Walsh-Hadamard sequences can be used for orthogonal spreading, also
called orthogonal CDMA, where the users are distinguished by assigning them
different Walsh-Hadamard sequences, and the data symbols are sent by using
simple binary spreading as shown in Fig. 9.4.. With orthogonal CDMA, the
data symbols of the different users must be synchronized to within a small
fraction of a chip period. This is because the Walsh-Hadamard sequences have
very poor cross-correlations at non-zero lags. In fact, some of the Walsh-
Hadamard sequences are just cyclic shifts of each other. Finally, multipath will
also destroy the orthogonality of the received waveforms, because the Walsh
Hadamard sequences have large off-peak autocorrelation values even at small
lags.

2.6.1 ORTHOGONAL AND BI-ORTHOGONAL MODULATION
The Walsh Hadamard sequences can be used for modulation rather than

spreading. There are several possibilities. One is M-ary orthogonal mod-
ulation, where bits are used to select one of the M orthogonal
waveforms for transmission. The signals can be detected coherently or non-
coherently as discussed in Chapters 4 and 5. Another possibility is a variant of
biorthogonal modulation, where each row of the Hadamard matrix is used to
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send one bit of information. In this case M bits are sent at one time. This type
of modulation requires coherent detection.

2.7 VARIABLE LENGTH ORTHOGONAL CODES
In multimedia applications it is necessary to support a variety of data services

ranging from low to very high bit rates. Quite often these services are used
concurrently and they all use the same spread bandwidth. Consider a system
where each data symbol in the highest bit rate service   is spread by
an orthogonal sequence of length Then the data symbols in a service
with bit rate must be spread by a sequence of length
One way to achieve orthogonality between spreading sequences with different
spreading factors is to use tree structured orthogonal codes. The construction
of these codes is illustrated in Fig. 9.10. Tree-structured orthogonal codes are
generated recursively according to the following:
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where is an orthogonal code set of size 2n. The orthogonality properties are
similar to Walsh-Hadamard sequences. In fact the set of sequences is identical,
and only their order is different.

A code can be assigned for use if and only if no other code either on the path
from the specific code to the root of the tree, or on the subtree produced by
the specific code, is already being used. Hence, the total number of available
codes is not fixed, but depends on the rate or spreading factor of each physical
channel.

2.8 COMPLEMENTARY CODE KEYING (CCK)
Complementary codes have the property that the sum of their aperiodic

autocorrelation functions are zero for all delays except zero delay. That is,

A variety of constructions exist for complementary codes and two examples
are given here.

The IEEE 802. l1b standard uses CCK. For 11 Mb/s transmission length-8
sequences are used. The eight complex chip values for CCK code words are

where the phases are QPSK phases. The phases
each take on 4 different values, leading to a code alphabet of size 64. The phase

is differentially encoded across successive codewords. Since each of the 4
phases represents 2 bits of information, 8 bits are transmitted per
codeword. The chip rate for IEEE 802.11 is 11 Mchips/s, so that the resulting
bit rate is 11 Mb/s.

The IEEE 802. l1b standard for 5.5 Mb/s transmission is similar but uses
CCK with length-4 sequences. The complex chip values for the CCK code
words are

where, again, the phases are QPSK phases.

3. POWER SPECTRAL DENSITY OF DS SPREAD
SPECTRUM SIGNALS

We seen earlier that the DS/QPSK signal can be thought of as a QPSK signal
where the nth data symbol is shaped with the amplitude shaping pulse in (9.5).
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For uncorrelated zero-mean data symbols, the results in Chapter 4 showed that
the power spectral density (psd) of the complex envelope is (c.f. 4.206)

where is the amplitude shaping pulse. In the case of a short code, the
amplitude shaping pulse is

Taking the Fourier transform of gives

and

The above expression can be put in a more convenient form by using the
aperiodic autocorrelation defined in (9.21). It can be shown that

where is the discrete-time Fourier transform (DTFT) of the aperiodic
autocorrelation function, defined by

Using we can write

Observe that the psd depends on both Suppose the
spreading sequence has an ideal “thumbtack” aperiodic autocorrelation function

Then and
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In this case, the psd depends only on the chip shaping response
For example, if then

. Unfortunately, no spreading sequences having the ideal ape-
riodic autocorrelation function in (9.65) exist for any non-trivial length.

Consider the following two spreading sequences

The first is a length-11 Barker sequence and the second is a length-15 m-
sequence. The aperiodic autocorrelation functions for these sequences are
shown in Figs. 9.11 and 9.12, respectively. The corresponding power spectral
densities with a the rectangular chip shaping function (t) are plotted
in Figs. 9.13 and 9.14, respectively. Notice that the aperiodic autocorrelation
of the m-sequence deviates significantly from the ideal function in (9.65).
This leads to spectral peaks and nulls in Fig. 9.14. For wireless local area
networks (LAN) that operate in unlicensed bands, such spectral peaks are
highly undesirable. The length-11 Barker sequence is seen to provide a much
smoother psd without any large peaks. For this reason, the length-11 Barker
sequence has been chosen for the IEEE 802.11 wireless (LAN) specification.
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It is interesting to note that complementary code keying is used, then the
psd depends on the DTFT of the average aperiodic autocorrelation function in
(9.55). In this case,

and the psd has the ideal form in (9.66).
Finally, if a long code is used, then the power spectrum must be obtained by

averaging over all possible spreading code subsequences of length G. Usually,
this will result in a “smoother” power density spectrum.

4. PERFORMANCE OF DS/QPSK IN TONE
INTERFERENCE

Spread spectrum systems must often operate in the presence of narrowband
interfering signals. In the United States, commercial spread spectrum systems
operate in the unlicensed ISM (Instrumentation, Scientific, and Medical) bands
according to FCC Part 15 spectral etiquette rules. The ISM bands are character-
ized by sources of narrowband interference. Military systems are often jammed
with narrowband interference. Here we consider the effect of continuous wave
(CW) tone interference on the performance of DS/QPSK.
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Consider a DS/QPSK system with dual-channel quaternary spreading as
shown in Fig. 9.3. The bandpass DS/QPSK waveform is

where A is the amplitude. During time interval the transmitted
quaternary data symbol is
and the spreading waveforms are

With dual-channel quaternary spreading, the energy per modulated symbol is
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where

is the energy per PN chip. Note that (9.72) and (9.2) differ by a factor of
2, because (9.2) assumes complex spreading while (9.72) assumes quadra-
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ture spreading. This can be seen by comparing the energy of the bandpass
waveforms in (9.68) and (9.68) over the interval

The received bandpass signal in the presence of tone interference and additive
white Gaussian noise (AWGN) is

where n(t) is AWGN with two-sided power spectral density is
the tone interference of the form

where is the tone amplitude, is its frequency, and is a random phase
uniformly distribution on the interval The tone energy in a time interval
of duration T is

The received signal is despread and processed with the quadrature demod-
ulator shown in Fig. 9.15 to generate the decision variables To
derive the values of we consider the signal, noise, and interference
separately. During the time interval [nT, (n + 1)T] the contribution of the
signal term to is

where we have used (9.71). Likewise

The contribution of the AWGN term to is
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It can be shown that are independent zero-mean Gaussian
random variables with variance

Finally, the contribution of the tone interference term to can be
calculated as follows:

where

Using  we can write

Finally, using
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we can write

where

Using further trigonometric identities we can write

In a similar fashion

Combining the signal, noise, and tone interference terms

It follows that and are independent Gaussian random variables with
variance and means

where



484

Error probability with a short code:. For the purpose of illustration assume
a rectangular chip shaping pulse that and
assume a short code (G = N) so that each data symbol is spread by the same
sequence. Furthermore, assume that the same spreading sequence is used on
the inphase and quadrature channels so that

It follows that

Likewise

Fortunately, the above integrals exist in closed form. Defining

we have
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and

Due to the random phase of the tone interferer, the tone interference cir-
cularly symmetric, similar to the AWGN. This allows us to rotate the signal
constellation for the purpose of calculating the bit error probability. The rotated
constellation is shown in Fig. 9.16. In the absence of tone interference, the
probability of correct symbol reception is

where

is the bit error probability, and is the received bit energy-to-noise
ratio.

The probability of correct reception is

When tone interference is present, the error probability depends on the transmit-
ted symbol and the interference impairment and Referring to Fig. 9.16
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where

Hence, we can write

In a similar fashion,

Since all symbols are equally likely, the bit error probability is
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Observe that the bit error probability depends on and However and
are random variables due to the random phase Therefore, the bit error

probability must calculated by averaging (9.110) over random phase of the tone
interferer.

Fig. 9.17 shows the bit error probability when the length-15 m-sequence,
in (9.67) is used as a short code Fig 9.17 arbitrarily assumes that

MHz, and . Observe that the bit error probability
varies greatly with the frequency of the tone interferer. It is interesting to note
that an interfering at the carrier frequency is not the worst case. Also, the
bit error probability is seen to exhibit an error floor due to the AWGN.

Fig. 9.18 shows the bit error probability when the length-11 Barker sequence
in (9.67) is used as a short code Observe that the length-11

Barker sequence generally has worse performance for the same than the
length-15 m-sequence, except at frequencies where the length-15 m-sequence
is highly sensitive to tone interference. This is because the length-11 Barker
sequence has a lower processing gain compared to the length-15 m-sequence.

Fig. 9.19 inverts Fig. 9.17 and plots the required to achieve a bit error
rate of with the length-15 m-sequence in the presence of a single tone
interferer and AWGN. Likewise, Fig. 9.20 inverts Fig. 9.18 for the length-11
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Barker sequence. Observe that the sensitivity to tone interference is much less
with the Barker sequence.

The sensitivity of the error probability to the frequency of the tone interferer
can be explained as follows. The data symbols on the inphase and quadrature
channels are spread by using the amplitude shaping pulse

where is the periodic spreading sequence of length N. After quadra-
ture demodulation the receiver employs a correlator or matched filter detector
with impulse response3

3 We assume the usual case where



Spread Spectrum Techniques 489

The filter has  transfer function

where

For a rectangular chip shaping function
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The corresponding amplitude response for the length-15 m-sequence
and the length-11 Barker sequence are identical in form to the corresponding
transmitted psds shown in Fig. 9.14 and 9.13, respectively. The frequencies
where is has the highest relative gain are the exact same frequencies
where the tone interferer causes a large error probability. If the length of the
short code is increased, the sensitivity to tone interference will not necessarily
diminish. To make the receiver less sensitive to tone interference, we must
ensure that the period autocorrelation function in (9.21) is a close to ideal
as possible. In other words, the power spectrum defined in (9.63)
is as flat as possible. Although some types of sequences, such as Gold and
Kasami sequences, have excellent cross-correlation properties, there aperiodic
autocorrelation functions are usually far from ideal. Their corresponding power
spectrum is typically full of peaks and nulls. The Barker sequences
have the best aperiodic autocorrelation properties and will result in the least
senstivity to tone interference.

Error probability with a long code:. With a long code each data symbol
is spread with a subsequence of a long PN sequence. In this case, the error
probability must be averaged over the starting phase of the PN subsequence
that is used to spread each data symbol.
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Fig. 9.21 shows the effect of using a long PN sequence. Three cases are
considered; a length-31 m sequence with generator polynomial a
length-127 m-sequence with generator polynomial  and a length-
2047 m-sequence with generator polynomial Fig 9.22 shows the
length-63 m-sequence with generator polynomial The processing
gain in each case is chips/symbol. For the length-63 m-sequence, 15
and 63 have a common factor of 3 and, therefore, there are three different sets
of subsequences to consider.

Observe that the bit error probability with a long code is less sensitive to
the tone frequency as compared to a short code. For sequence lengths of 127
and 2047, the bit error probability is maximized when For all three
sequence lengths, there are still some spectral irregularities, because the length
of the shift register (5, 7, and 11) that is used to generate the PN sequence
is less than the processing gain (15). Hence, the data symbols are not spread
will all possible binary N-tuples, thus leading to the irregularities observed
in Fig. 9.21. It is interesting to note that the length-2047 m-sequence seems
to be more sensitive to an on-carrier tone than the length-127 m-sequence.
The reason is that the length-15 subsequences of the length-127 m-sequence
tend to be more balanced (equal number of -1’s and 1’s) than the length-15
subsequences of the length-2047 m-sequence.

Finally, comparison of Figs. 9.17 and 9.21 leads to the observation that the
bit error probability with the short length-15 PN sequence is worse than that
realized with a long PN sequence (e.g., the length-127 m-sequence) only at 4
narrow ranges of tone frequencies.

5. DS SPREAD SPECTRUM ON
FREQUENCY-SELECTIVE FADING CHANNELS

Suppose that the DS complex envelope is strictly bandlimited to a
bandwidth of W/2 Hz, by using for example spectral raised cosine pulse
shaping. Since the low-pass signal is band-limited to the
sampling theorem can be invoked and can be completely described by the
set of complex samples The sampled version of is

Taking the Fourier transform of both sides of (9.117) gives
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From (9.118) we can see that

Another useful expression can be obtained by taking the Fourier transform
of both sides of (9.116) giving

Combining (9.119) and (9.120) gives



Spread Spectrum Techniques 493

If the low-pass signal is transmitted over a multipath fading channel
with time-variant transfer function T ( f , t ) , the received (noiseless) complex
envelope is

Substituting from (9.121) gives

where is the time-variant impulse response of the channel. By defining
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the noiseless received complex envelope can be written as

and it follows that the complex low-pass impulse response of the channel is

For WWSUS channels, the in (9.124) are independent complex Gaus-
sian random processes. For all practical purposes, the channel will be causal
with an impulse response that is nonzero over a time interval of duration
In this case, where and is
the smallest integer greater than x. It follows that the channel impulse response
is

In conclusion, the frequency selective fading channel can be modeled as an
L-tap, 1/W-spaced, tapped delay line with tap gain vector

as shown in Fig. 9.23. It should be emphasized that the channel vector g(t)
is not the same as the channel vector associated with the T-spaced
discrete-time white noise channel model in Chapter 7.

If ideal Nyquist chip amplitude pulse shaping is used such that
then                     and the channel can be represented as a      -spaced
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or chip-spaced tapped delay line. Such a model is very convenient because
it leads to a simplified analysis. However, if any other pulse shape is used,
such as a raised cosine pulse, then the tapped delay line channel model in
Fig. 9.23 is not e.g., a raised cosine pulse with (or 100%
excess bandwidth) results a tapped delay line. Moreover, the
1/W-spaced tapped delay line model was derived under the assumption of a
strictly band-limited (non-causal) chip shaping pulse Any time-limited
(causal) chip shaping pulse leads to a spectrum that is not band-limited
and, therefore, the underlying assumptions in deriving the 1/W-spaced tapped
delay line model are violated. Very often, the channel is simply modeled as
consisting of uncorrelated rays i.e.,

However, in reality the channel rays will not be We have seen in
Chapter 2.3.4 that the net effect of non- -spaced rays is to introduce correla-
tions into the taps of the model. Such correlations are complicated
to handle in an analytical sense.

5.1 RAKE RECEIVER
A variety of receiver structures can be used to detect DS spread spectrum

signals. For DS CDMA where multiple users share the same band, there
are two broad types of detectors. The first is a conventional detector and
is based on the use of correlators or matched filters. With a conventional
detector the other user interference, or multiple-access interference is treated
as additional unwanted noise. The second is a multiuser detector, that uses
co-channel demodulation principles to simultaneously detect all the signals that
are present. In this section, we concentrate on conventional detectors for DS
spread spectrum on multipath fading channels.

A simple type of conventional detector uses the autocorrelation properties
of the spreading sequences to reject the multipath interference [133], [132].
Sometimes this is called a multipath rejection receiver. Another approach
exploits the autocorrelation properties of the spreading sequences to resolve
the multipath components and combine them together to obtain a diversity
advantage. Since the diversity is obtained from the multipath channel it is
sometimes called multipath diversity.

To develop the multipath diversity receiver, suppose that one of M possible
waveforms having complex envelopes are transmitted
at each baud epoch. With the frequency-selective fading channel shown in



496

Fig. 9.23, the corresponding received complex envelope is

where

As discussed in Section 5.2, the maximum likelihood coherent receiver employs
a correlator or matched filter to the possible received pulses to compute
the metrics

where is energy in the received pulse The receiver chooses the
index m that maximizes

The receiver described by (9.131) correlates the received complex envelope
with delayed versions of the possible waveforms followed by maxi-

mal ratio combining. This leads to the receiver structure shown in Fig. 9.24. By
changing the variable of integration in (9.131) an alternate form of the RAKE
receiver can be obtained as shown in Fig. 9.25. In this case the waveform
is correlated with delayed versions of the received complex envelope This
receivers in Figs. 9.24 and 9.25 were first derived by Price and Green [269],
and are commonly called RAKE receivers due to their similarity to the ordinary
garden rake.

Error Probability of DS/BPSK with a RAKE Receiver. Consider DS/BPSK
signaling with a short PN code The two possible DS/BPSK wave-
forms that are transmitted at each baud epoch have the complex envelopes

where

With DS/BPSK the received waveforms have equal energy so the bias
term in (9.131) is not needed. Assume that is transmitted. Then
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using (9.131)
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where

and The random variable is Gaussian with zero-mean and
variance

In general, the integral in (9.134) is a complicated function of the spreading
sequence and chip amplitude shaping pulse that is used. However, certain
cases lead to useful insight. For example, suppose the ideal Nyquist pulse

with bandwidth is used. Strictly speaking this
pulse is non-causal so the limits of integration in (9.134) must be from to

This leads

where the second last step follows under the assumption of a short code.
Therefore, (9.134) becomes

The second term in the above expression is a self interference that arises from
the non-ideal autocorrelation properties of the spreading sequence.

To demonstrate the effect of the self interference, assume a WSSUS Rayleigh
fading channel and consider the random variable

4Since DS/BPSK signaling is used the spreading sequence a  is real with autocorrelation function



Spread Spectrum Techniques 499

Define the new random variables

Then

Therefore,

Since the and are independent zero-mean Gaussian random variables
with variance has the Laplacian density

Making the substitution for  and rearranging the sum in the second term in
(9.138) gives

It is difficult to evaluate the effect of the self-interference exactly, because the
are non-Gaussian and correlated. However, the self interference due to

multipath can be minimized by using spreading codes that have small auto-
correlation sidelobes in the time intervals during which delayed signals with
significant power are expected. For large delays, the stringent requirements on
the autocorrelation function can be relaxed. For asynchronous CDMA appli-
cations, the spreading codes still must have small cross-correlation sidelobes
over all delays. It is easy to find reasonably large sets of sequences that satisfy
these properties. For example, a set of Gold sequences can be generated
of length Of these sequences, will have their
first autocorrelation off-peak at least n chip durations from the
main autocorrelation peak. Consequently, these sequences will
introduce negligible self interference if they are used on a channel having an
impulse response whos length does not exceed seconds.

If the spreading sequences have an ideal autocorrelation function, i.e.,
then there is no self interference and (9.144) becomes

The probability of bit error is
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where is the received bit energy-to-noise ratio given by

where

With Rayleigh fading, each of  the are exponentially distributed with density
function

where is the average received bit energy-to-noise ratio for the kth channel
tap. To compute the density of first note that the characteristic function of

is

so that the characteristic function of is

By using a partial fraction expansion and taking the inverse characteristic
function, the density of is

where

Therefore, with Rayleigh fading the average probability of bit error is

In order to proceed further the must be specified. One plausible model
assumes an exponentially decaying power delay profile, e.g.,
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where controls the delay spread and C is chosen to satisfy the constraint
Solving for C yields

The probability of bit error is plotted in Fig. 9.26 for and various
values of For small the channel is not dispersive and very little multipath
diversity is obtained. However, as becomes large the channel becomes more
dispersive and a greater diversity gain is achieved.

Finally, we note that the number of taps actually used in the RAKE receiver
can be less than the channel length L. However, such a RAKE receiver will not
capture all the received signal energy and suffer from some loss in performance.

6. ERROR PROBABILITY FOR DS CDMA ON AWGN
CHANNELS

DS CDMA systems achieve multiple-access capability by assigning each
user a unique PN spreading sequence. In general, however, the transmissions
from the different users are not synchronized and arrive at the intended receiver
with different amplitudes, delays and phases. The exact error probability with
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a conventional correlation detector will depend on the particular spreading
sequences that are employed and will also be a function of the random am-
plitudes, delays, and phases of the signals that arrive at the intended receiver.
Unfortunately, the exact error probability is difficult to derive and evaluate and,
therefore, a variety of upper and lower bounds, and Gaussian approximations
to the probability of error have been suggested in the literature.

Suppose that K users simultaneously access the channel using DS/BPSK
signaling with a short spreading code of length N. The transmitted complex
envelope for the ith user is

where

and and are the  user’s spreading and data se-
quences, respectively. The data symbols are independent, random variables
chosen from the set {–1, +1} with equal probability. In practice, the spreading
sequences are carefully chosen to have good correlation properties, e.g.,
Gold sequences or Kasami sequences. However, many of the error probability
approximations in the literature assume random spreading sequences, where
the error probability is obtained averaging over the ensemble of all possible
spreading sequences, including those where multiple users are assigned the
same spreading sequence.

In general the signals from the various transmitters will arrive at the intended
receiver with different power levels. However, DS CDMA systems must be
power controlled such that all signals arrive at the intended receiver with the
same power level. Power control is needed to combat the near-far effect, where
strong signals will capture the receiver and mask out the weaker signals. Under
the assumption of perfect power control and a frequency non-selective channel,
the received complex envelope

where the and are the random delays and carrier phases of the received
signals. This leads to the model shown in Fig. 9.27.

In this section, we consider the performance with an ideal correlation re-
ceiver, where the composite received signal is multiplied by a synchronized

5Here we assume the normalization
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replica of the spreading sequence of the intended transmission; since the two
sequences cancel, the desired data sequence can be obtained at the output of
the correlator. Because of symmetry, we only need to consider the receiver
that is matched to the first transmitter. Furthermore, since only the relative
delays and phases are important, we can set  and and assume
that the remaining are uniformly distributed on [0, and are uniformly
distributed on [0,T).

The decision variable at the output of the correlator in Fig. 9.1 has been
derived by Lehnert and Pursley [195] and is given by

where is a zero-mean Gaussian random variable with variance

and and are the continuous-time partial cross-correlation
functions of and defined by

The functions and can be expressed in terms of the discrete
aperiodic cross-correlation function and the continuous-time partial

chip autocorrelation functions and in (9.33) as



504

where and Note that is uniform on and  is
uniform on the set {0,1,. . . , N – 1}. Combining (9.161), (9.164), and (9.165)
gives

To proceed any further requires information about the aperiodic cross-
correlation functions of the spreading sequences being used, as well as the
chip amplitude shaping function. For the special case of random spreading
sequences and a rectangular chip shaping function Morrow
and Lehnert [233] have shown that

where is uniform on [0,1), and are uniform on { –1, +1}, and and
are discrete random variables having the probability distribution functions

The quantities A and B are related to

by

where is the aperiodic cross-correlation of the spreading sequence
of the first user as defined in (9.21). The parameter B is the number of
chip boundaries in one period of the sequence at which a transition to a
different value occurs. For random spreading sequences, C has the probability
distribution
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6.1 STANDARD GAUSSIAN APPROXIMATION
The  standard Gaussian approximation assumes that the multiple access

interference

with

can be modeled as a Gaussian random variable with a distribution that is
completely specified by its mean and variance. The approximation is obtained
by conditioning the multiple access interference on the random set of parameters

followed by ensemble averaging. It is not difficult to show that

where since the conditional density functions for
are symmetrical about zero. Hence and finally

To compute the variance of the multiple access interference, it is convenient
to define the vectors and The
variance of the multiple access interference is

Since all the are independent it follows that

so that

If the intended sequence is known, then B is known. For random sequences
E[B] = (N – l)/2 giving

Several possibilities can be examined from here, including the following two
important cases.
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Chip and Phase Asynchronous Signals:. The interfering signals are char-
acterized by uniform on [0,1) and  uniform on so that

and In this case, Hence, the de-
cision variable in (9.160) can be interpreted as Gaussian random variable with
mean and variance (K – 1)/3N leading to the probability of
bit error

The carrier to interference ratio C/I can be defined as the carrier power divided
by the total noise power

By comparing (9.181) with the probability of bit error for binary signaling on
an AWGN channel, i.e., we see that the C/I and the effective
bit energy-to-noise ratio, are related by

Chip and Phase Synchronous Signals:. The interfering signals have
and so that and

For chip and phase synchronous signals C/I and the effective  are related by

Coherent addition of interfering signals yields worst case interference with
random spreading sequences. The orthogonal Walsh-Hadamard sequences are
less random (secure) but yield zero correlation (better performance) under this
condition.

The standard Gaussian approximation can be quite inaccurate when the
number of simultaneous users K is small or the processing gain N is large. To
circumvent this deficiency a number of improved approximations have been
developed.

6.2 IMPROVED GAUSSIAN APPROXIMATION
An improved Gaussian approximation can be obtained by averaging the

conditional probability of error over the variance of the multiple access inter-
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ference. That is

where is the pdf of the multiple-access variance From (9.179)

where and

Note that the are independent and the are conditionally independent
given B. By using the results in [186] and [117, pp. 79-82], [186, pg. 123,244]
the conditional pdf of is

where Since the are independent and identically distributed,
the density of is obtained by taking the (K – 2)-fold convolution and
removing the condition on B, i.e.,

This improved Gaussian approximation has been shown to be much more
accurate that the standard Gaussian approximation [233]. However, the (K –
2)-fold convolution in (9.191) must be obtained numerically followed by an
additional numerical integration for computing the probability of error. Hence,
the utility of this improved Gaussian approximation is limited.

6.3 SIMPLIFIED GAUSSIAN APPROXIMATION
Another simpler but still accurate Gaussian approximation has been derived

by Holtzman [168]. To describe this method, let be any function of a
random variable having mean and variance . The using a Taylor series
expansion about the mean gives

Taking expectations
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Instead of using the Taylor series expansion, we can start with differences
(Stirling’s formula) and write

Taking expectations

Holtzman [168] has shown that yields good results so that

To apply the above result, we let and be the mean and variance of
in (9.187). Then

where the last line assumes ensemble averaging with random spreading se-
quences. The variance is

This yields

The above calculations are very simple and lead to quite accurate results for all
values of K and N. Fig. 9.28 compares the standard and simplified improved
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Gaussian approximations for various processing gains and number of simulta-
neous users. Note that the standard Gaussian approximation under estimates
the error probability for small numbers of users. In this case, the improved
Gaussian approximation should be used. However, the accuracy of the stan-
dard Gaussian approximation improves when the number of simultaneous users
increases.

Note that the above approximations assume an AWGN channel. For fre-
quency selective fading channels, the approximations must be modified to ac-
count for the effects of self interference, multipath interference, and envelope
fading. In this case the complex low-pass received signal is

where is the complex gain associated with the ith user and the kth channel
path. A variety of conventional RAKE demodulator structures can be employed
to gain a diversity advantage, including the maximal ratio scheme discussed in
Section 5.1.
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Problems
9.1. Suppose that a DS/BPSK spread spectrum signal is corrupted by a single,

phase-asynchronous, interfering tone at the carrier frequency. The received
low-pass waveform is

where is defined in (9.4) and

where is an arbitrary phase offset. Assume the use of a short Gold code
(of arbitrary length). Compute the probability of bit error with a simple
correlation detector.

9.2. The generator polynomials for constructing "Gold-like" code sequences
of length N = 7 are

The sequences are "Gold-like" because and are not a preferred
pair and, therefore, will not actually generate a set of Gold sequences.
However, the procedure used to construct the set sequences is similar to
that used to construct Gold sequences. Generate all the "Gold-like" codes
of length 7 and determine the cross-correlation functions of one sequence
with each of the others.

9.3. (computer exercise) Write a computer program to generate a set of Gold
sequences of length 127.

a) Plot the mean and variance of the partial period autocorrelation as a
function of the processing gain for this set of Gold codes.

b) Repeat part a) for the partial period cross-correlation.

9.4. (computer exercise) Consider a DS/BPSK CDMA system that uses length-
31 Gold codes. The kth user spreads their binary data by using the Gold
code

The complex envelope of the modulated waveform for the kth user is

where



Spread Spectrum Techniques 511

is uncorrelated zero-mean binary data sequence, is the chip dura-
tion and T = 31 is the data bit duration.

a) Pick one of the length-31 Gold codes at random for the kth user and
write down the sequence. Plot the aperiodic autocorrelation function of
sequence.

b) Plot the power spectrum of the kth user against the normalized
frequency

c) Repeat parts a) and b) for a randomly chosen length-63 Gold code for
the kth user.

9.5. Plot the continuous-time partial autocorrelation functions of the chip
waveform, and in (9.32) and (9.33), respectively, as a function
of the fractional chip delay for the following chip shaping pulses:

non-return-to-zero
half-sinusoid
triangular

9.6. Consider the set of Walsh-Hadamard sequences of length 16. Determine
full period autocorrelation for this set of sequences. Tabulate your
results in the k × n matrix

where

9.7. A wireless LAN system uses biorthogonal modulation based on the use
of length-8 Walsh-Hadamard codewords. Following the discussion leading
to (4.81), a set of 16 biorthogonal signals is constructed according to

where is the “chip duration” and is the symbol duration.
Assume an uncorrelated data sequence and assume that all 16 signals are
used with equal probability.

a Assuming that find the power density spectrum of the
complex envelope

b Plot the power spectrum against the normalized frequency
where is the bit duration.
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9.8. (computer exercise) Suppose that a DS/BPSK spread spectrum system
uses an m-sequence of length 127 as a long spreading code. The generator
polynomial for the m-sequence is

The processing gain G is equal to 10, i.e., there are 10 chips per modulated
symbol.

a) Assuming that find the power density spectrum of the
complex envelope Note that you must average over all possible
subsequences of length 10.

b) Plot the power spectrum against the normalized frequency
where is the bit duration. Comment on the effect of using a long
code on the power spectrum.

9.9. A spread spectrum system transmits a binary data sequence
by using the following length-3 short code spreading

sequence
a = (–1,+1,+1)

a) Compute and plot the full period autocorrelation of the sequence a.

b) Compute and plot the aperiodic autocorrelation of the sequence a.

c) Suppose the chip shaping function is

What is the transmitted power density spectrum?

d) At which frequencies is the receiver most sensitive to tone interference?

9.10. Suppose that the multipath intensity profile of a channel is given by

a) What is the average delay and delay spread of the channel?

b) Suppose DS/BPSK spread spectrum is used on the channel. The receiver
employs a two-tap RAKE receiver (assume ideal Nyquist pulses and
maximal ratio combining). The tap spacing of the RAKE tapped delay
line is equal to the chip duration Neglecting self-interference, write
down an expression for the probability of bit error in terms of the average
delay of the channel and the average received bit energy-to-noise ratio.
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c) If the bit error probability for a nondispersive channel is
, what is the value of delay spread that will reduce the bit error

probability from to

9.11. A multipath fading channel has the multipath intensity profile

Suppose that DS/BPSK spread spectrum is used on this channel. The
receiver employs a 3-tap, RAKE receiver with selective diversity
combining. Assume ideal Nyquist pulses and the use of spreading sequences
having an ideal autocorrelation function. Find the probability of error in
terms of the average received bit energy-to-noise ratio.

9.12. Consider the perfectly power controlled DS/BPSK CDMA system that
is analyzed in Section 6.. Determine the probability of bit error with a
standard Gaussian approximation for the following cases;

a) Chip synchronous and phase asynchronous.

b) Chip asynchronous and phase synchronous.
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Chapter 10

TDMA CELLULAR ARCHITECTURES

This chapter considers the architectural aspects of TDMA digital cellular
systems. Regardless of the chosen access method the ultimate goal is to
achieve high capacity while satisfying quality of Service (QoS) expectations.
An architecture must also be defined so as to be flexible to accommodate system
growth. Some schemes for high are flexible enough to be applied to any air
interface. But regardless of what air interface is chosen the objective is to
implement a system that permits easy installation and growth.

Microcells are a straight forward solution to achieving high capacity. How-
ever, as the microcells are introduced, a mixed cell architectures naturally
evolves, consisting of both overlaid macrocells and underlaid microcells. Such
an arrangement is called a hierarchical architecture. Hierarchical architectures
can be implemented for both TDMA and CDMA systems. When microcells
are introduced a key issue is the partitioning of the frequency resources among
the hierarchical layers. The most attractive hierarchical systems are those that
do not partition the system resources among the hierarchical layers. If the
entire spectral allocation is used in each hierarchical layer, then both high ca-
pacity and high flexibility can be achieved. CDMA systems employ universal
frequency reuse, but require sophisticated power control algorithms if the spec-
trum is to be shared between hierarchical layers. TDMA systems can avoid
this through careful frequency planning so that the frequency resuse constraint
is not violated when microcells are introduced.

Macrodiversity architectures are another method for achieving high capacity,
where the same signal is received by, and perhaps transmitted by, multiple BSs.
Macrodiversity is an effective method for combatting shadow and envelope
fading. In fact, cellular handoff algorithms implement macrodiversity. The
soft handoff techniques used in CDMA sytems are a well known method for
realizing macrodiversity. In TDMA systems that use hard handoff algorithms
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will not yield as much macrodiversity gain due to latencies in the order of a few
seconds in the hard handoff algorithms. The requirement for hard handoff in
TDMA systems arises a result of the non-universal frequency reuse. However, if
dynamic channel assignment (DCA) techniques are used, then TDMA systems
can realize benfits from macrodiversity similar to those obtained in CDMA
systems. DCA techniques are considered in detail in Chapter 13.

Section 1.1 discusses the use of directional antennas for controling co-
channel interference (CCI).

1. CELL SECTORING
1.1 CELL SECTORING WITH WIDE-BEAM

DIRECTIONAL ANTENNAS
One of the simplest methods for controling CCI is to use directional antennas

at the BSs. On the forward channel, directional antennas reduce the generation
of CCI by transmitting the signals to the MSs with a narrower angle-of-arrival
(AoA) spread than omni-directional antennas. On the reverse channel, direc-
tional antennas reduce the effect of the CCI because they respond to CCI that
is generated with a narrower AoA spread about the MS. Here we consider two
types of directional antennas; conventional wide-beam directional antennas,
and switched beam antennas.

Consider a uniform deployment of hexagonal cells, where the BSs employ
omni-directional antennas. Suppose that we ignore the effects of shadowing
and multipath-fading, and assume the simple path loss model in (2.226), such
that the received desired signal power at distance d is

where is the transmit power and are the transmit and receiver antenna
gains, respectively, and and are the heights of the BS and MS antennas,
respectively. As illustrated in Fig. 10.1, the worst case forward channel CCI
situation occurs when the MS is located at the comer of a cell, furthest from its
serving BS . There are six first-tier co-channel BSs, two each at (approximate)
distances of D – R, D, and D + R. If the values of   and are assumed
the same for all BS antennas, then it follows that the worst case C/I is
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With a path loss exponent the worst case C/I is

The minimum allowable cluster size is determined by the minimum C/I re-
quirement of the radio receiver. Unfortunately, the above worst case C/I values
may be too small to yield acceptable performance, especially when we account
for shadowing and multipath-fading.

Sectoring is a very common method that is employed in cellular systems to
improve the C/I performance, whereby the cells are divided into radial sectors
with wide-beam directional BS antennas. Cellular systems are quite often
deployed with 120°, and sometimes 60°, cell sectors. An N-cell reuse cluster
with 120° sectors yields an N/3N reuse plan (N cells and 3N sectors). As
shown in Fig. 10.2, 120° cell sectoring reduces the number of first-tier co-
channel interferers from six to two. The two first tier interferers are located at
approximate distances of D and D + 0.7R. The resulting worst case C/I is
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Hence

For N = 7, 120° sectoring yields a 6.8 dB C/I gain over the case when
omnidirectional antennas are used.

To derive a benefit from sectoring, the carriers that are assigned to each cell
must be patitioned into disjoint sets, such that each sector uses a disjoint set
of carriers. This finer partitioning of the carriers results in a loss in trunking
efficiency, which we will quantify in the next section. Hence, cell sectoring
improves the C/I performance at the cost of trunking efficiency.

1.2 SECTORING WITH SWITCHED-BEAM
ANTENNAS

Switched-beam antennas can be used in place conventional wide-beam direc-
tional antennas, to improve both the coverage and system capacity. Switched-
beam antennas are a simple type of smart antenna where multiple antenna
beams are used within each cell sector, and beam steering is achieved through a
simple beam selection mechanism. Switched-beam antennas are more practical
than other types of smart antennas such as phased array antennas, because no
complicated multi-beam beamforming is needed and no significant changes to
existing cellular systems that use conventional wide-beam directional antennas
are required.
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Switched-beam smart antennas are based on the retro-targeting concept. The
selection of the activated receive beam is based on a simple Received Signal
Strength Indicator (RSSI) and SAT tone1. Forward channel transmissions are
over the best received beam, i.e., the same beam is used for both reception
and transmission. Beam forming is accomplished by using physically directive
antenna elements to create aperture, and thus gain [35]. If the received C/I falls
below some preset level, then the BS then switches to the best available beam
for both reception and transmission. The directive nature of the narrow-beam
ensures that the average level of CCI experienced by any given link is much
less than that experienced when conventional wide-beam directional antennas
are used [312], thus offering substantial performance advantages [281].

Spatial diversity is typically not used when a smart antenna system is de-
ployed at a BS, simply because the existing physical tower structures prevent
it. Angular diversity is a possibility, but it is not effective for macrocellular
applications with their characteristically small AOA spreads. Our analysis
of switched-beam smart antennas begins with the assumption of stationary or
slowly moving MSs, where the radio link quality depends on the instantaneous
received envelope due to Rayleigh fading. The pdf of the received signal power
s due to the combined effect of log-normal shadowing and Rayleigh fading can
be modeled by the composite log-normal Gamma distribution in (2.222). We
have already seen that the composite log-normal Gamma distribution can be
approximated by a log-normal distribution with mean and variance given by
(2.223).

Comparisons will be made with an AMPS reference system, where the BSs
use 120° sectoring with two-branch spatial diversity and selective combining.
The received signal having the best quality (determined by RSSI) is selected for
output. Assume that the branches experience independent Rayleigh fading2.
Furthermore, assume that the shadowing experienced on all antenna branches
of the same BS are perfectly correlated. Then the pdf of the conditional received
squared envelope with two-branch microscopic selection diversity is

By averaging over the log-normal shadowing, the pdf of the composite received
squared envelope is

1The detection of SAT tone can prevent beam falsing where the system is spoofed into thinking that the
desired MS is located in a different beam when a strong co-channel interferer is present on another beam.
2 As shown in Chapter 2.1.5.1, a separation of 5 wavelengths will still result in a branch correlation of about
0.7, making the performance of the reference system optimistic [173].
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where Appendix 10A shows that the pdf can be ap-
proximated by a purely log-normal distribution with mean and variance given
by

where is the Euler psi function and is Riemann’s
zeta function as defined in Appendix 10A.

The MS antennas are assumed to be omni-directional. With omni-directional
BS antennas, there are six first-tier co-channel interferers for both the forward
and reverse channels. The number of first-tier interferers is reduced to two with
120° sectoring. With a switched-beam smart antenna, the number of first-tier
co-channel interferers on the forward channel is a random variable ranging from
0 to 6, due to the narrow-beam directional antennas and the dependency of the
activated beam on the MS location. If there are co-channel interferers each
with mean and variance (in natural units), then the total interfering power
is approximately log-normal. For our purpose, the mean and variance of the
approximate log-normal distribution is obtained by using Fenton-Wilkinson
method as described in Section 3.1.1. Finally, if the CCI from the antenna
sidelobes is ignored, there is at most one interferer on the reverse channel when
the smart antenna beamwidth is less than 40°.

1.3 TRUNKPOOL TECHNIQUES
In switched-beam smart antenna systems, the narrow-beam directional an-

tennas are analogous to cell sectoring that can reduce unnecessary spillage of ra-
diation [217] and mitigate the effects of channel time dispersion [227]. Higher
antenna gains also can be achieved because of narrow antenna beamwidths.
However, switched-beam smart antennas will have more frequent handoffs
(due to inter-sector handoffs) that result in reduced trunking efficiency. To
overcome the trunking efficiency degradation caused by narrow beam sectoring,
sector-trunkpool and  omni-trunkpool load sharing schemes are suggested.

Fig. 10.3 shows a switched-beam smart antenna with 4 azimuthal elements
(beams) per 120° degree sector, i.e., 30° beam widths. With a sectored-
trunkpool arrangement, all the channels assigned to a 120° sector are shared by
all four beams within that sector. Each sector antenna acts as a common aperture
for one of four beams. No handoffs are needed unless the MS crosses sector
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or cell boundaries. In this case, the trunking efficiency will remain the same
as the reference system, where each wide-beam sector has a unique channel
assignment. This concept can be extended to the omni-trunkpool technique,
where any of the channels assigned to a cell can be assigned to any one of the
activated beams. In this case, no handoffs are needed unless a MS crosses a
cell boundary.

Usually, the trunking efficiency is measured by the channel usage efficiency
(or loading factor) [313]

where is the offered traffic, is the blocking probability, and m is the
number of channels. From the Erlang-B formula under the blocked-calls-
cleared assumption, can be shown to

With AMPS, each service provider has 416 duplex channels, consisting of
395 traffic channels and 21 control channels. Fig. 10.4 shows the channel
usage efficiency for different trunkpool techniques. With the omni-trunkpool
technique, the channel usage efficiency is increased 31.2% as compared to a
7-cell reuse reference system when In contrast, channel usage
efficiency is increased only 17.4% when the frequency reuse cluster size is
reduced from 7 to 4 cells. Therefore, the omni-trunkpool technique is helpful for
increasing the trunking efficiency when smart antenna systems are employed.

3The Erlang B formula assumes an infinite subscriber population, and ignores handoff traffic.
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1  .   4 CELLULAR PERFORMANCE   WITH
SWITCHED-BEAM ANTENNAS

Our performance evaluation begins with the following assumptions:

1. Each cell is circular in shape under a hexagonal cell layout. The MSs are
uniformly distributed within a cell.

2. Only the first tier of co-channel interferers is considered.

3. The system utilization is assumed to be 100% (worst case).

4. The 120° directional antennas used in the reference system have perfect
directivity, i.e., there are no sidelobes. However, sidelobes adjacent to the
main beam are considered for the switched-beam smart antenna system.
The smart antenna front-to-back ratio is 30 dB, and the adjacent sidelobe
attenuation is 12 dB.

Because power control is employed in the existing AMPS system, two
different cases are considered: power control and no power control. Practical
power control algorithms usually react to the total received signal strength
(C+I). However, for simplicity, the power control algorithm we consider reacts
to the desired received signal strength C only4. The following notation will

4Since the required CIR is 17 dB in the AMPS system, the interference power I can be safely neglected.
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be used to distinguish between different frequency reuse factors, trunkpool
techniques and antenna beam-widths, when switched-beam smart antennas are
used:

sma - [reuse cluster size] - [trunkpool type] - [antenna beamwidth]

where

   reuse cluster size: 7-cell or 4-cell

  trunkpool type: omni or sectored

  antenna beamwidth: 30° (12 elements) or 15° (24 elements).

1.4.1 REVERSE CHANNEL
When power control is not employed, all MSs are assumed to transmit with

the same power. The CIR at the serving BS is

where the subscripts d and i index the desired signals and interfering signals,
respectively. The random variables and are Gaussian distributed, and their
means and variances can be derived from (10.7) and (2.223) for the reference
system and the smart antenna system, respectively. It is noted that the reference
system has two-branch selection diversity in the reverse channel. The number
of co-channel interferers depends on the position of the desired and co-channel
MSs. The CIR will vary as a function of the activated beams in the co-channel
cells. When power control is employed, we assume that the power received at
the serving BS from each MS is maintained at a constant level C. The power
transmitted by the ith mobile in the jth cell, at distance to its serving
BS is The power received at is

is also at distance to the reference BS, and will generate CCI
with a power equal to

Then the C/I at is



524

Assuming that the path loss follows a fourth law with distance, the mean and
variance of are

1.4.2 FORWARD CHANNEL
The major difference between the forward and reverse channels is the number

of co-channel interferers. The calculation of the C/I is similar, but no antenna
diversity is included for reference system. The means and variances of the
log-normal random variables are calculated from (2.223).

1.4.3 PERFORMANCE CRITERIA AND RESULTS
Two criteria will be used to evaluate the performance of the switched-beam

smart antenna system:
Criterion 1: The area-averaged probability, that the received C/I exceeds
a target value,
Criterion 2: The percentage of the cell area, where the received C/I
exceeds a target value, 75% of the time.

Criterion 1 can be treated as a global performance measure. However, bad
locations will be masked from the area-averaged performance by good loca-
tions. This is particularly true when the performance is non-homogeneous over
the cell area. In this case, Criterion 2 is useful. The performance with Crite-
rion 1 is plotted in Figs. 10.5 and 10.6. A significant performance improvement
is observed with switched-beam smart antenna systems, especially for the for-
ward channel. For example, with a sma-7-omni-30° system, Criterion 1 yields
an improvement of at least 5 dB compared to the reference system. The ma-
jor factors affecting the area-averaged C/I with switched beam smart antennas
are the antenna beamwidth and the frequency re-use factor. The trunkpool
techniques do not play an important role.

Figs. 10.7 and 10.8 show the performance with Criterion 2. In this case
there is only about 2 dB improvement with respect to the reference system.
Trunkpool techniques are shown have significant effect in the performance
with Criterion 2. The performance with the sectored trunkpool is better than
the omni-trunkpool. The sma-4-sec-30° system is worse than the reference
system.

To explain the difference between performance Criterion 1 and 2 more
clearly, Figs. 10.9 and 10.10 plot the points during a Monte Carlo simulation
where the C/I is less than 17 dB more than 25% time. These points are called
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bad points5. With power control, bad points can occur anywhere within the cell
and not just on the cell boundary. This is because the power control algorithm
only controls the power of the desired signal. When a MS is close to its serving
BS the power levels are reduced. Hence, more interference will be experienced
on both the forward and reverse channels when the co-channel interferers are
close to this BS yet far from their own serving BSs. When switched-beam smart
antennas are employed, the performance with Criterion 1 can be improved and
yet the performance with Criterion 2 may change little.

Another interesting phenomenon shown in Fig. 10.9 is that the reverse chan-
nel bad points with switched-beam smart antennas are concentrated in radial
sectors called bad areas, i.e., the C/I improvement is not uniform over the
entire cell area. We call this is the cart-wheel effect. However, it is not present
in the forward channel. Fig. 10.11 replots Fig. 10.7 based only on the bad ar-
eas. As shown in Fig. 10.11, even the sma-4-sec-15° system is worse than the
reference system. Bad areas will always exist in systems using switched-beam
smart antennas no matter how narrow the antenna beamwidth is and regardless
of whether or not power control is used. Of course, the number of bad points is
reduced when the antenna beamwidth is decreased. To mitigate the cart-wheel

5The location of bad points are not fixed. Their locations vary with the locations of the co-channel interferers.
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effect, one possibility is to rotate some switched beam cells with respect to oth-
ers to distribute the bad points. However, this may be effective only when the
rotation degree is larger than the AOA spread of the signals. Another approach
is to use dynamic channel assignment to avoid using the same channel when a
potential co-channel interferer is nearby.

2. CONVENTIONAL CELL SPLITTING
Conventional cell splitting is a straight forward process of introducing new,

smaller, cells into an existing cellular deployment. By doing so, the cellular
system can be tailored to meet traffic growth. To illustrate conventional cell
splitting, consider the uniform grid of hexagonal cells shown in Fig. 10.12.
If heavy traffic loading is experienced at the midpoint between two the cells
labeled 1, then a split cell labeled 1’ is introduced at that location. The area
of the split cell is 1/4 of the area of the parent cells. Additional split cells
can be introduced to accommodate traffic loading in other locations throughout
the system area. For example, the split cell 2’ can be located at the midpoint
between the 2 cells.

Because the split cells are smaller, the transmit power can be reduced. To
estimate the transmit power requirements in the split cells, we note that the
received power for a MS located at the corner of a parent cell is
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while the received power at the boundary of a split cell is

where and and and are the transmit power and cell radius
associated with the parent cells and split cells, respectively. To keep the
received power associated with a MS located on the cell boundary constant,
the required transmitter power must be adjusted according to the path loss
model. Assuming the model in (1.7), the new transmit power can be obtained
as follows:

If then since Hence, the split cells can
reduce their transmit power levels by 12 dB.

After introducing the split cells, changes in the frequency plan are required
to avoid violations of the reuse constraint. A very straight forward approach is
channel segmenting, where the channel sets in the co-channel cells are divided
into two groups; the split cells are assigned one group of channels, while the
parent co-channel cells are assigned the other group of channels. Unfortunately,
this arrangement sacrifices trunking efficiency because the parent cells cannot
use the channels assigned to the split cells. Furthermore, if the parent cells
are already near capacity, then segmentation of the channels in these cells will
require the introduction of more split cells. Hence, a propagation of splitting
occurs throughout the system area, requiring the installation of a large number
of additional cell sites. Therefore, channel segmenting is not a good option.

Another solution is shown in Fig. 10.13, where overlaid inner cells are
introduced into the parent cells. Once again, the channels sets are divided into
two groups. MSs located within the overlaid inner cells and the split cells use
one group of channels, while MSs located within the outer cells use the other
group of channels. Whenever a MS moves between the inner and outer areas of
a cell a hand-off must be executed, to avoid violations of the co-channel reuse
constraint.

2.1 REUSE PARTITIONING
Halpern [157] suggested an overlay/underlay scheme based on the concept

of reuse partitioning, where multiple co-channel reuse factors are used in the
same deployment. An inner cell is created within each of the existing cells as
shown in Fig. 10.14. For the example in Fig. 10.14, channels are assigned to the
inner and outer cells according to a 3-cell and 7-cell reuse plan, respectively,
although other reuse plans could be used. Channels that are assigned to the inner
and outer cells can only be used by MSs located within the inner and outer cells,
respectively. Handoffs are required when a MS crosses the boundary between
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an inner and outer cell. The reduced radii of the inner cells leads to an increase
in cell capacity. To quantify this increase let

= radius of the inner cells.
= radius of the outer cells.
= reuse distance for the inner cells.
— reuse distance for the outer cells.

Suppose that an acceptable link quality requires a co-channel reuse factor
If a 7-cell and 3-cell reuse cluster is used for the outer

and inner cells, respectively, then and

Hence, the inner and outer cell radii are related by  and, therefore,
the inner and outer cell areas are related by If a
total of channels are available, then channels should be assigned to
the inner cells and channels assigned to the outer cell area (assuming
a homogenous traffic distribution throughout the system area). The resulting
cell capacity is
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On the other hand, with a conventional 7-cell reuse plan

Hence, an improvement of 1.575 in cell capacity is realized.

2.1.1 CELL SPLITTING WITH REUSE PARTITIONING
Cell splitting can also be used with reuse partitioning. An example is shown

in Fig. 10.15 where a split cell is added between the parent B2 cells. The split
cell also uses reuse partitioning. To maintain the C/I at an acceptable level,
some of the channels in the B2 cells are moved to the inner cells and are denoted
by B2’. Furthermore, the closest co-channel inner cells A1 must have their
channels partitioned in a similar fashion. Thus we see a drawback when using
cell splitting with the reuse partitioning scheme – the cells must be divided into
many concentric rings that use disjoint channel sets, and handoffs must occur
when a MS crosses the boundary between two rings.

3. CLUSTER PLANNED HIERARCHICAL
ARCHITECTURE

One drawback of conventional cell splitting and reuse partitioning is that
the split cells and overlaid cells can only be introduced at specific locations
in the cellular deployment. Unfortunately, these locations may not necessary
correspond to the hot spot areas that are experiencing the highest traffic growth.
We now describe a TDMA hierarchical architecture based on the concept of
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cluster planning, where macrocells and microcells reuse the same frequencies.
Moreover, the microcells can be gradually and extensively deployed at any
location to increase the capacity throughout the entire service area. With
these flexibilities, the cluster planning approach allows the smooth evolution
of existing macrocellular systems into a hierarchical mixed cell architecture.

3.1 SYSTEM ARCHITECTURE
A traditional 7/21 frequency reuse system is shown in Fig. 10.16. The

channels are partitioned into 21 sets and each set is reused in a diamond-
shaped sector with an adequate distance of separation. Unfortunately, the
interfering regions for each channel cover the whole service area. This widely
distributed CCI from the macrocells makes it impossible to reuse the same
channel frequencies in the microcells.

Cluster planning can be used to change the conventional sectored arrange-
ment into one having some areas of very low interference for a specified set of
carriers. The basic cluster planning procedure is as follows:
Cluster planning procedure:

1. Assign the same channels to each cell site as in the traditional 7/21 frequency
reuse plan shown in Fig. 10.16.

2. Divide the macrocell reuse clusters into three groups as shown in Fig. 10.17.

3. Let the first group be the reference group.
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4. Rotate the channel sets of each cell in the second group 120° clockwise with
respect to the first group.

5. Rotate the channel sets of each cell in the third group 120° counter-clockwise
with respect to the first group.

The cluster planning procedure creates low-interference regions outside the
areas of the designated macrocell sectors for each channel set. These low-
interference regions are called micro-areas. Fig. 10.18 shows the result of
rotating the sectors. We see that zones  have a very low interference for
channel set since they are located in the back-lobe areas of the macrocell
sectors using channel set Thus microcells can be introduced in these areas
by using channel set

3.2 UNDERLAID MICROCELL PLANNING
ALGORITHM

In the cluster-planned hierarchical architecture, microcells are located in
micro-areas where certain macrocell channel sets can be reused. To have the
greatest flexibility in selecting the microcell BS locations, it is important to
identify all possible micro-areas and the associated channels sets that can be
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used by microcells that are deployed in these areas. In the cluster-planned
architecture, the front-lobe areas of the directional antennas are used by the
macrocells, while the back-lobe areas of the directional antennas are used
by the microcells. In a conventional frequency reuse system (see for example
Fig. 10.16, the back-lobe area of each channel set will still encounter some first-
ring interferers. To protect the back-lobe areas from the first tier interferers,
we rotate the sectors through the cluster planning procedure. Cluster planning
creates low-interference micro-areas as shown in Fig. 10.18, that lie in the
back-lobe areas of the first-tier interferers. For ease of indexing, a micro-area
denotes a region of three adjacent macrocell sectors, each of which belongs to
different BS. Fig. 10.19 shows an example of a micro-area. Each micro-area has
an interference neighborhood, M, defined as the 18 neighboring macrocell
sectors that surround the micro-area.

The following algorithm systematically determines the channels that can be
used in each micro-area. Let represent the channel set in sector
of the cell site c, where c = 1, . . . , 7. The superscript j = 1,2,3 indexes the
three groups of rotated clusters.

Given a desired micro-area and a corresponding interference neighborhood,
M, let

denote the union of channel sets in the interference neighborhood M.



536

From construct a 3 x 3 indicator matrix for BSs c = 1 , . . . , 7,
where

If the indicator matrix for some cell site c has a row of ones and two rows
of zeroes, then the zero-rows of indicate the low-interference macrocell
channel sets for the micro-area.

Example 9.1  According to Fig. 10.19, the interference neighborhood for
micro-area A is
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Then the indicating matrices are

Examining the indicating matrix c = 1 , . . . , 7 , we find that is the
only matrix having a row of ones and two rows of zeroes; the second and
the third rows of are the zero rows. Based on the above algorithm, the
low-interference macrocell channel sets for micro-area A are and

ture, consider the system in Fig. 10.20 having 100 micro-areas defined over the
service area. By applying the above algorithm, the available macrocell channel
sets for each micro-area are listed in Table 10.1. Note that the micro-areas are
capable of reusing two macrocell channel sets and microcells can be deployed
throughout the whole service area.

To see if other micro-areas can be defined in the proposed system architec-
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Since a micro-area consists of 3 macrocell sectors, each macrocell area has 5
available channel sets – 3 assigned to macrocells and 2 assigned to microcells.
Within each micro-area the microcells are deployed according to a conventional
frequency reuse plan. The microcells could use omnidirectional antennas or
sectored antennas. Let represent the number of the microcell clusters that
are deployed in a micro-area. Since each microcell cluster can reuse two sets
of low-interference macrocell channels as shown in the above example, the cell
capacity can be increased by factor of 1 + 2 x  times. Later we will show
that is possible and, hence, giving a capacity increase of 7 times.
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3.3 PERFORMANCE ANALYSIS OF CLUSTER
PLANNED ARCHITECTURE

Propagation Model and System Assumptions:.        Our analysis uses a simple
modification of the path loss model in (10.1)6

where and are the received and transmitted powers, and are the
BS and MS antenna heights, respectively, d is the radio path length, and
is the path loss exponent. Although (10.21) is more suitable for a macrocell

6Here we incorporate the antenna gains in the transmitted power.
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environment than a microcell environment, it is still characteristic of the path
loss experienced by the microcell links at locations that are well outside of the
microcells. In other words, the model is applicable when considering the CCI
that is generated by distant microcells.

CCI: In our two-tiered hierarchical architecture, four types of CCI must
be considered; macrocell-to-macrocell, microcell-to-microcell, macrocell-to-
microcell and microcell-to-macrocell CCI. Adjacent channel interference should
also be considered.

Antennas: The macrocell BSs are assumed to use 120° wide-beam di-
rectional antennas, while microcell BSs use omni-directional antennas. It is
possible to improve the C/I performance by sectoring the microcells as well,
but we do not consider this here. The MSs use omni-directional antennas.

Uplink power control: We adopt the power control scheme used in IS-54/136
and AMPS [95]. The transmitted power of a Class IV IS-54/136 portable
handset is adjusted in six levels from -22 dBW to -2 dBW in steps of 4 dB.
Downlink power control is not required in the proposed architecture. Before
proceeding, we first clarify our notation. When the subscripts M and are
used, they refer to macrocells and microcells, respectively; when and b are
used, they denote the MS and BS, respectively; when d and are used, they
indicate the downlink and uplink, respectively.

3.3.1 MACROCELL PERFORMANCE
Section 3.2 showed that the cluster planning technique creates low interfer-

ence regions, thereby allowing the microcells to reuse macrocell frequencies.
However, some macrocells will experience higher interference after rotating
the sectors. This is the cost of cluster planning. To evaluate the influence of
the sector rotations on the macrocell performance, consider both the conven-
tional macrocellular system in Fig. 10.16 and the proposed hierarchical cellular
system in Fig. 10.18 without the underlaid microcells. Fig. 10.21 shows the
simulation results of the uplink C/I performance for both systems, assuming
that the MSs are uniformly distributed in each sector and they transmit with
the maximum power. We consider the uplink case because the downlink per-
formance is usually better than the uplink performance. With respect to a 90%
coverage probability, one can observe that the sector rotation technique creates
low interference regions at the cost of about 3.1 dB, 3.3 dB, and 3.5 dB of C/I
degradation for path loss exponent and 4.0, respectively. Even
after sector rotations, the macrocells can maintain a C/I greater than 20 dB
over 90% of the coverage area. In the following, we will further include the
effect of underlaid microcells when analyzing the performance of the proposed
hierarchical cellular system. For ease of analysis, we hereafter adopt the worst
case scenario where a MS is situated on a cell boundary.
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Downlink C/I analysis:. By applying (10.21) with we express the
C/I received by the MS at the macrocell boundary as

where

= MS received power from the desired macrocell BS
= downlink macrocell-to-macrocell CCI
= downlink microcell-to-macrocell CCI
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= macrocell BS transmitted power

= microcell BS transmitted power

= the number of macrocell co-channel interferers
= the number of interfering micro-areas

= the number of microcell clusters in a micro-area
= MS distance to the i-th interfering macrocell BS
= MS distance to the k-th interfering

microcell BS in the j-th micro-area

= macrocell BS antenna height
= microcell BS antenna height

= MS antenna height
= macrocell radius

Referring to Fig. 10.20 and Table 10.1, we examine the downlink interfer-
ence when a macrocell MS using channel set is located at the macrocell
boundary near micro-area 56. One can find that the macrocell-to-macrocell
downlink interference mainly comes from two first-tier macrocell BSs
located near micro-areas 77 and 68 with distances
respectively. However, because the objective of cluster planning is to carefully
manage the C/I, the performance may be sensitive to the C/I. Consequently,
we also consider the three second-tier interfering BSs located near micro-areas
11, 17 and 62, located at distances re-
spectively. For the micro-cell-to-macrocell downlink interference one
can find six interfering micro-areas 35, 48, 54, 80, 86, and 99 in the first
tier with distances of ,
respectively. The second-tier interfering micro-areas 3, 29, 41, and 92 have
distances respectively. We assume
that each micro-area has microcell reuse clusters, and each of these clusters
has microcells. Through the channel selection algorithm in Section 3.2,
each micro-area is assigned two macrocell channel sets. We further partition
these two sets of channels into groups and then assign each group to the

microcells in each cluster. In this manner, a macrocell channel set is used
times in a micro-area. For ease of analysis, we assume that the distance

approximates where is the distance from a macrocell MS to the center
of the j-th interfering micro-area and is defined following (10.22). In our
example, the microcell BS antenna height is one third of macrocell BS antenna
height, i.e., although this ratio can be easily varied. With the
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above assumptions in (10.22),

We show the downlink C/I performance in terms of and in
Fig. 10.22 with consideration of only first-tier interfering BSs and in Table 10.2
with both first- and second-tier interfering BSs. Observe that dB for

and In other words, the channel set can be reused
six times in the micro-area while still keeping the worst case macrocell down-
link C/I greater than 18 dB. The reuse increases even further if the required
C/I is smaller than 18 dB. Furthermore, by comparing the results in Table 10.2
with Fig. 10.22, one can find that the second-tier interfering BSs only degrade
the C/I by an additional 0.5 dB over the first-tier interfering BSs.
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Uplink CCI analysis:. By modifying (10.22) slightly, we can formulate the
uplink C/I as

where

= macrocell BS received power from the desired MS

= uplink macrocell-to-macrocell interference
= uplink microcell-to-macrocell interference

= macrocell MS transmitted power

= microcell MS transmitted power

and where the remaining parameters have already been defined following
(10.22). With directional antennas, the macrocell BSs experience fewer in-
terfering micro-areas in the uplink direction as compared with the downlink
direction. Consider the macrocell sector that is assigned with channel set
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and located near micro-area 37. This macrocell sector encounters two first-tier
and four second-tier macrocell interfering MSs at distances

and interfering micro-areas 23, 55, 61, 68, 74, 100, at distances

We can ignore the effect of the three other interfering micro-areas 4, 17, 49
because they are located in the back-lobe area of the sector using channel set
2γ . By substituting the above values into (10.24), the uplink C/I performance
for this example becomes

Fig. 10.23 shows the results. Suppose that a worst case target C/I of 18 dB is
chosen. Then it is observed that the C/I is greater than 18 dB for
if

Note that we obtained (10.26) under the assumption that the interfering macro-
cell MSs are on the cell boundary and are transmitting with the maximum
power. Thus (10.26) can be used to determine the maximum microcell MS’s
transmitted power. For example, consider an IS-54/136 Class IV portable hand-
set (that adjusts its transmitted power in six levels from -22 dBW to -2 dBW).
Then (10.26) implies that the maximum microcell MS transmitted power is
-9 dBW, which is still in the operational range of the Class IV terminal. The
implication is that the requirement in (10.26) can be fulfilled by the current
uplink power control scheme in the IS-54/136 system without changing the MS
transmitted power specification.

3.3.2 MICROCELL PERFORMANCE
We now show how the microcell size should be chosen to achieve the required

C/I performance.

Downlink microcell size:. A feasible microcell size should satisfy two con-
ditions: (i) C-criterion: a MS will receive stronger power, C, at the microcell
boundary than at the macrocell boundary; (ii) C/I-criterion: the C/I at the
microcell boundary equals or exceeds that at the macrocell boundary.
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C-criterion: From the path loss model in (10.21), the microcell radius  can
be calculated as

where and are defined in (10.22).
S/I-criterion:  The S/I received by the MS at the microcell boundary can be
written as

where the parameters and are already defined in
(10.22) and
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= MS received power from its desired microcell BS

= downlink microcell-to-microcell interference

= downlink macrocell-to-microcell interference
= the number of main-lobe macrocell interferers

=     the number of back-lobe macrocell interferers
= MS distance to the i-th main-lobe interfering BS

= MS distance to the j-th back-lobe interfering BS
= MS distance to the i-th microcell interfering BS
= macrocell radius

= microcell radius
= the front-to-back ratio of the directional antenna in macrocells

Let  (C/I)req denote the required C/I. Then (10.28) becomes

where and are
the normalized distances of interferers with respect to macrocell radius
Our studies assume that the microcells and macrocells have similar shapes,
and that the microcell clusters are adjacent to each other in a given micro-area.
Suppose the distances from a microcell MS to its interfering microcell BSs are
equal and close to the microcell co-channel reuse distance
for Then

where denotes the microcell cluster size. With microcell clusters and
microcells inside each cluster, a micro-area has in total microcells.

Suppose that taken together they are smaller than the area of a macrocell. Then



548

Substituting (10.30) (10.31) into (10.29), we get

Notice that we consider back-lobe macrocell interferers in (10.32). The
back-lobe interference from the macrocell BSs can be ignored for the macrocell
MS, but for the microcell MS, this kind of interference may be relatively strong
compared to the received signal strength from the low-powered microcell BS.
For the same reason, the macrocell interferers in the second ring are considered
here.
Example 9.2 Referring to Fig. 10.20 and
Table 10.1, micro-area 56 can be assigned channel sets Take channel
set as an example. Micro-area 56 will experience three first-tier back-lobe
interferers (NMb = 3), each of which has the following distance

to the center of micro-area 56. Three main-lobe interfering macrocells in the
second tier are located near micro-areas 25, 79, 64 with the distances of

Furthermore, three main-lobe interfering macrocell BSs in the third tier are
located near micro-areas 13, 70, and 85 with distances of

It is also important to determine if there exist interfering microcell BSs from
neighboring micro-areas. Fig. 10.20 and Table 10.1 shows one feature of the
proposed system architecture; the adjacent micro-areas are assigned different
macrocell channel sets. For instance, micro-area 56 in Fig. 10.20 is assigned
channel sets while the neighboring micro-areas 45, 46, 55, 57, 66,
and 67 use channel sets

Obviously, when considering the interfering microcell BSs, a microcell
MS will only be affected by the interfering microcell BSs in the same micro-
area. Assume that each micro-area consists of microcell clusters. Then
a MS will experience the interference from the remaining microcell
BSs, excluding the desired one. Substituting (10.33), (10.34), and (10.35) into
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(10.32), one can obtain

(a) We first consider the special case where only one microcell is
installed in each micro-area. This situation may occur with initial microcell
deployment. Fig. 10.24 shows the effect of the front-to-back ratio on the
microcell radius, whereby and If the C/I-
and C-criterion result in different microcell radii, then the smallest one must
be chosen. From Fig. 10.24, one can observe that if front-to-back ratio
dB, the microcell radius is determined by the C-criterion, but when
the C/I-criterion dominates the C-criterion. For instance, in the case of
dB and one can obtain by the C/I-criterion
and ’ by the C-criterion, respectively. We must satisfy the more
stringent requirement and, therefore, the microcell radius is In this
example, one can see that a larger front-to-back ratio does not imply a larger
microcell size, since the C-criterion, which is independent of will dominate
the C/I-criterion when is large.

(b) Next, we consider the case where many microcells are deployed in
each microarea. Fig. 10.25 shows the downlink microcell size against
for different values of where is the ratio of the transmitted power
of the microcell BS to that of the macrocell BS, and is the number of
microcell clusters in a micro-area. It is observed that if has
little effect on the downlink microcell size. This is because the interference
from the microcells, will dominate the macrocell interference, when the
number of co-channel microcells becomes large in a given micro-area.
In other words, if a large number of microcells are installed, the C/I-criterion
will become a dominating factor in determining the microcell size. In the case of

for example, one should follow the C/I-criterion to get
from Fig. 10.25.

Uplink microcell size:. Similar to the previous analysis for the downlink
microcell size, the uplink microcell size is derived from the C/I analysis. More
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specifically,

where the parameters and have been
defined in (10.22) and (10.28) and

= microcell BS received power from the desired microcell MS

= uplink microcell-to-macrocell interference
= uplink macrocell-to-microcell interference
= the number of macrocell interfering MSs

= BS distance to the i-th interfering macrocell MS
= uplink microcell radius



TDMA Cellular Architectures 551

Let and denote the required C/I for a microcell BS.
Using the same assumptions for getting (10.29), one can simplify (10.37) as

We have shown that when the number of microcell clusters becomes
large, the downlink microcell size is insensitive to the interference from the
macrocells. This is also true for determining the uplink microcell size. This
will be shown by a later example. When microcell interference dominates the
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performance, (10.38) can be approximated as

By combining (10.30) (10.31) (10.39), we obtain upper and lower bounds on
as

The relation between and with as a parameter is shown in
Fig. 10.26.
Example 9.3 Consider again micro-area 56 in Fig. 10.20.
Referring to Table 10.1, micro-area 56 can be assigned channel sets
Take channel set for example. The worst case occurs when interfering
macrocell MSs transmit maximum power, i.e., at the macrocell boundary. For
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the example considered, the three first-tier interfering macrocell MSs near
micro-areas 45, 47, 77 are located at distances of
[2.0,2.0,2.0], respectively; the three second-tier interfering macrocell MSs
near micro-areas 26, 53, 89 are located at distances
[4.36, 4.36, 4.36], respectively; the three third-tier interfering macrocell MSs
near micro-areas 32, 38, and 98 are located at distances
[6.0, 6.0, 6.0], respectively. Substituting these values into (10.38) and letting

dB, we show in Fig. 10.27 the ratio of microcell radius to
macrocell radius against for different values of where

is the ratio of the transmitted power of the microcell MS to that of
the macrocell MS, and is the number of the microcell clusters in a micro-
area. It is shown that as increases, microcell size becomes insensitive to

Suppose our objective is to implement six microcell clusters in each macro-
area (i.e. = 6) and still maintain We first need to know
the feasible cluster size and the microcell radius. From Fig. 10.26, we obtain

and Then from Fig. 10.27, we find the transmitted
power for a microcell MS should be at least 0.017 times that for a macrocell
MS. Consider an interfering macrocell MS which is an IS-54/136 Class IV
portable handset transmitting at -2 dBW. The microcell MS transmitted power
should be larger than - 20 dBW in this case. Recall the transmitted power
of an IS-54/136 Class IV portable handset ranges from -22 dBW to -2 dBW.
Consequently, the current IS-54/136 Class IV portable handset can be used in
both the macrocells and microcells of the cluster planned architecture without
changing the handset transmit power specification.

3.3.3 ADJACENT CHANNEL INTERFERENCE ANALYSIS

To avoid excessive adjacent channel interference, it is desirable not to use the
same channel sets in adjacent sectors. We will first review a frequency plan de-
signed to avoid adjacent channel interference in the conventional macrocellular
system. Then we will show that the same plan works for the cluster-planned
hierarchical architecture. As shown in Fig. 10.16, a traditional 7/21 macrocel-
lular system has 21 sectors. If the forward and reverse links each have 10 MHz
of available spectrum, and the channel bandwidth is 30 KHz, then a total of
333 carriers can be assigned to the 21 sectors. A frequency plan that avoids
adjacent channel interference is shown in Table 10.3 [190]. Each row in the
table represents a frequency set that is designated to a sector. This scheme
separates any two carriers assigned to adjacent sectors by seven carriers.

If the frequency plan in Table 10.3 is applied to the cluster-planned architec-
ture in Fig. 10.20, there is no adjacent channel interference between macrocell
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sectors. Even with the addition of underlaid microcells, a 2-carrier separation
is maintained between the carriers assigned to the microcells and the co-site
macrocells withing a micro-area. For example, referring to Fig. 10.20 and
Table 10.1, the channel set is assigned to micro-area 56. The co-site
macrocell sectors that use channel set and have at least a 2-carrier
separation. This feature is valid for all the micro-areas with channel assignment
of Table 10.1.

4. MACRODIVERSITY ARCHITECTURES
Microscopic diversity techniques are used to combat the effects of enve-

lope fading. Macrodiversity, or a large-scaled space diversity, has long been
recognized as an effective tool to combat shadowing [173, 190], although it
is effective against envelope fading as well. A macrodiversity system serves
a mobile station (MS) simultaneously by several base stations (BSs). At any
time, the BS with the best quality measure is chosen to serve the MS. The crite-
rion for branch (or BS) selection is a key issue when designing a macrodiversity
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system. Usually, the branch selection is based on the local mean power rather
than the instantaneous power [173, 376, 322, 3, 4, 350], because the branch
selection algorithm cannot react to the rapidly varying instantaneous signal
power. Here we focus on local – mean – based branch selection schemes.

Previous studies on macrodiversity systems have evaluated the co-channel
interference performance with shadowing only [371], [34], [347] and shadowed
Rayleigh fading channels [348]. The co-channel interference performance
was also discussed in [202], but it was assumed that the branch selection
was based on the instantaneous signal power. The error rate performance
of macrodiversity systems has been analyzed in Gaussian noise with both



556

shadowing and Rayleigh (or Nakagami) fading [376], [322], [3], [4], [323].
However, these papers did not consider co-channel interference. The analysis
in [351] carries this further by considering the effect of Ricean fading on a
local-mean-based macrodiversity system and by considering the correlation
effect of the wanted signal at different branches of a macrodiversity system.

4.1 PROBABILITY OF CO-CHANNEL
INTERFERENCE OUTAGE

We now consider an analytical model for calculating the probability of
co-channel interference outage, for an L-branch local-mean-based macro-
diversity system with log-normal shadowing. Our model assumes that the local
mean envelope power of the desired signal, is available for each branch
k, where k = 1 , . . . , L. In practice, the desired signal power is mixed with the
total interference power for each branch so that is actually
measured. However, the difference is small for large If the branch
having the largest is selected, then the local-mean envelope power of the
selected branch is

Let and denote the cumulative distribution function (cdf) and the
pdf of respectively. If the are independent random variables with
the pdf in (2.200), then has the pdf The
probability of co-channel interference outage is

where and are the total powers of the desired and interfering signals for
the selected branch with pdfs and respectively, and is the
threshold C/I.

The interfering signals add noncoherently so that the total interference power
on the kth branch is where is the number of interferers
and is the power of the ith interferer on the kth branch. It is widely
accepted that can be approximated by a log-normal random variable
with area mean power and standard deviation As discussed in
Chapter 3.1, the parameters and can be calculated by using a
variety of methods, including the Fenton-Wilkinson and Schwartz-and-Yeh
methods.

If the are independent and identically distributed (iid), and the
are also iid and independent of the then [371, 347]
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where and are the shadowing standard deviation and area mean
power of the desired signal on the kth diversity branch, respectively.

For ease of evaluation, we let and
transform (10.43) into a Hermite integration form. That is,

where

and and are the roots and weight factors of the nth-order Hermite poly-
nomial, respectively [1].

4.2 SHADOW CORRELATION
Until now, we have assumed independent shadowing on the macrodiver-

sity branches. However, in many cases the macrodiversity branches will be
correlated. Define

For a correlated L-branch macrodiversity system, the joint pdf of is [78]
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where denotes the transpose of column
vector

and are the area means of each diversity branch. The
covariance matrix M is expressed as

where is the shadowing standard deviation and is the covariance of
and

It is convenient to define and express the matrix multiplication in
(10.47) in the form

where is the element in the ith row and jth column.
According to (10.41), (10.47), and (10.51), the probability that is

where and are defined in (10.51) and (10.48), respectively.
The key for obtaining the probability of co-channel interference outage of

the local-mean-based macrodiversity system is to find the pdf of the combiner
output power, , Unlike the uncorrelated case where there exists a closed-
form expression for one can not easily get a simple closed formula for
the joint distribution of more than two mutually correlated log-normal random
variables. However, for L = 2 and
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where , Consider the following covariance matrix
M

and

By substituting (10.55) into (10.53), we express the pdf of the output local-mean
power of the dual macrodiversity system as

where the correlation coefficient r is defined as Combining (10.42)
and (10.56), gives

where

4.3 NUMERCIAL EXAMPLES
Consider a cellular system with nine cells per cluster. In this case, two co-

channel interferers are at 5.2R, where R is the cell radius. Assume the mobile
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unit is on the boundary of the cell at a distance of R to the BS. Consider a dual
slope path loss model with a = b = 2 and = 0.15 R in (2.248).

Fig. 10.28 shows the probability of co-channel interference outage perfor-
mance, while Tab. 10.4 lists the threshold and diversity gain (D.G.) in terms
of 5 and 10 % co-channel interference outage probabilities. Diversity gain here
is defined as the additional C/I (in dB) that is required by a system without
diversity to produce the same probability of co-channel interference outage.
Some general observations can be made: 1) a higher shadowing spread leads
to a higher diversity gain and a lower required threshold the diversity
gain per branch is decreased as the number of diversity branches is increased;
3) the diversity gain increases with the requirement of the system, e.g., the
diversity gain for a 5 % outage probability is higher than that for a 10 % outage
probability.

We evaluate the effects of correlation coefficient r on a 2-branch macrodiver-
sity system with various in Fig. 10.29 and dB in Fig. 10.30.
With respect to a 10 % outage, Tab. 10.5 lists with different r. Observe
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that as r approaches unity, the diversity gain becomes zero. Furthermore, for
r = 0.7, the diversity gain will be reduced to about 50 % of the gain when
r = 0.

APPENDIX 10.A: Derivation of Equation (10.7)
The conditional pdf of the received squared envelope, is



562

Averaging over distribution of log-normal shadowing yields the composite pdf
for squared envelope
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The mean of the approximate log-normal distribution is

From [147, 4.352.1], the inner integral becomes

where is Euler’s constant. Hence,

In a similar fashion, the mean square value is

From [147, 4.358.2], the inner integrals become

where

is Reimann’s zeta function. Finally, the variance is
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Problems
10.1. Consider a cellular system that uses a 7-cell reuse cluster without cell

sectoring.

a) Show graphically the worst case CCI situation for the reverse channel.
b) Ignoring envelope fading and shadowing and assuming the simple path

loss model in (1.7), calculate the worst case carrier-to-interference ratio
in terms of the co-channel reuse factor D/R.

c) Repeat parts a) and b) if 120° cell sectoring is used.

10.2. One method for improving the capacity of a cellular system employs a
two-channel bandwidth scheme as suggested by Lee [192], where a hexag-
onal cell is divided into two concentric hexagons as shown in Fig. 10.A.I
below. The inner hexagon is serviced by 15 kHz channels, while the outer
hexagon is serviced by 30 kHz channels. Suppose that the 30 kHz channels
require = 18 dB to maintain an acceptable radio link quality, while the
15 kHz channels require   = 24 dB.
Assume a fourth-law path loss model and suppose that the effects of en-
velope fading and shadowing can be ignored. Consider the mobile-to-base
link and suppose that there are six co-channel interferers at distance D from
the BS. For a 7-cell reuse cluster, it follows that the worst case carrier-to-
interference ratio, when a mobile station (MS) is located at distance d
from the BS is Hence, dB requires
and dB requires where and are the radii of the
inner and outer cells, respectively.

a) Use the values of and to determine the ratio of the inner
and outer cell areas,

b) Let and be the number of channels that are allocated to the
inner and outer portions of each cell, and assume that the channels are
assigned such that , Determine the increase
in capacity (as measured in channels per cell) over a conventional one-
channel bandwidth system that uses only 30 kHz channels.

10.3. It has been suggested by [192] that the two-channel bandwidth scheme
in Problem 10.2 can be combined with Halpern’s reuse partitioning scheme.
In this case, 15 kHz channels are used in the inner cells and 30 kHz channels
are used in the outer cells. In order to have adequate performance in the
inner or low bandwidth ring we must have while the outer
higher bandwidth ring can use

Compute the increase in capacity (as measured in channels per cell) that
will result from using this scheme, as compared to a conventional system
using a 7-cell reuse cluster.
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10.4. In Section 1.1 the worst case forward channel carrier-to-interference ratio
was calculated by considering only the first tier of co-channel interferers.
Calculate the amount of interference from the second tier of co-channel
interferers. Is it reasonable to neglect this interference?

10.5. Microcells are characterized by very erratic propagation environments.
This problem is intended to illustrate the imbalance in the forward and
reverse channel carrier-to-interference ratio that could occur in a street
microcell deployment. Consider the scenario shown in Fig. 10.A.2, that
consists of two co-channel and communicating with two
co-channel and Neglect the effects of shadowing and
multipath, and assume that the NLOS corner path loss model in (2.214).
Suppose that a = 2, b = 4, and    = 150 m. Plot at
and as moves from A to C. When plotting your results, assume
a received power level of 1 dBm at a distance of one meter.
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Chapter 11

CDMA CELLULAR ARCHITECTURES

CDMA is an attractive proposition for increasing cellular system capacity in
dense urban areas, due to its many inherent benefits like the ability to mitigate
multipath fading and interference, universal frequency reuse, soft handoff ca-
pability, and the ability to exploit voice activity detection. Numerous authors
have investigated the capacity and performance of CDMA cellular systems for
a propagation environment characterized by path loss and shadowing, includ-
ing Gilhousen et al. [136], Kudoh and Matsumoto [183], and Newson and
Heath [247]. Mokhtar and Gupta [228] considered reverse channel capacity on
shadowed Nakagami fading channels, where the desired and interfering signals
have the same fading statistical characteristics.

CDMA systems must use reverse channel power control; otherwise, the
link performance will suffer from the near-far effect, a condition where the
transmissions received from distant MSs experience excessive interference
from nearby MSs. The IS-95 reverse link employs a fast closed-loop power
control algorithm to combat variations in the received signal power due to path
loss, shadowing, and fast envelope fading (at low Doppler frequencies). A
large number of power control algorithms have been suggested in the literature.
Ariyavistitakul and Chang [15] proposed a fast signal-to-interference ratio
(SIR) based feedback power control algorithm that can mitigate both multipath
fading and shadowing. For our purpose, we consider a simple closed-loop
reverse channel power control scheme that equalizes the received power C
from all MSs that are served by the same BS cell sector.

Power control is also useful on the forward channel of CDMA systems for
combating the corner effect, a condition where a MS experiences a decrease
in received signal strength and an increase in multiple-access interference as
it exits a cell corner. Various “power balancing” schemes have been proposed
to balance the BS transmit power for each MS [136] , [46]. Chang and Ren
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[46] have compared power balancing and mobile assisted SIR-based forward
channel power control algorithms. They have shown the former to be better than
the latter. Zorzi [382] has analyzed some simplified power control algorithms
in the absence of shadowing. For our purpose, we will assume a slow open-loop
power balancing algorithm.

1. CAPACITY OF CELLULAR CDMA
CDMA cellular systems typically employ universal frequency reuse, where

the bandwidth is shared by all the cells and transmissions are distinguished
through the assignment of unique spreading sequences. For such systems,
multiple-access interference from neighboring cells must be carefully ac-
counted for. The propagation path loss associated with these interfering signals
is relatively small compared to those found in narrow-band and mid-band
TDMA systems that employ frequency reuse plans.

With cellular CDMA systems, any technique that reduces multiple-access
interference translates into a capacity gain. Since cellular CDMA systems
use speech coding, the multiple-access interference can be reduced by using
voice activity detection along with variable rate speech transmission. This
technique reduces the rate of the speech coder when silent periods are detected
in the speech waveform. Voice activity detection has often been cited as an
advantage of CMDA systems over TDMA systems. However, TDMA systems
can also benefit from voice activity detection and discontinuous transmission,
through a reduction in the level of co-channel interference.

Cell sectoring is another very effective method for reducing multiple-access
interference, where each cell is sectored by using directional antennas. With
120° cell sectors, multiple-access interference on the reverse channel will only
arise from MSs that are located in the shaded area of Fig. 11.1, where only
the adjacent cells are shown. Likewise, multiple-access interference on the
forward channel is generated by BSs that are transmitting to MSs located in
the shaded regions of Fig. 11.2, where again only the adjacent cells are shown.
In either case, 120° cell sectoring reduces the multiple-access interference by
roughly a factor of three (on average); we say on average because the MSs
are randomly distributed throughout the plane. Further improvements can be
gained by using simple switched beam smart antenna systems with 30° or 15°
sectors. A straight forward application of these antenna systems reduces the
multiple access interference by a factor of 12 and 24, respectively, over a system
using omni-directional antennas.

Our analysis of cellular CDMA starts with a cellular layout described by a
uniform plane of hexagonal cells of radius R. Each cell contains a centrally
located BS with 120° cell sectors. It is further assumed that the MSs are
uniformly distributed throughout the system area with a density of K MSs per



CDMA Cellular Architectures 569

cell sector. For hexagonal cells of radius R, this yields a subscriber density of

The effects of voice activity detection can be modeled by assuming that each
transmitter is independently active with probability p, so that the number of
active transmitters in each cell has a (K,p) binomial distribution. The average
number of active transmitters in a cell sector is

The standard Gaussian approximation in Chapter 9.6.1 has been extensively
employed in the literature for the performance prediction of cellular CDMA
systems. For random spreading sequences, we have seen that the standard
Gaussian approximation for a power controlled chip and phase asynchronous
reverse channel of a CDMA system predicts a bit signal-to-noise ratio of

where G is the processing gain and K is the number of
simultaneously received signals. This assumes the use of a coherent correlation
receiver with bit-by-bit decisions. If the signals are chip and phase synchronous
as is the case in the forward channel of a CDMA cellular system, then the
standard Gaussian approximation yields a bit signal-to-noise ratio of

However, it is important to realize that this expression assumes
random spreading sequences. If orthogonal spreading codes such as Walsh-
Hadamard codes are used on the forward channel as is the case with the
IS-95 system [96], then the multiple-access interference from the serving BS is
effectively zero unless the channel delay spread destroys the orthogonality of
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the received signals. Under this condition out-of-cell interference dominates
the performance.

1.1 REVERSE LINK CAPACITY
Perfect reverse channel power control maintains a constant received power

C at a BS for all MSs served by that BS. The jth MS located in cell i is denoted
by The power transmitted by located at distance from its
serving BS, is The received power at is

where is a random variable due to shadowing and fading. is also at dis-
tance to the reference BS, , and will produce an out-of-cell interference
equal to

The first term is due to path loss and shadowing to while the second term is
the effect of the power control to compensate for the corresponding attenuation
to Note that is always less than unity; otherwise the MS would
execute a handoff to the BS which makes it less than unity.

For our purpose, we assume a shadowed Nakagami fading channel, where
the received signal power has the composite Gamma-log-normal pdf in (2.187).
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The composite pdf is approximated by a purely log-normal pdf with mean and
standard deviation given by (2.188). Hence, the random variables and are
treated as Gaussian random variables with means and variances, respectively,

where and are the Nakagami shape factors, and is
the shadow standard deviation. The parameters  and
are determined by the path loss. Using the simple path loss model in (1.7),
their difference is

The total out-of-cell interference-to-signal ratio is equal to

where

is user density over the area A, and is the voice activity variable

The total out-cell interference can be modeled as a Gaussian random vari-
able by invoking the central limit theorem. The mean of the total out-of-cell
interference-to-carrier ratio is

Let and define
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Then the inner expectation in (11.9) is

Therefore,

In a similar fashion,

Finally, the variance of is
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The integrals in (11.12) and (11.14) must be numerically evaluated over the
random mobile locations in the area A, as defined by the set of shaded sectors
in Fig. 11.1.

With perfect power control, the in-cell interference is

where is a Bernoulli random variable equal to 1 with probability p and 0
with probability be the total interference. Then the
probability that the received at a BS is below a required value, is

In all of our numerical results, we assume a chip rate of R = 1.25 Mchips/s
and a source symbol rate of 8 kb/s, yielding a processing gain of G = 156.25.
We further assume a voice activity factor of p = 3/8. Fig. 11.3 shows the
reverse channel capacity for different and shadow standard deviations.
The reverse channel capacity is greatly increased by a reduction in and
slightly reduced when the shadow standard deviation is increased. Fig. 11.4
shows the reverse channel capacity with different Nakagami shape factors for
the desired and interfering signals. Observe that a change in the Nakagami
shape factor of interfering signals has very little effect on the reverse
channel capacity. Fig. 11.5 further illustrates the effect of fading and shadowing
on the reverse channel capacity. As expected, shadowing and fading have
relatively little impact on the reverse channel capacity, since these components
of the received signal are power controlled. Therefore, fading and shadowing
variations only affect the out-of-cell interference.
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The ratio of the mean out-of-cell interference to the mean in-cell interference
ratio is

With a 4th-order path loss exponent, Newson and Heath [247] showed that
when no fading and shadowing are considered and when

shadowing is considered with dB. This translates into a frequency
reuse efficiency f , defined as the ratio of mean in-cell interference to the total
mean interference, of 0.66 and 0.38, respectively. Table 11.1 tabulates the
corresponding values of and for the CDMA cellular system
under consideration for different propagation conditions. The calculations
only consider the first tier of interfering cells. Observe that the frequency
reuse efficiency decreases with the shadow standard deviation, and slightly
increases when increases or decreases.

To show that the values of and f in Table 11.1 do not depend on the
number of users per cell, K, we derive the cdf of the out-of-cell interference to
the in-cell interference for the reverse channel as
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Fig. 11.6 plots the distribution of  (in dB) with different shadow standard
deviations. Although the distribution varies with K, the mean value
remains almost the same, i.e., all the curves cross at the 50% point. This implies
that the values of and f in Table 11.1 do not depend on K.

Extensions of the above results to include the effects of soft handoff have
been provided in [343]. Soft handoff was shown to improve coverage by a
factor of 2 to 2.5 in cell area, i.e., the number of BSs can be reduced by this
factor. It was also shown to increase the reverse channel capacity by a factor
better than 2.
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1.2 FORWARD LINK CAPACITY
For the forward channel, a pilot signal is transmitted from each BS. The pilot

signal is a spread spectrum signal that causes interference in every cell, thereby
reducing the capacity. However, this is offset by a decrease in  due to
coherent modulation. With forward channel balancing power control, the mo-
bile measures the received signal and periodically transmits the measurement
to its serving BS [136]. When the total power requested by mobiles is below
the maximum allowable transmit power, the BS will reduce its transmit power,
thereby reducing interference; otherwise, the BS will redistribute the power
from the forward links with good quality to those with poor quality.

In the worst case situation, each BS always transmits with the maximum
allowable power From (11.2), the at the ith mobile under this condition
is
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where M is the number of surrounding BSs that are included in the calculation,
is the received power from is the fraction of the total power

allocated to the pilot, and the weighting factor is the fraction of the remaining
power allocated to the ith mobile. Note that (11.19) assumes the worst case
condition of chip and phase asynchronous random spreading sequences. As in
[136] our results assume that 20% of the total BS transmit power is allocated
to the pilot signal. Once again, the are Gaussian random variables due to
shadow and fading variations, with means and variances obtained from (2.188).

The BS distributes its transmit power proportionally according to the needs
of each mobile within its cell. This is accomplished by first obtaining the
required for each mobile, by setting in (11.19). To
account for the voice activity, we then calculate the modified weighting factor
[183]

The power balancing scheme in [46] does the same thing, except that the voice
activity factors, are not considered. The outage probability then becomes

Numerical results can be obtained from the last equation in (11.22) by using
Monte Carlo simulation techniques to account for the random user locations,
and shadow and fading variations. For each set of MS locations and propagation
conditions, we first determine the required fraction of power, needed to
meet the , Afterwards, we find if the actual power allocation
for each MS, is sufficient.

Fig. 11.7 shows how the forward channel capacity depends on and
the shadow standard deviation. Shadowing has a slightly stronger effect on
forward channel capacity compared to the reverse channel. Fig. 11.8 shows the
forward channel capacity for various Nakagami shape factors. The Nakagami
shape factor also plays a significant role in forward channel capacity, and overly
optimistic capacity estimates will be obtained if fading is neglected.

1.3 IMPERFECT POWER CONTROL
Any power control algorithm will inevitably be subject to some degree of

error. It has been experimentally verified that the power control error (in dB)
can be modeled as a zero-mean Gaussian random variable with variance
[183], [247]. For the reverse channel, (11.2) has the modified form
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where is the power control error. The mean and variance of
with imperfect power control are similar to (11.10), but have the form

With imperfect power control, the in-cell interference experienced by at
the reference BS, is where

Then
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Note that the conditional pdf of  k given is approximately log-normal.
The log-normal approximation can be calculated using the Fenton-Wilkonson
and Schwartz-Yeh methods discussed in Chapter 3. Observe from Fig. 11.9
that the reverse channel capacity is dramatically decreased as the power control
error increases. For and power control errors of dB, 2dB,
and 3 dB, the reverse channel capacity is decreased by 24%, 50%, and 68%,
respectively.

To consider the effect of power control error on the forward channel, (11.21)
becomes

Fig. 11.9 shows that the forward channel capacity is reduced by 31%, 64%, and
83% for .0 dB, 2.0 dB, and 3.0 dB, respectively. Note that imperfect
power control has a more severe effect on the forward channel than the reverse
channel for the same propagation conditions.

2 . ERROR   PROBABILITY   WITH   RAKE   RECEPTION
Consider a CDMA cellular system that uses 120° cell sectoring. The refer-

ence MS, is located in Cell Sector 0. Assume chip and phase asynchronous
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signaling and a large number of simultaneous users with random spreading
codes. Under such conditions, the standard Gaussian approximation in Chap-
ter 9.6 applies and the multiple access interference, I, in (9.174) is Gaussian
distributed with variance where K is the number of active
transmissions and N is the processing gain (assuming a short spreading code).
The total impairment in (9.160) due to multiple access interference and Gaus-
sian noise is and has variance
where E is the bit energy. Hence, the error probability is

Assuming an error proability expression of the form the
equivalent bit energy-to-noise ratio is

However, in a multipath-fading environment the above expression must be mod-
ified. The instantaneous equivalent bit energy-to-noise ratio that is associated
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with and the path path is

where and is the nth channel tap gain that is associated
with in Cell Sector c. Very often the thermal noise can be neglected in
deference to the typically dominant effect of the multiple-access interference.
The set U in (11.30) is defined as

where

and

In (11.32) the assumption is made that the self-interference due to multipath
can be neglected. Note that the multipath increases the level of multiple access
by increasing the size of the set in (11.32).

The mean interference power that is received at the serving BS from all
out-of-cell MSs is a constant. If there are a total of MSs per cell, the
with the use of cell sectoring and voice activity gating, MSs will be
actively transmitting in each cell sector on average. Of course the number of
active MSs is binomially distributed, but our simplified analysis will use the
average number of active MSs. With power control, the ratio of the average
received power received over path to the average received total noise power
is approximately

The second term in the denominator of (11.34) sums the average out-of-cell
multiple-access interference. It must be determined by careful study of the
particular CDMA deployment. For uniform hexagonal cells, we have seen
earlier (see Table 11.1) that this term is approximately 50% of the first term in
the denominator. However, for microcells this term can be as large as 100%
[166], depending on the cell layout, user spatial distribution and propagation
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path loss exponent. Assuming a frequency reuse efficiency f, (11.34) becomes

The values of and depend, among other things, on the delay spread
of the channel. If the delay spread exhibits an exponential decay, then it follows
from (9.156) that

where

is the total power received from each MS.
Since the received signals from the interfering users are Rayleigh faded, they

can be treated as zero-mean complex Gaussian random processes. Furthermore,
the multiple-access interference consists of a large number of uncorrelated
interferers so that it can be treated as a stationary Gaussian random process.
However, we must still account for the fading fluctuations in the envelope of
the desired signal.

The error probability depends on the type of diversity combining and de-
tection being used. We assume that an M-tap RAKE receiver with maximal
ratio combining. In general, where L is the number of taps in the
tapped delay line channel model. The receivers are assumed to use D-branch
spatial diversity so there are DM replicas of the desired signal that are avail-
able for processing. The instantaneous received bit energy-to-noise ratio that
is associated with path and antenna is exponentially distributed with
density

where we have assumed that identical antenna elements so that with
given by (11.35).

2.1 MAXIMAL RATIO COMBINING
This section presents a simplified performance analysis of cellular CDMA.

Although there are many different performance aspects, we focus here on bit
error probability of cellular CDMA with RAKE reception. While the multipath
allows us to gain a diversity advantage by employing a RAKE receiver, it also
has the undesirable effect of accentuating the effect of the multiple-access
interference. Hence, we are interested in assessing the diversity gains that we
can expect.
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Following the treatment of maximal ratio combining in Chapter 6.3, the
instantaneous processed bit energy-to-total noise ratio is defined as

With coherent BPSK or QPSK signaling, the bit error probability conditioned
on is

Since the are statistically identical with respect to the index m, it follows
that the characteristic function of is

where

It follows that the density of is

Therefore, the average bit error probability becomes

where
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It is useful to express the performance as a function of the total average
received bit energy-to-noise ratio per antenna branch, defined as

where the last step is obtained by using (11.35)–(11.37). Note that
Finally,

Fig. 11.10 shows the CDMA reverse channel performance with D = 1,
L = 4, M = 4, p = 0.5,  f = 2/3 and  various For cellular CDMA systems an
error probability on the order  of                            is deemed acceptable. Note  that
the error probability increases as the channel becomes less dispersive (smaller

because the RAKE receiver cannot gain a diversity advantage. In order
to prevent poor performance in a nondispersive channel environment, antenna
diversity can be used. Fig. 11.11 shows the performance under conditions
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identical to those in Fig. 11.10 except that 2-branch antenna diversity is used,
with independently faded branches. Note the scale change on the abssisa in
Figs. 1l.10 and 1l.ll.

Problems
11.1. Consider a CDMA cellular system where there are 5 in-cell interferers.

Each interferer is independently active with probability p, and is character-
ized by a power control error The power control errors, (in dB)
are independent zero-mean Gaussian random variables with variance
Hence, the in-cell interference is

where
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a) The in-cell interference can be approximated as a log-normal random
variable conditioned on the number of active interferers

Determine the mean and variance of the log-normal approximation as
a function of k for and 3 dB. Use the Fenton-Wilkinson
approach.

b) Assuming that the value of is Gaussian when conditioned on
the number of active interferers, write down and expression for the pdf
of

11.2. (computer exercise) The purpose of this problem is to determine the
relative contribution of the first-, second-, and third-tier cells to the out-of-
cell interference in a CDMA cellular system. Also, we wish to determine
the impact of the path loss exponent on the out-of-cell interference.

Consider a CDMA cellular system characterized by log-normal shadowing
with a shadow standard deviation dB and inverse power path loss.
Neglect envelope fading. All other factors such as base-station antenna
heights, cell sizes, etc. are uniform. The ratio of the mean out-of-cell
interference to mean in-cell interference is

where

and

For regular hexagonal cells, the subscriber density is

Hence,
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where the double integral is over the two-dimensional out-of-cell area.

a) Consider the first tier of interfering cells. For the case of
calculate when

b) Repeat part a), but this time consider only the second tier of interfering
cells.

c) Finally, repeat part a), for the third tier of interfering cells.

d) What conclusions can you draw?

11.3. CDMA systems use soft handoff, where the transmissions to/from multi-
ple base stations are combined to give a macro-diversity advantage. Suppose
that the receive bit energy-to-noise ratio for branch i, denoted by has the
probability density

where

a) The reverse link uses selection macro-diversity such that

An outage occurs if What is the probability of outage?

b) The forward link uses maximal ratio combining such that

Again, an outage occurs if                     What is the probability of outage
if

c) For L = 2 and an outage probability of what is the difference in
the required       (in units of decibels) with selection and maximal ratio
combining, again assuming that
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LINK QUALITY MEASUREMENT
AND HANDOFF INITIATION

When a new call arrives, mobile station (MS) must be connected to a suitable
base station(s) (BSs). Also, when a MS traverses a cell boundary an intercell
handoff  is required so that an acceptable link quality can be maintained without
causing unnecessary co-channel and adjacent channel interference. Failure to
handoff a MS at an established cell boundary also tends to increase blocking,
because some cells will carry more traffic than planned. Sometimes an intracell
handoff is desirable when the link with the serving BSis affected by excessive
interference, while another link with the same BS can provide better quality.
The handoff process consists of two stages: i) link quality evaluation and
handoff initiation, ii) allocation of radio and network resources.

In general, cellular systems with smaller cell sizes require faster and more
reliable link quality evaluation and handoff algorithms. Labedz [185] has shown
that the number of cell boundary crossings is inversely proportional to the cell
size. Furthermore, Nanda [245] has shown that the handoff rate increases with
only the square-root of the call density in macrocells, but linearly with the
call density in microcells. Since the MS has a certain probability of handoff
failure each time a handoff is attempted, it is clear that handoff algorithms must
become more robust and reliable as the cell sizes decrease.

One of the major tasks in a cellular system is to monitor the link qual-
ity and determine when handoff is required. If a handoff algorithm does not
detect poor signal quality fast enough, or makes too many handoffs, then ca-
pacity is diminished due to excessive co-channel interference and/or an undue
switching load. A variety of parameters such as bit error rate (BER) [66],
carrier-to-interference ratio (C/I) [121], distance [222], [102], traffic load, sig-
nal strength [222], [149], [150], [238], [52], [340], and various combinations of
these fundamental schemes have been suggested for evaluating the link qual-
ity and deciding when a handoff should be performed. Of these, temporal
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averaging signal strength based handoff algorithms that measure the received
carrier plus interference power (C+I) have received the most attention due to
their simplicity and good performance in macrocellular systems. However,
spectrally efficient cellular systems are interference limited and a large C+I
does not necessary imply a large C/I. Since radio link quality is more closely
related to C/I than to C+I, it is apparent that C/I based handoff algorithms are
highly desirable for microcellular systems with their characteristically erratic
propagation environments. A discussion of C/I measurement techniques is
included in this chapter.

Based on the roles that the BSs and MSs perform in the process of link
quality evaluation and handoff initiation, there are three categories of handoff
algorithms. The first is a network-controlled handoff (NCHO) algorithm
which has been widely used in first generation analog cellular systems, such
as AMPS. With a NCHO algorithm, the link quality is only monitored by the
serving BS and the surrounding BSs. The handoff decision is made under the
centralized control of a mobile telephone switching office (MTSO). Typically,
NCHO algorithms only support only intercell handoffs, have handoff network
delays of several seconds, and have relatively infrequent updates of the link
quality estimates from the alternate BSs.

The second type of handoff algorithm is the mobile-assisted handoff
(MAHO) algorithm which is widely used in many second generation digi-
tal cellular systems, such as IS-54 and GSM. MAHO algorithms use both the
serving BS and the MS to measure link quality of the serving BS; however, link
quality measurements of the alternate BSs are only obtained by the MS. The
MS periodically relays the link quality measurements back to the serving BS,
and the handoff decision is still made by the serving BS along with the MTSO.
MAHO algorithms typically support both intracell and intercell handoffs, have
network delays on the order of one to two seconds, an use relatively frequent
updates of the link quality measurements.

The third type of handoff algorithm is a mobile-controlled handoff (MCHO)
algorithm, a decentralized strategy that is used in some of the more recent digital
cordless telephone systems, such as DECT. With MCHO algorithms the link
quality with the serving BS is measured by both the serving BS and the MS.
Like a MAHO algorithm, the measurements of link quality for alternate BSs
are done at the MS, and both intracell and intercell handoffs are supported.
However, unlike the MAHO algorithms, the link measurements at the serving
BS are relayed to the MS, and the handoff decision is made by the MS. MCHO
algorithms typically have the lowest handoff network delays (usually about
100 ms) and are the most reliable.

Once the handoff process is initiated, handoff algorithms can also differ in the
way that a call transferred to a new link. Handoff algorithms can be categorized
into forward and backward types. Backward handoff algorithms initiate the
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handoff process through the serving BS, and no access to the “new” channel is
made until the control entity of the new channel has confirmed the allocation
of resources. The advantage of backward algorithms is that the signaling
information is transmitted through an existing radio link and, therefore, the
establishment of a new signaling channel is not required during the initial
stages of the handoff process. The disadvantage is that the algorithm may fail
in conditions where the link quality with the serving BS is rapidly deteriorating.
This type of handoff is used in most of the TDMA cellular systems such as
GSM. Forward handoff algorithms initiate the handoff process via a channel
the target BS without relying on the “old” channel during the initial phase
of the handoff process. The advantage is a faster handoff process, but the
disadvantage is a reduction in handoff reliability. This type of handoff is
used in digital cordless telephone systems such as DECT. Handoff can also be
distinguished according to hard handoffs and soft handoffs.

Hard handoffs:. With hard handoffs, a MS can connect to only one BS at a
time. An absolute (binary) decision is made to initiate and execute a handoff
without making a number of simultaneous connections among candidate BSs.
The handoff is initiated based on a hysteresis imposed on the current link.
The target BS is already selected prior to executing the handoff based on
link measurements and the active connection is transferred to the target BS
instantly. The connection experiences a brief interruption during the actual
transfer because MS can only connect to one BS at a time. Hard handoff
does not take advantage of diversity gain opportunity during handoff where the
signals from two or more BSs arrive at comparable strengths. Yet, it is a simple
and inexpensive way to implement handoff. This type of handoff is used in
most TDMA cellular systems such as IS-54, PDC, and GSM.

Signal strength based hard handoff algorithms have been optimized by min-
imizing two conflicting design criteria; the handoff delay and the mean number
of handoffs between BSs. It is important to keep the handoff delay small to
prevent dropped calls and to prevent an increase in co-channel interference due
to distortion of the cell boundaries. Likewise, it is important to keep the mean
number of handoffs between BSs along a handoff route at a reasonably low
value to prevent excessive loading and resource consumption on the network.
Several authors [238], [340], [222], [150] have applied these (or similar) design
criteria while adjusting two important design parameters; the required average
signal strength difference, or hysteresis H, between the BSs before a hard
handoff is initiated, and the temporal window length T over which the signal
strength measurements are averaged. The handoff hysteresis prevents exces-
sive handoffs due to “ping-ponging” between BSs. The best choice of T and H
depends on the propagation environment. Usually, the averaging interval T is
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chosen to correspond to 20 to 40 wavelengths, and the hysteresis H is chosen
on the order of the shadow standard deviation.

Murase [238] studied the tradeoff between the hysteresis and window length
for line-of-sight (LoS) and non line-of-sight (NLoS) hard handoffs. For LoS
handoffs, the MS always maintains a LoS with both the serving and target BS.
This would be the case, for example, when a MS traverses along a route from

to in Fig. 12.1. NLoS handoffs, on the other hand, arise when the MS
suddenly loses the LoS component with the serving BS while gaining a LoS
component with the target BS. This phenomenon is called the corner effect
[238], [52] since it occurs while turning corners in urban microcellular settings
like the one shown in Fig. 12.1 where the MS traverses along a route from
to . In this case, the average received signal strength with the serving BS
can drop by 25-30 dB over distance as small as 10 m [238].

Corner effects may also cause link quality imbalances on the forward and
reverse channels due to the following mechanism. Quite often the co-channel
interference will arrive via a NLoS propagation path. Hence, as a MS rounds
a corner, the received signal strength at the serving BS suffers a large decrease
while the NLoS co-channel interference remains the same, i.e., the corner effect
severely degrades the C/I on the reverse channel. Meanwhile, the corner will
cause the same attenuation to both the desired and interfering signals that are
received at the MS. Therefore, unless there are other sources of co-channel
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interference that become predominant as the MS rounds the corner, the C/I on
the forward channel will remain about the same.

If the handoff requests from rapidly moving MSs in microcellular networks
are not processed quickly, then excessive dropped calls will occur. Fast tem-
poral based hard handoff algorithms can partially solve this problem, where
short temporal averaging windows are used to detect large, sudden, drops in
signal strength [238]. However, the shortness of a temporal window is relative
to the MS velocity and, furthermore, a fixed time averaging interval makes the
hard handoff performance sensitive to velocity with the best performance being
achieved at only a particular velocity. Velocity adaptive handoff algorithms can
overcome these problem, and are known to be robust to the severe propagation
environments that are typical of urban microcellular networks [18].

Soft handoffs:. With soft handoffs, a MS can connect to a number of can-
didate BSs during a handoff process. Eventually, the handoff is completed
when the MS selects the best candidate BS as the target. Soft handoff is more
careful in selecting the target BS, because the target BS needs to be the best
candidate (provide the strongest signal) from among the available BSs. Dur-
ing the handoff process, soft handoff further enhances the system performance
through diversity reception. Unlike hard handoff, the necessary link quality
measurements for handoff are done by the MS, where it constantly monitors
the pilot signals from surrounding BSs. Soft handoff is a type of Mobile As-
sisted Handoff. However, all these advantages do not imply that soft handoff is
without its weaknesses. Soft handoff is complex and expensive to implement.
Also, forward interference actually increases with soft handoff since several
BSs, instead of one, can connect to the same MS. This increase in forward
interference can become a problem if the handoff region is large, such that
there are many MSs in soft handoff mode.

Soft handoff has a special importance in CDMA based systems, due to its
close relationship to power control. CDMA systems are interference-limited
meaning their capacities are closely related to the amount of interference the
systems can tolerate. Due to its effective frequency reuse factor of one, a CDMA
system cell is affected by, not only interference within its own cell, but also
interference from its neighboring cells also. To alleviate level of interference,
and thus increase the capacity and quality, CDMA systems employ power
control. Power control attempts to solve the near/far problem by adjusting
transmit power so that the target C/I is evenly satisfied. The fundamental
idea behind power control is to restrain from transmitting more power than
necessary in order to limit interference. With power control, each MS and BS
is disciplined to transmit just enough power to meet the target C/I level. But in
order for power control to work effectively, the system must ensure that each
MS is connected to the BS with the strongest signal at all time, otherwise a
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positive power feedback problem can instablize the entire system. For example,
consider a simple system consisting of two BSs and two MSs as shown in
Fig. 12.2. Let us assume that each MS must satisfy a target C/I = 1. Let

and be equal to 5, 6, 7 and 4, respectively. With soft handoff,
each MS connects to the best available BS; connects to
connects to Then and
and and both satisfy the target C/I. However without soft handoff,
the system can no longer guarantee that the MSs are connected to the best BSs.
Assume that is connected to and is connected to Then,

and Since both and
fail to meet the target C/I, power control will attempt to increase the C/Is

by increasing the MS transmit powers. But for the given setting, increasing
the MS transmit powers also increases the respective interference levels and
C/Is continue to stay below the target C/I, causing a positive power feedback
effect. Soft handoff does indeed ensure that each MS is served by the best BS a
majority of the time. For this reason it is a required feature in power controlled
systems like CDMA.

Although the best handoff algorithm is the one that maximizes the capacity
of the network, there are many criterion to judge the performance of a handoff
algorithm. These include the probability of handoff initiation, probability of
dropped call, the mean number of handoff requests as a MS traverses over a
handoff route, and the delay before a handoff is initiated after a MS crosses
an established cell boundary. These quantities depend on the measure of link
quality and the propagation environment. Finally, network parameters such as
the probabilities of new call blocking, the probability of forced termination, and
handoff queuing time are important. Note that we may also wish to distinguish
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between dropped calls that are due to a failed handoff mechanism, and forced
terminations that are due to the lack of an unavailable channel in the target cell
after successful initiation of the handoff process.

The remainder of this chapter is organized as follows. Section 1. presents
several different types of signal strength based handoff algorithms. This is fol-
lowed by a detailed treatment of spatial signal strength averaging in Section 3..
Guidelines are developed on the window averaging length that is needed so
that Ricean fading can be neglected in analog and sampled averaging. These
guidelines are necessary for local mean and velocity estimation. Section 4.
motivates the need for velocity adaptive handoff algorithms and presents three
velocity estimators. The velocity estimators are compared in terms of their
sensitivity to Rice factor, directivity, and additive Gaussian noise. In Sec-
tion 5., the velocity estimators are incorporated into a velocity adaptive handoff
algorithm. Section 6. provides an analytical treatment of conventional signal
strength based hard handoff algorithms while Section 7. does the same for soft
handoffs. In Section 8., methods are discussed for C/I measurements in TDMA
cellular systems. Finally 9. wraps up with some concluding remarks.

1. SIGNAL STRENGTH BASED HARD HANDOFF
ALGORITHMS

Traditional mobile assisted handoff algorithms use signal strength estimates
that are obtained by calculating time averages of the received squared envelope,

from N neighboring BSs,        i = 0, … , N – 1. A MS is
reconnected to an alternate BS whenever the signal strength estimate of the
target BS exceeds that of the serving BS by at least H dB. For example, a
handoff is performed between two BSs, and when

where H denotes the hysteresis (in dB), and and are the estimated
mean signal strengths (in dBm) of and given by

respectively,where is the kth sample of the squared envelope (in
dBm), is the sampling period, and N is the window length.

Many other variations of signal strength based handoff algorithms have been
suggested in the literature. In one variation, handoffs are also triggered when
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the measured signal strength of the serving BS drops below a threshold. For
example, a handoff could be performed between and  when

This scheme encourages a handoff whenever the received signal strength from
the serving BS drop below the threshold thereby reducing the probability
of dropped call.

Another variation discourages handoffs when the received signal strength
from the serving BS exceeds another threshold For example, a handoff is
performed between and when

This scheme avoids unnecessary handoffs, thereby reducing the network load
and network delay.

Direction biased handoff algorithms have also been suggested for improving
the handoff performance in urban microcells [23]. These algorithm incorporate
moving direction information into the handoff algorithm to encourage handoffs
to BSs that the MS is approaching, and to discourage handoffs to BSs that the
MS is moving away from. Let denote the serving BS. A direction biased
handoff algorithm can be defined by grouping all the BSs being considered
as handoff candidates, including into two sets based on their direction
information. Define

By introducing an encouraging hysteresis and a discouraging hysteresis
a direction biased handoff algorithm requests a handoff to BSj  if

and

or if and
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To encourage handoffs to BSs inA a and discourage handoffs to BSs in R, the
hysteresis values should satisfy . When equality holds, the
algorithm reduces to the conventional method described in (12.1). Good values
for H, and      depend on the propagation environment and BS layout.
In general, a direction biased handoff algorithm can maintain a lower mean
number of handoffs and handoff delay, and provide better cell membership
properties.

2. PILOT-TO-INTERFERENCE RATIO BASED SOFT
HANDOFF ALGORITHMS

In CDMA based systems each BS transmits pilot signal to assist soft handoff
[96]. In synchronous CDMA systems, all BSs use the same pilot code and
the BS are distinguished by using different phase shifts of the same pilot. In
asynchronous CDMA systems, each cell is allocated a distinct scrambling code.
In any case, the MSs use the pilot signals to initiate and complete handoffs.
Each pilot signal strength is measured by its pilot-to-interference ratio (PIR),
which is the ratio of received pilot energy per chip to total interference spectral
density:

An active set refers to the set of BSs to which a MS is connected at any given
time. The active set contains a single BS most of time, but additional BSs are
added to the set during soft handoff.

Soft handoffs are initiated based on a hysteresis imposed on the PIRs. An
upper threshold, determines the pilot signal level for which qualifying
BSs are added to the active set, whereas a lower threshold, determines
when the weak pilot BSs are dropped from the active set. The handoff margin,
the difference between and is an indicator of how long a soft handoff
will take on average. A wider margin results in a longer average soft handoff
duration. Fig. 12.3 shows how changes in the handoff parameters affects the
handoff region. Reducing and expands the cell boundaries and thus
increases the soft handoff region.

The soft handoff margin and thresholds are very important parameters in
determining system performance, and need to be carefully optimized for a given
situation. Allowing more MSs to be in soft handoff mode will decreases reverse
link interference, by allowing more MSs to benefit from macrodiversity. That
is, the MSs in handoff are connected to the best available link and, therefore,
do not transmit excessive power. However, the increase in the number of
MSs in soft handoff and the increase in the average handoff duration can
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increase system complexity and tie up already scarce system resources. Also,
as mentioned previously, soft handoff increases the forward link interference
by allowing multiple BSs to transmit to one MS. The challenge is to optimized
the handoff parameters so that the capacity and quality of service requirements
are satisfied, while keeping the operational cost and system complexity down.
Other important soft handoff parameters include the , timer and the ratio
between the handoff region and total cell area. The timer is the length of
time that a signal level must remain below to drop a BS from the active
set.

3. SIGNAL STRENGTH AVERAGING
The received squared envelopes are affected by Ricean fading, log-

normal shadowing, and path loss attenuation. Here we assume a narrow-band
system with flat fading, although the techniques that are described in the sequel
can be extended to other systems with some modification. For middle-band
TDMA systems, it is likely that the necessary signal strength information can
be obtained from the adaptive equalizer or channel estimator. Likewise, for
wide-band CDMA systems, the tap weightings in a RAKE receiver could be
used to estimate the received signal strength.

Two Ricean fading models are considered. The first model assumes that the
received bandpass signal is

where is the carrier frequency, and and are independent Gaussian
random processes with variance and means and
respectively. As discussed in Chapter 2.1.2 the envelope

is Ricean distributed with Rice factor where
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The second Ricean fading due to Aulin [16], assumes that

where and are the Doppler shift and angle offset of the LoS
signal, respectively. Once again,  the envelope is Ricean distributed with
Rice factor Both models  are equivalent for Rayleigh fading
(K = 0).

As suggested in Chapter 2.4.1, the spatial correlation of the  log-normal
shadowing can be effectively described by the negative exponential model

where       is the shadow standard deviation (typically between 4 and 12 dB),
and is the spatial shadow correlation between two points separated by D m.

For LoS propagation we assume the two-slope path loss model given by
(2.248). For NLoS propagation we use the model in (2.250) yielding, for
example, the signal strength profile in Fig. 12.4.

Time averaging and hysteresis H reduce the effect of fading
and shadowing variations that would otherwise cause large numbers of unnec-
essary handoffs. Short spatial windows average over the fades while longer
spatial windows average over the shadows as well. The effect of the spatial
window length on handoffs is well documented in the literature [222], [150],
[238], [340]. However, for the development of fast microcellular handoff al-
gorithms, new guidelines must be developed so that spatial averaging can be
used effectively for reducing the effects of fading in microcells.

3.1 CHOOSING THE PROPER WINDOW LENGTH 
One method for determining the proper window length is to use analog av-

eraging. The following development extends the original work of Lee [194] by
incorporating Aulin’s Ricean fading model. With Lee’s multiplicative model,
the squared-envelope of the composite signal at position y is

where is a non-central chi-square random variable with 2 degrees of
freedom (Ricean fading), and is a log-normal random variable (log-
normal shadowing). If the local mean is constant with distance, then

Assuming ergodicity, an integral spatial average of  can be used to
estimate the local mean
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where the second equality holds since is constant over the spatial interval
(x–L, x+L). The accuracy of the estimate can be determined from the variance
of (12.15), calculated as [189]

where is the spatial
autocovariance of the squared envelope, and E[x] denotes the ensemble average
of x. Aulin [16] derived as (c.f. 2.83),

(12.17)
where is the zero-order Bessel function of the first kind, K is the
Rice factor, is the carrier wavelength, and is the angle that the specular
component makes with the MS direction of motion. The spatial autocovariance
of the squared envelope can be obtained directly from Fig. 2.14 by using the
time-distance transformation
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Substituting (12.17) into (12.16) yields

As desired, as If L is large, then can be considered
Gaussian since it is the summation of many independent random variables.
However, if is relatively large compared to (due to small L or small

then it is more appropriate to treat as a non-central chi-square random
variable. In this case, it may be more appropriate to approximate as a
log-normal random variable which has the same general shape as a non-central
chi square distribution (i.e., zero at the origin with an infinitely long tail) [142],
[143].

Proceeding under the assumption that is approximately Gaussian, the
spread can be calculated to measure the accuracy of the estimator, where

with the interpretation that Prob
Observe from (12.18) and (12.19) that the accuracy of the local mean estimate
depends on K, L, and Fig. 12.5 shows the spread when
for various values of K. In general, approaches with increasing K.
However, the angle also affects the accuracy as shown in Fig. 12.6. When

the 1 spread is minimized, resulting in the best estimate of the local
mean. Conversely, the worst estimates occur for small (in the neighborhood
of in Fig. 12.6). The actual angle that the maximum occurs is a function
of L, and it can easily be shown that the spread has a local minimum at

and global minimum at for all L. In any case, the required
spatial averaging distance for local mean estimation in microcells depends on

3.2 CHOOSING THE PROPER NUMBER OF
SAMPLES TO AVERAGE

Most practical signal strength estimators use samples of the signal strength
rather than analog averaging. We must determine the required number and
spacing of samples that should be used, to sufficiently mitigate the effects of
fading. Consider the sampled squared composite envelope

1The probability of lying within one standard deviation of the mean of a Gaussian random variable is 0.68.
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where S is the spatial sampling period, and i is an integer. Then the unbiased
estimate
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can be used to determine an estimate of the local mean squared-envelope
As with analog averaging, the variance of this estimate can be used to measure
its accuracy, where

By using (12.17) along with the symmetric properties of the autocovariance,
(12.22) becomes

where S is measured in wavelengths Note that depends on N, K,
and Fortunately, the effect of each parameter is nearly independent of

the others. Fig. 12.7 illustrates the relationship between S and K for
where so that the averages are over (and denotes
the smallest integer greater than or equal to x). Increasing N for a fixed S
will increase the spatial averaging distance, thereby lowering the spread
in a manner similar to analog averaging in Fig. 12.5. The discontinuities in
Fig. 12.7 are due to the function. Observe that if then the
discrete local mean estimate is approximately equivalent to the estimate from
analog averaging in Fig. 12.6) over the same spatial distance. Similar
to Fig. 12.6, we also observe that small Rice factors, e.g., K = 0.1 and K = 1,

increase the spread. The spikes at and correspond
to the location of the first lobe of the autocovariance function given by (12.17)
and plotted in Fig 2.13.

Although we often assume in our treatment, Fig. 12.8 shows the
relationship between the 1 spread and for and
several values of Increasing generally lowers the spread except for
some small angles as shown in Fig. 12.6; it also shifts the spike at  to the
right, because the first sidelobe of (12.17) shifts as increases.

To summarize, the spatial averaging distance that is needed to sufficiently
reduce the effects of fading depends on K and If sample averaging is used,
then the sample spacing should be less than As a rule of thumb, a spatial
averaging distance of 20 to 40 should be sufficient for most applications.
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4. VELOCITY ESTIMATION
IN CELLULAR SYSTEMS

Temporal based handoff algorithms can yield poor handoff performance
in microcells due to the diverse propagation environment and the wide range
of MS velocities. Consider the NLoS handoff scenario shown in Fig. 12.1,
where a MS traveling from BS0 has a Ricean faded log-normal shadowed LoS
signal from and a Rayleigh faded log-normal shadowed NLoS signal from

until it rounds the corner where the situation is suddenly reversed. The
loss (gain) of the LoS component causes a rapid decrease (increase) in the
signal strength. Effective handoff algorithms for this scenario should use short
temporal averaging window and a large hysteresis, so that rapid changes in
the mean signal strength are detected and unnecessary handoffs are prevented
[238]. Unfortunately, temporal averaging with a short fixed window length
gives optimal handoff performance for only a single velocity. For example,
consider again the handoff scenario in Fig. 12.1 along with the received signal
strength profile in Fig. 12.4. Assume log-normal shadowing with
and choose D so that at d = 30 m in (12.13). The
simulation of a 2.27 s non-overlapping temporal power averaging handoff
algorithm with a hysteresis H = 8 dB has a handoff performance shown by the
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lines in Fig. 12.14.2 The handoff performance is evaluated by the mean number
of handoffs, averaged over 1000 runs, versus the distance from where 50%
(and 90%) of the MSs have made a handoff to  and

at the abscissa. This distance gives a measure of the handoff
delay, assuming that handoffs will occur between and only.

Fig 12.14 only shows the handoff request delay, while in a real system the
network delay should also be included. However, the performance of a velocity
adaptive handoff algorithm can still be evaluated without knowledge of the
network delay. For example, suppose that the receiver threshold is –90 dBm.
Also, assume that a good handoff algorithm should have at least of the
MSs handed off before a distance , where is chosen as that distance
where the mean signal strength is above –90 If and the
data from Fig. 12.4 is used, then a signal strength of –90 + 12 = –78 dBm
occurs at 283 m for Hence, if the velocity adaptive handoff algorithm can
adapt to the point at 5 km/h in Fig. 12.14, corresponding to handoff requests
at a distance 262 m, and the maximum speed of a MS turning the corner is

window corresponds to a spatial window at a velocity of 5 km/h, assuming a carrier frequency
of 1.9 GHz. Section 5. further details the simulation.
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40 km/h (40/3.6 m/s), then a maximum network delay of

can be tolerated. For some of the newer cellular standards, e.g., GSM, this
network delay is tight but acceptable, implying the usefulness of velocity
adaptive handoff algorithms discussed here. In the above example the 5 km/h
point on the curve in Fig. 12.14 was chosen as the desired operating point,
because the best handoff performance occurs near the knee of the curve where
the mean number of handoffs and handoff delay are jointly minimized. Other
hysteresis and window lengths could possibly result in better performance.
However, the settings used here and a spatial window) are
adequate to illustrate the usefulness of velocity adaptive handoff algorithms.

Some cellular system proposals have suggested the deployment of micro-
cells along with “umbrella” macrocells for accommodating high speed MSs.
Velocity estimation will be necessary for these systems along with a macro-
to-microcell and micro-to-macrocell handoff scheme. Alternatively, if a low
network handoff delay can be achieved, then a velocity adaptive handoff algo-
rithm can maintain good link quality without the need for umbrella macrocells.

4.1 LEVEL CROSSING RATE ESTIMATORS
It is well known that the zero crossing rates of the quadrature components

and and the level crossing rates of the envelope
of a received sinusoid in noise, are functions of the MS velocity as

discussed in Chapter 2.1.4. The envelope level crossing rate (LCR) is defined
as the average number of positive going crossings per second, a signal makes of
a predetermined level R. Likewise, the zero crossing rate (ZCR) is defined as
the average number of positive going zero crossings a signal makes per second.

Assuming fading model in (12.11), the means and  can be subtracted
from the inphase and quadrature components and the ZCR of the resulting
signals be used to estimate the velocity. Rice gives the ZCR of or

as(c.f. 2.103)

and the envelope LCR with respect to the level R as, (2.90) and (2.91),
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where is the joint probability density function of the envelope (eval-
uated at r = R) and the slope of the envelope and From
(2.93), the are equal to

where is the scatter power, v is the velocity, is the carrier wavelength,
is the maximum Doppler frequency, is the frequency

of the specular or LoS component, and is the continuous AoA distribution
of the scatter component of the arriving plane waves [173]. The second term in
(12.26) is due to additive bandpass Gaussian noise, centered at with a two-
sided power spectral density of watts/Hz and a noise bandwidth of

resulting in a total power of watts. For the special case when
and there is 2-D isotropic scattering, then
(12.26) can be written as

With Aulin’s Ricean fading model with the means of and defined
in (12.12), the ZCR of or is [282]

where is the zero-order modified Bessel function of the first kind, and

Two-dimensional isotropic scattering is a reasonable assumption for macro-
cells. However, in microcells the scattering is often non-isotropic. Neverthe-
less, one approach is to derive the velocity estimators under the assumption of
2-D isotropic scattering with no additive noise, and afterwards study the effects
of the mismatch caused by non-isotropic scattering and noise. Using (12.24)
along with the definition for the in (12.27) with = 0 gives

and (c.f. 2.99)
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where where is the rms signal level. Likewise, for
and Aulin’s Ricean fading model with the means in (12.12) we have

and reduces to

Clearly, each of the above level crossing rate estimators is proportional to the
velocity v and, hence, can be used as a velocity estimator. However, it remains
to be seen if they are robust to K, non-isotropic scattering, additive noise, and
other factors. We first consider the robustness with respect to K and treat the
other factors afterwards.

is not affected by K. Fig. 2.14 in compared the level crossing rate
for different K with the conclusion that the LCR around dB is

roughly independent of K. This attractive property suggests that the level
crossing rate can be used to provide a velocity estimate that is robust to K.
Consequently, the steps for using the LCR (or ZCR) of or

for velocity estimation are; determine estimate
the number of crossings per second and use (12.31) to solve
for v, with Thus, the following velocity
estimators are robust with respect to K assuming the Ricean fading model in
(12.11):

Fig. 12.9 shows the effect of K and Notice that if the angle of
the specular component is can have up to 40%
relative error. Consequently, a non-zero value of K should be chosen as default
to minimize the effect of K. Choosing yields a maximum error of
at most 20% which is quite acceptable for urban LoS velocity adaptive handoff
applications. In this case, the velocity estimate from (12.33) becomes

4.2 COVARIANCE APPROXIMATION METHODS
A velocity estimator has been proposed by Holtzman and Sampath that relies

upon an estimate of the autocovariance between faded samples r[i], where the
r[i] can be envelope, squared-envelope, or log-envelope samples [169], [290].
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With this method, referred to here as the covariance method (COV), the
statistic

is calculated. If N is large and ergodicity applies, then V can be replaced by
the ensemble average

where denotes the autocovariance of r[k]. The general form for
assuming squared-envelope samples, can be derived from [16] and [290] as
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where [16]

This estimator depends on and, hence, is also a function of the scattering
environment. Like the LCR estimator, we first assume isotropic scattering
without additive noise to derive a velocity estimator and afterwards evaluate
the effect of non-isotropic scattering and noise.3 If the channel is characterized
by isotropic scattering and squared-envelope samples are used, then using
(12.17) gives

which is dependent on K and If is known exactly, then the bias with
respect to K can be eliminated for small by the normalization [290]

so that [290]

where is the sample spacing in seconds/sample.
In large co-channel interference situations it may be preferable to modify the

above scheme since the empirical average in (12.36), and in particular is
sensitive to co-channel interference as shown in [182]. Consequently, defining,

so that is equal to (12.42) with and a result similar
to (12.43) follows.

3Only isotropic scattering was considered in [169], [290]
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Whether V or is used, is never known exactly and must be
estimated by the MS in the same way that  and must be estimated
in the ZCR and LCR methods, respectively. Consequently, to actually use
(12.43) it must be shown or verified that

This is analytically difficult, but simulation results in Section 5. suggest that
(12.43) is a useful approximation to (12.46).

It is also shown in Appendix 10A that

It follows from (12.43) and (12.47) that K and cause at most 20% error in v
[290], thus providing a velocity estimator that is reasonably robust with respect
to K.

4.3 VELOCITY ESTIMATOR SENSITIVITY
To illustrate the sensitivity of the velocity estimators, the ratio of the cor-

rupted velocity estimate to the ideal velocity estimate is used. For the LCR and
ZCR velocity estimators with the fading model in (12.11) we have

and

where denotes the corrupted velocity estimate, and and
are given by (12.25) with the appropriate values of and

, respectively. Little simplification results for the LCR method in general.
However, when K = 0 (12.49) simplifies to [173]

For Aulin’s fading model in (12.12) the sensitivity of the ZCR is
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where and are given by (12.29) using (12.26) where appropriate. Like-
wise, for the covariance method using squared envelope samples we have

4.3.1 EFFECT OF THE SCATTERING DISTRIBUTION
Here we study the sensitivity of the velocity estimators to the scattering

distribution by using four different non-isotropic scattering models. With the
first model S1, plane waves arrive from one direction only with a varying degree
of directivity as might happen when signals are channeled along a city street.
The probability density of the scatter component of the arriving plane waves
as a function of angle of arrival has the form in (directive), where the vehicle
motion is in the direction of and determines the directivity of the
incoming plane waves. Fig. 2.7 shows a polar plot of for
and 90°. The second model S2, assumes that the plane waves can arrive from
either the front or back which may be typical for city
streets that dead end at another street. In this case and are combined
to form the distribution versus angle of arrival. The resulting density is similar
to Fig. 2.7 but with lobes extending in both the 0° and 180° directions. The
third and fourth models S3 and S4, respectively, are similar to S1 and S2
except that the distributions are rotated by 90°, so that the plane waves tend
to arrive perpendicular to the direction of travel. This may occur when a MS
passes through a street intersection. The effect of the scattering distribution is
determined for the cases when the velocity estimator has been designed for i)
isotropic scattering and, ii) scattering model S1 with The scattering
model that the velocity estimator has been designed for will determine the
values of and in the denominators of (12.48)–(12.51), while the values
of and depend on the scattering environment that is actually present.
The effect of non-isotropic scattering on the COV estimate (12.52) can be found
from the results in Appendix 10A with or by using small values of
in (12.52). Here we chose the latter with

Fig. 12.10 shows the effect of the scattering distribution on each of the
velocity estimators. Due to the very large number of possible scenarios, only
the most significant results are plotted in Fig. 12.10 and curves similar (but
not equal) to the plotted curves are simply asterisked in the accompanying
table. Velocity estimators with the subscript “d” in Fig. 12.10 correspond to
those that are designed for scattering model S1 with By using
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Fig. 12.10 the relative robustness of the various velocity estimators to the
scattering distribution has been summarized by the ranking in Table 12.1.

In urban situations, robustness with respect to scattering models S1 and S2
is important. The LCR and COV methods are very sensitive to the directivity in
scattering model S1 when as shown by curve “h”. This sensitivity can
be partially mitigated by using the velocity estimators and that
have been designed for scattering model S1 with as shown by curve
“g.” However, the price for increased robustness to scattering model S1 is the
increased sensitivity of  to scattering models S2, S3, and S4 when
Fortunately, the presence of even a small specular component reduces
the sensitivity as seen in COV and In contrast a specular
component does not reduce the sensitivity of the LCR estimator in scattering
models S2, S3, and S4, because and therefore the ratio of the crossing
rates in (12.50) depends on and and is independent of K. Results are not
shown for or with scattering model S1, due to numerical
difficulties in calculating (12.25) for small For large the results
obtained were very close to curve “d.”

The ZCR velocity estimator is generally more robust than the LCR and COV
methods. The presence of a small specular component improves robustness
to the scattering distribution as seen in and
are independent of K). Also, velocity estimators that have been designed
for scattering model S1 with perform slightly better than those
designed for isotropic scattering. However, the improvement obtained by
using these velocity estimators must be weighed against the relative error that
will be introduced if the scattering is actually isotropic. For and

and for Since all the velocity estimators seem
to have some sensitivity to the scattering distribution, and sensitivity is greatly
reduced when K > 0, we conclude that those designed for isotropic scattering
should be adequate.

In summary, for very directive situations where the plane waves arrive from
either the front or back but not both, the ZCR, or methods are the
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most robust. If the plane waves arrive from both the front and back, then all
the velocity estimators with the exception of  are reasonably robust. The
sensitivity to directivity is reduced when a specular component is present. In
the unlikely event that K = 0 and plane waves arrive from the perpendicular
direction with high directivity, all methods will have a significant bias. Finally,
another method for overcoming the sensitivity to the scattering distribution
is to obtain velocity estimates from signals arriving from a distant cell or an
umbrella cell, since they will experience isotropic scattering.

4.3.2 EFFECTS OF ADDITIVE GAUSSIAN NOISE
Since the effect of the scattering distribution has already been established,

the sensitivity to additive white Gaussian noise (AWGN) is determined by using
(12.48) to (12.52) with isotropic scattering. With AWGN the rms value of the
received signal is and the values of and in
(12.48) are

For the LCR velocity estimator (12.48) with (12.25) become, after considerable
algebra,

where

is defined as the signal-to-noise ratio. Likewise, for the ZCR velocity estimator
(12.49) becomes
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For Aulin’s fading model in (12.12), the effect of AWGN on can be
obtained from (12.51) with

and given by (12.32).
In [290], the effect of AWGN on the COV velocity estimator has been

derived as a function of Here we provide a closed form analytic result
for the effect of AWGN on the COV velocity estimate for the limiting case
when The limiting case is important for comparisons to AWGN effects
on level crossing rate estimators, and since (12.42) is only valid for small
Consequently, the is found, and afterwards, the effect of

in (12.52) is compared. It is shown in Appendix 10A that

where is given by (12-12.A.4), with
for isotropic scattering.

It is apparent from (12.54), and (12.56)–(12.60) that the effect of AWGN
depends on For a practical system, the bandwidth
can be chosen as the maximum expected Doppler frequency over the range of
velocities. However, a smaller in reference to the actual maximum Doppler
frequency will result in velocity estimates that are less sensitive to noise.
Therefore, a better approach is to use the velocity estimate to continuously
adjust to be just greater than the current maximum Doppler frequency, i.e.,

Fig. 12.11 shows the effect of AWGN on each of the velocity
estimators with respect to and v, assuming (head-on LoS
specular component). A value of  = 357 Hz is chosen which allows speeds
up to 100 km/h at  GHz. For K = 0, AWGN has the same effect
on all the velocity estimators. For larger velocities, e.g., 20 km/h, the bias
becomes insignificant because is small. However, for small velocities,
e.g., 1 km/h, a very large results in a significant bias. As mentioned
above, this slow speed bias can be reduced by adapting the filter bandwidth
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It must also be remembered that Fig. 12.11 shows the worst case performance
of the COV method as Any will reduce the bias of the COV
method due to AWGN. For example, if = 0.5 in (12.52) then a large
reduction in the effect of AWGN is realized, as shown by the curves labeled
COV(.5) in Fig. 12.11. However, the accuracy of the COV velocity estimate
itself improves with smaller so that increasing  for reduced noise sensitivity
must be weighed against the reduced accuracy of the velocity estimate itself.
This will be discussed further in the next section.

5. VELOCITYADAPTIVE HANDOFF ALGORITHMS 
To study other velocity adaptive handoff issues we now assume K = 0,

isotropic scattering, and no AWGN.
A velocity adaptive handoff algorithm must adapt the temporal window

over which the mean signal strength estimates are taken by either keeping the
sampling period constant and adjusting the number of samples per window, or
vice versa. Here, we assume the latter. To reduce the variance in the velocity
estimate, a sum of weighted past velocity estimates is performed using an
exponential average of past estimates, i.e.,
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where a controls the weighting of past estimates used in the average, and
is the current velocity estimate. The accuracy of the velocity estimates will be
affected by the window length used to obtain the velocity estimates (not
to be confused with the window length over which the signal strengths are
averaged), and the number of samples per wavelength .

To show the effect of parameters a, and simulation of the NLoS
handoff scenario shown in Figs. 12.1 and 12.4 was performed. The path loss
was assumed to follow the two-slope model in Section 3. with a = 2, b = 2,
and g = 150 m in (2.212). Drastic path loss at the corner was assumed to
take effect 5 m into the corner, so that the MS moving from to would
experience the corner effect at 255 m from The corner effect was modeled
by choosing the average received signal strength at 255 m as the initial signal
strength in a new LoS path loss model with a = 2, b = 2 and g = 150 m as
before. Correlated log-normal shadows were used having a standard deviation
of = 6 dB and D in (12.13) set so that shadows decorrelated to at
30 m. The instantaneous signal strength samples were affected by Rayleigh
fading using the Jakes’ simulator presented in Section 2.3.2. Samples were
taken of the log-envelope and appropriately converted to envelope or squared
envelope samples for the velocity estimator under study. Two-branch antenna
diversity was assumed, so that the in (12.61) represent the average estimate
out of the diversity branches at position n.

As mentioned previously, Fig. 12.14 shows the performance of a temporal
handoff algorithm with H = 8 dB, signal strength averaging over 2.27 s, and
overlapping windows by 2.27/2 = 1.135 s. Slightly better temporal handoff
performance can probably be obtained by fine tuning these values. However,
for purposes of studying the velocity adaptive algorithms it is sufficient to
maintain H = 8 dB and adapt to some point near the knee of the performance
curve. Consequently, the velocity estimators were designed to adapt to the
5 km/h operating point which corresponds to signal strength window averages
over with a window overlap of

A total of 1000 runs were made from and the 95% confidence
intervals were calculated for i) the velocity at 100 m, ii) the corner at 255 m,
and iii) the probability of being assigned to   at 255 m. This resulted in a
95% confidence interval spread of and Likewise,
the mean number of handoff values had a 95% confidence interval spread of
approximately .05 (mean number of handoffs

5.1 EFFECT OF
To examine the effect of  , assume that a = .1 and  for the LCR,

ZCR and COV velocity estimators, and assume that the MS traverses the NLoS
handoff route in Fig. 12.1 at 30 km/h. Furthermore, assume that the velocity
estimators are initialized to 5 km/h, and that the MS is measuring signals from
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and only. Fig. 12.12 shows the effect of on the velocity estimate,
in the first 90 m of the call as the MS moves from to in terms of
the response time and final velocity estimate. The LCR velocity estimator
requires a higher sampling density than the COV or ZCR methods and its
final velocity and response time to an incorrect startup value (5 km/h) improve
dramatically when is increased from 10 to 30 samples/wavelength. For

the COV method shows a slight overshoot in the initial convergence,
a characteristic seen with all the velocity estimators as the sampling density
is increased. It is interesting to note that for samples/wavelength

and the final COV velocity estimate is
close to the actual 30 km/h with a reasonable response time. This fact, along
with the results of the Section 4.3.2 where confirm that the
effects of AWGN can be mitigated by using a larger sample spacing without
drastically affecting the velocity estimate. We also note that the simulations
used an estimate of the rms value in the LCR method and an estimate of
the variance in the COV method. Thus the practicality of the velocity
estimators that have been derived assuming perfect knowledge of these values
is confirmed. Although not shown here, the Rice factor K was also found
to have little effect thus confirming the claimed robustness of the estimators.
Over the 1000 runs, the ZCR had the smallest velocity variance followed by
the COV and LCR methods, respectively.

5.2 CORNER EFFECTS AND SENSITIVITY
TO A AND

The sharp downward spike at the corner (255 m) for the LCR velocity
estimate in Fig. 12.13 is typical of the corner effects on the velocity estimators.
The effect is caused by a sudden change in path loss which lowers the local
mean estimate in the LCR method thus yielding fewer level crossings per
second. This corner effect is apparent, although less acute in the ZCR and
COV methods due to their quick adaptability. The LCR and ZCR methods may
exhibit a drop in estimated velocity when the average signal strength changes
abruptly. Although not shown here, the COV method has an upward bias with
an abrupt increase in the average signal strength, and a downward bias when
the opposite occurs. These corner effect properties could possibly be exploited
to provide a combined corner detecting velocity adaptive handoff algorithm
[17].

Larger values of a reduce the variance of the velocity estimate while sacri-
ficing response time. Smaller values of a provide faster startup convergence
and more sensitivity to corner effects.

Although a velocity window length less than will increase the
variance of the velocity estimates, it is beneficial for reducing the corner effect
on the velocity estimator, as shown for the LCR method. Although not shown,
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the same is true for the ZCR and COV methods. The ZCR curve with
and a = 0.5 shows an overshoot in the initial convergence. This arises

because the windows that are used to obtain the velocity estimates
overlap by Hence, part of the velocity estimate is derived from the
previous window which may have a different sampling period due to adaptation.
Note that we have used overlapped windows because they result in less handoff
delay. Thus, it is probably better for initial startup to derive velocity estimates
from the non-overlapped portions of the signal strength windows.

5.3 VELOCITY ADAPTIVE HANDOFF
PERFORMANCE

Now that the effect of each parameter has been determined, the performance
of the velocity adapted handoff algorithm is shown by the various symbols
in Fig. 12.14 for a MS traveling at 30 km/h. The estimators, were selected
to adapt to the 5 km/h operating point, the algorithm parameters were chosen
as a = .1, with an initial startup velocity of 5 km/h. The mean
number of handoffs were found to have a confidence interval with a span
of about 0.05 (mean number of handoffs about the mean that is plotted.
The velocity adaptive handoff algorithm performs very well by maintaining the
desired operating point near the 5 km/h point.



Link Quality Measurement and Handoff Initiation 621

6. HARD HANDOFF ANALYSIS
The classical signal strength based hard handoff algorithm compares signal

strength averages measured over a time interval T (seconds), and executes a
hand-off if the average signal strength of the target BS is at least H (dB) larger
than that of the serving BS [150], [18], [339], [338]. The analytical computation
of the handoff characteristics for this classical signal strength based handoff
algorithm is generally intractable. However, for the case when the average
signal strength decays smoothly along a handoff route and the handoff hysteresis
H is not too small compared to the shadow standard deviation, Vijayan and
Holtzman [339], [338] have developed an analytical method to characterize the
performance of the classical signal strength based handoff algorithm. They
have also extended their results to include handoff algorithms that use absolute
measurements [379], similar to the one in (12.4).

Consider the case of a MS moving at a constant velocity along a straight
line between two BSs, and BS1, that are separated by a distance of D
meters. We neglect envelope fading under the assumption that the received
signal strength estimates are averaged by using a window with an appropriate
length as explained in Section 3.. In any case, however, the signal strength
estimates will respond to path loss and shadowing variations. Considering the
effects of path loss and shadowing, the signal levels and
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that are received from and respectively, are (1.7)

where d is the distance between and the MS. The parameters and
are independent zero-mean Gaussian random processes with variance

reflecting a log-normal shadowing model. The signal strength measure-
ments are assumed to be averaged by using an exponential averaging window
with parameter so that the averaged signal levels from the two BSs are,
respectively,

To describe the signal strength based handoff algorithm, let
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denote the difference between the averaged signal strength estimates for
and Consider the crossings of x(d) with respect to the hysteresis levels

as illustrated in Fig. 12.15. A handoff is triggered if x(d) has a down-
crossing at – H (dB) given that the last level crossing was an up-crossing at H
(dB), or if x(d) has an up-crossing at H (dB) given that the last level crossing
was a down-crossing at – H (dB). Vijayan and Holtzman verified that the two
point processes, up-crossings of H (dB) and down-crossings of – H (dB), can
be modeled as independent Poisson processes under the assumption that x(d)
is a stationary zero-mean Gaussian random process, i.e., changes in the mean
are ignored and the MS is moving along the boundary between two cells [339],
This result also applies when x(d) has non-zero mean, but in this case the
up-crossing and down-crossing rates are not equal. The Poisson assumption is
asymptotically true for large H, but has been shown to hold true for H values
of practical interest, i.e., those on the order of the shadow standard deviation

[339].
The handoff analysis proceeds by dividing up a handoff route into small

spatial intervals of length such that only one level crossing is likely to occur
within each interval. The probability of handoff at distance is [339]

where is the probability of an up-crossing or down-crossing
in the nth interval, and is the probability that the last event was an up-
crossing. In other words, the MS was assigned to at the beginning of the
nth interval. This can happen in one of two mutually exclusive ways; i) there is
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an up-crossing but no down-crossing in the (n – l)th interval, and ii) there are
no crossings in the the (n – l)th interval, and the last event before the (n – l)th
interval was an up-crossing. By assuming              = 1, the following recursive
equation for can be derived as a function of and
Plu(n – 1)[339]

As detailed in [339], the probabilities   and are functions of the
mean , variance and variance of the derivative of
These in turn are functions of the statistics of and
which depend on the path loss and shadowing. Austin and Stüber have shown
how these statistics depend on the co-channel interference [22]. We will first
evaluate the statistics of and and afterwards derive the
appropriate expressions for and

As discussed in Chapter 3, co-channel interference is usually assumed to
add on a power basis [295], [264]. Hence, in the presence of N co-channel
interferers the signals received from and are, respectively,

where and are the power of the desired signals from
and respectively, and and

are the powers of the interfering co-channel signals received at the same BSs.
Once again, the and are log-normally distributed. As
discussed in Chapter 3.1, the sum of log-normal random variables can be ap-
proximated by another log-normal random variable and, hence, and

remain Gaussian. Here we consider the approximations suggested
by Fenton [295], [264], and Schwartz and Yeh [295].

Following the notation in Chapter 3.1, define where
(In 10)/10 = 0.23026. If the interferers for have means and

variance then the mean and variance of I using the Fenton-Wilkinson
approach are
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where the conversion of and to units of decibels is

and , respectively. Schwartz and Yeh’s ap-
proach is an recursive technique that combines only two log-normal variates
at a time. For example, combining and gives the intermediate
result

where and are defined by (3.20), (3.23), and (3.24), respectively.
The final values of and are obtained by recursion.

By using either approach the mean can be determined. Since x(d) is
modeled as a Gaussian random process, the probabilities and can
be computed by using the same procedure used to determine the envelope level
crossing rates in Section 2.1.4. In particular,

where is the joint density function of and its derivative
Since and are independent Gaussian random variables

where, from (2.79)



626

and is the power spectrum of x (d) that includes the effect of co-channel
interference. Likewise,

The autocovariance of (equal to the shadow auto-
correlation) without co-channel interference is modeled by

where and controls the decorrelation with distance. Let
denote the same function when co-channel interference is present.

The value can be accurately approximated by using either

(12.72) or (12.74)). An approximation of can be
obtained by substituting in (12.80) with the value obtained in (12.72) or
(12.74). The accuracy of this approximation was tested through the simulation
of mutually uncorrelated log-normal interferers, each having the shadow auto-
covariance in (12.80) with Fig. 12.16 shows the
results and verifies that the proposed approximation of is fairly
accurate. Also, very accurate modeling of is not essential in
handoff analysis [338].

Using the above approximation gives

so that

6.1 SIMULATION RESULTS
Consider a MS traversing from separated by 1000 m with two

co-channel interferers as shown in Fig. 12.17. Assume a square-law path loss
with distance (used here to accentuate the co-channel interference effects),

so that both the Fenton
and Schwartz and Yen log-normal approximations are accurate. Fig. 12.18
compares analytical and simulation results for the handoff probabilities in the
presence and absence of co-channel interference. Note that the presence of co-
channel interference actually lowers the probability of handoff. Schwartz and
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Figure 12.17. Base station layout, MS route (dotted line), and location of co-channel interfer-
ers.

Yeh’s method leads to an accurate prediction of the handoff probabilities while
Fenton’s method does not lead to as much accuracy. Finally, the accuracy of the
prediction of handoff probabilities leads us to conclude that the assumptions
made for  (d) were reasonable.

7. SOFT HANDOFF ANALYSIS
Zhang and Holtzman have extended their method in [339], [338] to analyze

soft handoff in CDMA systems [380]. This section present the soft handoff
analysis in [380] with a small modification. Some simplifying assumptions are
made in [380], and we change one of the assumptions to present a soft handoff
analysis in a different perspective.

Once again, the system model consists of two separated
by a distance of D meters. Considering the effects of path loss and shadowing,
the signal levels that are received from



628

are given by (12.62) and (12.63), respectively. Shadow correlations are again
described by (12.80), where is the shadow standard deviation,
and controls the shadow decorrelation with distance.

Zhang and Holtzman make some simplifying assumptions i) the use of pilot
strength in handoff decisions rather than and ii) the use of relative
thresholds instead of absolute thresholds. Here we modify the analysis to
incorporate the absolute thresholds which give us another set of results. A
more realistic analysis can include both absolute and relative thresholds.

The MS moves at a constant speed and the pilot signal strengths are
sampled at every T seconds. The MS location changes by during
every sampling interval.

where n = 1,2, · · · , If is not in the active set at
epoch n – 1, then the probability will be in the active set at epoch n is

Similarly, the probability does not join the active set at epoch n given
is not in the active set at epoch n – 1 is
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A BS will be dropped from the active set if its pilot strength drops below
for consecutive M samples. Therefore, the probability that is dropped
from the active set at epoch n given that it is in the active set at epoch n – 1 is

Similar probabilities associated with can be computed by simply replacing

where are the probabilities that the active set contains
at epoch n, respectively. Since the MS starts from

we give the following initial condition:

The MS’s active connection will be dropped if the active set does not contain
any BS. Therefore, the outage probability is simply

Another performance indicator is the expected number of BSs in the active set,

As increases, the network overhead that is required to manage the soft
handoffs will also increase.

7.1 SIMULATION RESULTS
The derived conditional probabilities can easily be computed using the jointly

Gaussian pdf with the shadow correlation in (12.80). Then, and
are computed iteratively. The parameters used in our simulation are

as follows:
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path loss exponent = 4

shadow standard deviation = 8 dB

shadow decorrelation distance = 20 m

sampling distance = 2 m

drop threshold timer = 5.

Fig. 12.19 shows the effect of different handoff parameter settings on the
probability of each BS belonging to the active set as a function of the MS
location. Relaxing the handoff parameters (lower thresholds) increases the
assignment probabilities. Lowering has the effect of admitting BSs to
the active set more easily while lowering causes BSs to stay in the active
set longer. Therefore, relaxing the soft handoff parameters allows more MSs
be in soft handoff mode.

Fig. 12.20 shows the outage probability as a function of distance. It is
assumed that an outage occurs when the active set does not contain any BS.
Observe that the outage probability decreases as the handoff parameters are
relaxed. It is important to understand that this result does not account for
other outage possibilities such as the failure to meet the C/I requirement. It
does, however, suggest that relaxing the handoff parameters benefits the sys-
tem performance by preventing unnecessary dropped calls due to unoptimized
parameter settings. But, as previously discussed, soft handoff is an expensive
proposition to the system. As shown in Table 12.2, relaxing handoff parame-
ters increases the average number of BSs in the active set. In turn the system
requires more overhead resource to manage soft handoff. Therefore, the chal-
lenge is to optimize the soft handoff parameters setting to maximize the system
performance while minimizing the system resource usage.

Finally, CDMA systems such as IS-95 use both absolute and relative thresh-
olds to manage soft handoff. is in absolute scale while is in relative
scale. An absolute ensures that every BS that is able to contribute to the
diversity gain is included in the active set with high probability. The effect
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of a relative  is to drop a BS from the active set only when its link has
deteriorated far below the best link. The analysis presented here assumes that
both thresholds are absolute, while the analysis in [380] uses relative thresholds
only. Although a more accurate analysis can be obtained by incorporating the
two analysis together, the basic findings and observations are not expected to
change significantly.

8. CIR-BASED LINK QUALITY MEASUREMENTS
Cellular radio resource allocation algorithms have been developed for hand-

offs [121], dynamic channel assignment [246], [145], and power control [14],
[15], under the assumption that the MSs and/or BSs have access to real time
measurements of the received carrier-to-interference plus noise ratio C/(I+N).
However, very little literature has appeared on methods for measuring C/(I+N).
Kozono [182] suggested a method for measuring co-channel interference (CCI)
in AMPS, by separating two terms at different frequencies which are known
functions of the signal and interference. Yoshida [315] suggested a method
for in-service monitoring of multipath delay spread and CCI for a QPSK sig-
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nal. He reported that the CCI can be monitored provided that the delay spread
is negligible compared to the symbol duration. Sollenberger [307] used the
eye-opening as a measure of signal quality.

In this section we present a technique for estimating (S+I+N) and S/(I+N)
that could be used in signal quality based resource allocation algorithms in
TDMA cellular systems [19], [21]. Section 8.1 presents the discrete channel
model. Estimation methods for the received (I+N) and C/(I+N) are then derived
in Section 8.1 whose accuracy is only a function of the symbol error statistics.
These estimators are evaluated by software simulation for an IS-54 frame
structure in Section 8.2.

8.1 DISCRETE-TIME MODEL FOR SIGNAL
QUALITY ESTIMATION

As shown in Section 6.3.1, the overall channel consisting of the transmit filter,
channel, matched filter, sampler (and noise whitening filter) can be modeled by a
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T-spaced, L + 1-tap, transversal filter4. The overall discrete-time is described
by the channel vector where T denotes transposition.
Let denote the received signal vector consisting of M
samples, where Assuming that the channel does not
change significantly over a block of L + M + 1 symbols, the received vector
v can be written as

where X is an Toeplitz matrix consisting of the transmitted
symbols of the form

and is a vector consisting of the samples of the received
interference plus noise.

8.1.1 ESTIMATION OF (I+N)
An (I+N) or C/(I+N) estimator requires a method for separating f and w

from the observation of y. Consider the situation where so that A
has more rows than columns. Then, there exists a vector in
the null space of X such that is known, then c can be easily
determined. Then

and, therefore, g and w are completely separated from the observation y.
However, with the exception of the training and perhaps the color code se-
quences, X is not known exactly because the data symbols comprising X must
be obtained from decisions. Therefore the matrix of decisions must be used
instead, where is the matrix of symbol errors.
Nevertheless, a vector can still be found in the null space of so that

Hence, an (I+N) estimate can be obtained from

4If rate 2/T sampling is used, then the overall channel is a t/2-spaced, 2L + 1-tap, transversal filter.
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where H is the Hermitian transpose, and where the second equality is obtained
by using along with the reasonable assumption that w has zero
mean and is uncorrelated with A and f. It is also reasonable to assume that the
symbol errors are independent with a constant variance, i.e.,

We then have

where is the variance of the ith channel tap.
To determine define the vector w as

where B(k) is an (M + 1) × (L + 1) matrix consisting of the symbols from
the kth interferer with associated channel tap vector g(k), N is the number of
interferers, and n is the vector of additive white Gaussian noise samples. The
elements of w are

where We now assume that the data
symbols have zero mean, the data sequences comprising the B(k) matrices for
the interferers are both uncorrelated and mutually uncorrelated, and the       are
independent zero mean Gaussian random variables with variance Then
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and

where denotes the symbol variance of the interferers, denotes the
variance of the channel tap gain associated with the kth interferer, and
denotes the total interference power. Using this result, (12.96) becomes

In practice, the ensemble averaging in (12.94) must be replaced by an empirical
average over P independent output vectors so as to provide the unbiased
estimate

8.1.2 ESTIMATION OF C/(I+N)
A C/(I+N) estimator can be formed by using and one possibility is

as follows. The total received signal power from the desired signal, interfering
signals, and noise is

where the second equality follows from the assumption that w has zero mean,
and the third equality requires that either the elements of the data sequence
comprising the A matrix or the channel taps are uncorrelated. Once again,
when (a constant) then
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Using (12.100) and assuming that is small yields the C/(I+N) estimate

The above approximation becomes exact when A is known exactly. Finally,
by replacing ensemble averages with empirical averages we obtain the C/(I+N)
estimate

8.2 TRAINING SEQUENCE BASED C/(I+N)
ESTIMATION

The bursts in TDMA cellular systems contain known training and color code
sequences. These sequences are used for BS and sector identification, sample
timing, symbol synchronization, and channel estimation. As mentioned in the
previous section, the (I+N) and C/(I+N) estimators will only work well when

is small. Fortunately, if the (I+N) and C/(I+N) estimators are used during
the training and color code sequences5,

The (I+N) and C/(I+N) estimators of the previous section were evaluated
through the software simulation of an IS-54 [95] system. The baud rate is 24,300
symbols/s and each frame is composed of 6 bursts of 162 symbols so that the
frame rate is 25 frames/s. The MS is assumed to have correctly determined
the serving BS, i.e., the color code is known, and is monitoring its half rate
channel (one burst per frame). Therefore, the known symbols within a burst
consist of the 14 symbol training sequence at the beginning of the burst, and a
6 symbol color code sequence in the middle of the burst as shown in Fig. 1.5.
For simulation purposes, a two-equal-ray T-spaced Rayleigh fading channel
was chosen. The channel taps were assumed to be uncorrelated, although tap
correlation will not affect the proposed algorithms because the various estimates
depend only on the sum of the tap variances Shadowing
is assumed to remain constant over the estimates and is therefore neglected.
Finally, it is assumed that the receiver can correctly synchronize onto each of
the received bursts, i.e., perfect sample timing is assumed.

Four consecutive symbols were used to form a 3 × 2 Toeplitz non-symmetric
matrix A. Let denote the 14 received symbols correspond-
ing to the training sequence of the frame, and the 6
received symbols in the color code. From the training sequence 4 estimates of

5The color code is known provided the MS has correctly determined its serving BS.
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were formed by using the following 4 sets

where the fourth set shares two symbols with the third set. Likewise, 2 estimates
of (I+N) and C/(I+N) were formed from the 6 symbol color code sequence by
using the 2 sets

which share two common symbols. Although the (I+N) and C/(I+N) estima-
tors in (12.101) and (12.105) assume independent j = 1 , . . . , 21, the
additional estimates of (I+N) and C/(I+N) which use overlapped symbols at the
ends of the training and color code sequences was found to improve the I+N
and C/(I+N) estimates. The channel tap gains associated with the interferers
were assumed to be constant during known symbols. Additive white Gaussian
noise at 20 dB below the interference power was also included.

To evaluate the performance of the (I+N) estimator, we define the average
absolute percentage error between the (I+N) estimate and the true interference
plus noise power as

Fig. 12.21 depicts the average absolute percentage error over 500 independent
averages for a specified averaging time (s), MS velocity (v), and number of
interferers Since the interference plus noise estimator is compared against

under the assumption that the fading has been averaged out, it is natural
to expect the estimator to perform worse for lower MS velocities when the
averaging length is short, as Fig. 12.21 illustrates. Nevertheless, the presence
of multiple interferers can improve the estimate, since with multiple interferers
it is less likely that the total interference power will be small due to fading.

Likewise, Fig. 12.22 depicts the average absolute percentage error between
the (C+I+N) estimate, and the true total received power,
As before, the MS velocity has a large effect on the estimator performance.
Also, the C/I has a minor effect. However, in contrast to the (I+N) estimator,
the number of interferers has little effect for C/I between 5 and 20 dB and,
hence, variations in the number of interferers are not shown in Fig 12.22.

Fig. 12.23 depicts performance of the C/(I+N) estimator for an actual C/I
of 5 dB. Only the performance with C/I = 5 dB is shown, since the estimator
was found insensitive to C/I variations when the actual C/I was between 5 and
20 dB. For high speed MS, C/(I+N) can be estimated to within 2 dB in less



638

than a second. A slight improvement is also obtained when the MS uses two
slots per frame (a full rate channel) as shown in Fig. 12.24.

9. SUMMARY
This chapter has provided a detailed discussion of local mean estimation in

microcells and presented three velocity estimators that can be used for adaptive
signal strength window averaging. The accuracy of local mean estimation in
microcells was shown to depend on the Rice factor, the angle of the specular
component, and the averaging length. For sample averaging, sample spacings
less than should be used. All three velocity estimators are relatively
insensitive to the Rice factor under isotropic scattering. The LCR and COV
velocity estimators are highly sensitive to non-isotropic scattering, whereas the
ZCR estimator is reasonably robust. However, as is likely in urban microcells,
the presence of a specular component can significantly reduce non-isotropic
scattering biases. When K = 0, AWGN has the same effect on each of the
three methods. However, when and infinitely small sample spacing is
used, the best performance is achieved with the ZCR, COV, and LCR methods,
in that order. With larger sample spacings, the COV method is able to show
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a greatly reduced sensitivity. To reduce AWGN effects, an adaptive filter
bandwidth with respect to the maximum Doppler frequency and/or increasing
the sampling period should be used. Increasing the sampling density reduces
the bias in the final velocity estimate and improves the rate of convergence to
changes in velocity or propagations effects such as the corner effect. The ZCR
method has the fastest mean response time followed by the COV and LCR
methods. All the velocity estimators are biased by the corner effect. Averaging
the velocity estimates over several windows gives a slower initial convergence
but reduces prolonged biases in the velocity estimates when a MS turns a
corner. Shorter window lengths can also be used for faster adaptation. Each
of the velocity estimators can successfully maintain good handoff performance
over a wide range of MS velocities in a typical NLoS handoff scenario.

An analytical technique has been discussed for evaluating handoff perfor-
mance, where the handoff rates can be studied in terms of the level crossings
of the averaged signal level process.

Signal quality estimation techniques were examined for multipath fading
channels having co-channel interference and additive Gaussian noise in TDMA
cellular systems. Estimators for (C+I+N), (I+N) and C/(I+N) have been devel-
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oped whose accuracy is only a function of the symbol error statistics. These
estimators have been applied to a cellular TDMA system, where knowledge of
the training and color code sequences is used to form the estimates. Simulation
results show that C/(I+N) can be estimated to within 2 dB in less than a second
for high speed MSs.

APPENDIX 12.A: Derivation of Equations (12.47) and (12.60)
The limit in (12.60) can be written as

Note that the limit of the denominator gives (12.47) and is a special case of
the numerator limit with To find the numerator limit the following
property can be used [314]

If a function has a limit as approaches a, then
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provided either is an odd positive integer or n is an even positive integer and

Therefore, if the limit

exists and is positive, the solution to (12 – 12.A.1) will be readily determined.
It is apparent that L’Hôpital’s Rule should be applied to determine the limit in
(12 – 12.A.3). After substituting from (12.38) and applying L’Hôpital’s
Rule four times, the limit is found as
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where and are given by (12.40) and denotes the derivative of
x(t) evaluated at 0. Consequently, and

Using these, and the fact that (12-12.A.4) is
positive for all under all scattering scenarios mentioned here. Consequently,
applying theorem 12-12.A.2, the limit of the numerator of (12 – 12. A.1) is the
square root of (12 – 12.A.4), which if desired can easily be put in terms of the
signal-to-noise ratio using

from (12.55). The denominator of (12 – 12.A.1), which is also (12.47) is
obtained by assuming isotropic scattering and no noise, so that

(12 – 12.A.4). After taking the square root, the result is

Problems
12.1. Suppose that a MS is traveling along a straight line from , as

shown in Fig. 12.A.1. The BSs are separated by distance D, and the MS is
at distance r from and distance from Ignore the effects of
fading and assume that the signals from the two BSs experience independent
log-normal shadowing. The received signal power (in decibels) at the MS
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from each BS has the Gaussian density in (1.5), where the propagation path
loss is described by

A handoff from to , or vice versa, can never occur if
but may or may not occur otherwise.

A handoff from to will occur if the MS is currently assigned
to and

a) Find an expression for the probability that a handoff can never occur from
or vice versa.

b) Given that the MS is currently assigned to what is the probability
that a handoff will occur from

12.2. A freeway with a speed limit of 120 km/h passes through a metropolitan
area. If the average call duration is 120 s

a) What will be the average number of handoffs in a cellular system that
uses omnidirectional cells having a 10 km radius.

b) Repeat part a) for a cellular system that uses 120° sectored cells having
a 1 km radius.

12.3. Derive equation (12.23).

12.4. Derive equation (12.25).

12.5. Derive equation (12.38).

12.6. Derive equation (12.54).
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Chapter 13

CHANNEL ASSIGNMENT TECHNIQUES

There are many methods of allocating a channel upon a new call arrival or
handoff attempt. A good channel allocation algorithm is the one that yields
high spectral efficiency for a specified grade of service (including link quality,
probability of new call blocking, and the probability of forced termination)
and given degree of computational complexity. It also keeps the planned cell
boundaries intact, allocates a channel to a MS quickly, maintains the best speech
quality for the MS at any instant, and relieves undesired network congestion.
As shown in Fig. 13.1, there are three basic types of channel assignment
algorithms, fixed, flexible, and dynamic [318].

Fixed channel assignment (FCA). is typically used by girst generation
macrocellular systems where disjoint subsets of the available channels are
permanently allocated to the cells in advance according to their estimated traf-
fic loads. The cells are arranged in tessellating reuse clusters whose size is
determined by the co-channel reuse constraint. For example, the North Amer-
ican AMPS system typically uses a 7-cell reuse cluster with sectoring.
The 12.5 MHz bandwidth allocation for AMPS can support a total of 416
two-way channels, 21 of which are control channels (one for each sector in a
cluster), leaving a total of 395 traffic channels. This yields an allocation of 56
channels/cell with uniform FCA.

FCA provides adequate capacity performance in macrocellular systems that
are characterized by stationary and homogeneous traffic, and a predictable
propagation environment. In this case the channel resources can be allocated
statically, since the call blocking probabilities can be predicted with reasonable
certainty. Under conditions of nonstationary and nonhomogeneous traffic,
however, FCA is spectrally inefficient because the channels are literally fixed
to the cells. A new call or handoff arrival that finds all channels busy in a cell
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will be blocked even though there may be several idle channels in the adjacent
cells that could service the call. These blocking probabilities can be reduced
by using various schemes that borrow channels from neighboring cells. The
most basic scheme is simple borrowing, where a MS can be allocated a channel
from a neighboring cell, provided that it does not degrade the link quality of
other calls by introducing excessive co-channel interference. Once a channel
is borrowed, all other cells that are within the co-channel reuse distance are
prohibited from using the channel. The efficiency of this borrowing strategy
tends to degrade in heavy traffic and the channel utilization is worse than FCA.
This problem can be partially solved by using a hybrid channel assignment
scheme, where the channels assigned to a cell are divided into two groups; the
channels in one group are owned by the cell, while the channels in the other
group may be borrowed. There are several variations of this theme. The ratio
of the number of owned-to-borrowable channels can be dynamically varied to
compensate for traffic changes.

In microcellular systems the propagation environment is highly erratic, and
the traffic is characterized by spatial and temporal variations. Furthermore,
the decreased cell sizes imply an increase in handoff traffic, since a call may
be handed off several times before its natural completion. Because of these
properties, the channel assignment problem in microcellular and macrocellular
networks is fundamentally different. The uneven nature of the traffic and the
larger volume of handoff attempts in microcellular networks demand careful
attention. Furthermore, a microcellular channel assignment strategy has to be
fast, because the handoffs must be serviced quickly due to the small cell sizes
and propagation anomalies such as the street corner effect.
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Dynamic channel assignment (DCA). is one well known solution to the
microcellular channel assignment problem, where the dynamic nature of the
strategy permits adaptation to spatial and temporal traffic variations while the
distribution of control reduces the required computation and communication
among base stations (BSs), thereby reducing system latencies. DCA schemes
have no exclusive relationship between cells and channels, and in their most
general form they allow any cell to use any channel that does not violate the
co-channel reuse constraint. DCA schemes are known to outperform FCA
under conditions of light nonstationary traffic. However, under conditions
of heavy traffic FCA usually provides better performance, because the DCA
schemes often yield an inefficient arrangement of channels. Although DCA has
clear benefits, the cost can be quite high because it not only requires increased
computation and communication among BSs but also an increased number of
radio ports at the BSs; in the extreme case each BS must have the ability to use
all channels simultaneously.

Practical DCA schemes differ in degree of network planning and the required
communication among BSs. Centralized DCA schemes require centralized
control with system-wide channel information. The extreme example is maxi-
mum packing (MP) [105], where a new call or handoff arrival is blocked only if
there is no global rearrangement of calls to channels that will accommodate the
service need. Unfortunately, the enormous computation and communication
among cells render centralized DCA schemes impractical. In fact, the number
of channel rearrangements required between two subsequent arrivals in a two
dimensional network with MP can increase without bound with the number of
cells in the network [279].

Fully decentralized DCA schemes are the other extreme andrequire no net-
work planning or communication among BSs [111], [255], [8]. These schemes
are ideal for cordless telephone systems that use MCHO, such as DECT. They
often rely upon the passive monitoring of idle channels at each BS, allowing
the cells to acquire any idle channel that is deemed to provide a sufficient
carrier-to-interference ratio (C/I).

Decentralized DCA schemes require limited communication among local
clusters of BSs. One DCA scheme is dynamic resource acquisition (DRA)
[244]. With DRA, the channel (or carrier) that is acquired due to a new call
arrival or handoff is chosen to minimize a cost function, and the channel (or
carrier) that is released due a call completion or handoff is chosen to maximize
a reward function. The cost and reward functions can be selected to maximize
the spectral efficiency of the cellular network for a specified grade of service.
The computation of the cost and reward functions for a given cell depends on
the usages of the channels (or carriers) in the set of surrounding cells called
the DRA neighborhood [244]. Another distributed DCA scheme is simple
dynamic channel assignment (SDCA) [356]. SDCA performs slightly worse
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than DRA, but requires communication among a smaller set of cells called the
interference neighborhood [356],

Decentralized and fully decentralized schemes are not without their prob-
lems. These include service interruption, deadlock, and instability. A service
interruption occurs when a channel allocation causes an existing link to fall be-
low the threshold C/I. The interrupted mobile station (MS) then tries to find an
alternate link and if unsuccessful a service termination occurs. This is known
as deadlock. A sequence of successive interrupts, or rippling effect, caused by
channel allocations is called an instability.

DCA schemes also have the advantage of assigning the same channel to
a MS moving from one cell to another provided that the level of co-channel
interference is tolerable, while FCA must conduct a handoff with a channel
change because the same channel is not available in adjacent cells. Handoffs
without channel changes are attractive because they can eliminate the need
for channel searching and ultimately relieve the BSs from extra computation.
More important, this mechanism is essential for supporting macrodiversity
TDMA cellular architectures where the signal from a MS can be simultaneously
received by two or more BS yielding a diversity improvement against shadow
(and fading) variations. Such architectures provide the same benefit as soft
handoff in CDMA systems.

Flexible channel assignment, algorithms combine aspects of fixed and dy-
namic channel assignment schemes. Each cell is assigned a fixed set of chan-
nels, but a pool of channels is reserved for flexible assignment. The assignment
of flexible channels can be either scheduled or predictive [316]. Scheduled
assignment schemes rely on known changes in traffic patterns. The flexible
channels are assigned to the cells on a scheduled basis to account for these
foreseeable changes in traffic patterns. With predictive assignment, the traffic
load is continuously or periodically measured at every BS, and the flexible
channels are assigned to the cells according to these measurements.

Forced terminations are generally perceived to severely degrade the quality
of service. For this reason, handoff priority schemes are usually employed
to allocate channels to handoff requests more readily than to new call arrivals.
Handoff priority reduces the probability of forced termination at the expense
of a (slight) increase in the probability of new call blocking. Practical cellular
systems are designed to have a probability of new call blocking less that 5%,
with a probability of forced termination perhaps an order of magnitude smaller.

The use of guard channels is one method of achieving handoff priority,
where the channels are divided into two groups; one group is for new calls
and handoff requests, and the other group is reserved for handoff requests only
[170]. Another method is to queue the handoff requests (but not the new call
arrivals) [170], [129]. This method can be combined with guard channels.
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This chapter is intended to introduce the various approaches to cellular chan-
nel assignment. Unfortunately, most channel assignment schemes are quite
detailed and founded largely on ad hoc principles. Furthermore, the channel
assignment schemes are almost always evaluated by using detailed simulations
with a variety of assumptions concerning the mobile radio environment, e.g.,
cellular topology and reuse factors, traffic patterns, propagation factors, mo-
bility, etc.. The combination of these factors makes a systematic comparison
of the various DCA schemes largely infeasible and a true consensus of the
best scheme cannot be attained. Therefore, we will briefly outline some of
the many different DCA schemes, followed by a detailed evaluation of a few
specific schemes that serve to illustrate the basic concepts.

Throughout the chapter various performance measures will be used to eval-
uate the channel assignment schemes, including the following

Probability of new call blocking, , defined as

Probability of forced termination, , defined as

Grade of service, GOS, defined as

where and are the new call and handoff arrival rates, respectively.

Channel changing rate, , defined as

The remainder of this chapter begins with an overview of some important
DCA schemes. These include the fully centralized Maximum Packing (MP)
and MAXMIN DCA strategies in Section 1.. Decentralized DCA strategies,
such as First Available (FA), Nearest Neighbor (NN), and Dynamic Resource
Acquisition (DRA) are discussed in Section 2.. Fully decentralized DCA
schemes are the topic of Section 3., including Channel Segregation (CS) and
Minimum Interference (MI), along with aggressive and timid strategies. Hybrid
FCA/DCA schemes are the subject of Section 4.. The important class of bor-
rowing schemes are the topic of Section 5., including Borrowing with Channel
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Ordering (BCO), Borrowing with Directional Locking (BDCL), and Compact
Pattern based DCA (CPDCA). Finally, our overview of DCA schemes wraps up
with a treatment of Directed Retry (DR) and Directed Handoff (DH), Moving
Direction (MD) strategies, reduced transceiver coverage, reuse partitioning,
and handoff priority.

Following our results in [356], Section 10. provides some detailed and
instructive examples of distributed DCA schemes for TDMA microcellular
systems. In particular, two DCA strategies are presented that accommodate
handoff queueing. An aggressive DCA policy with handoff queueing is also
considered where a cell may be forced to terminate calls in progress in order to
accommodate handoff requests in neighboring cells. The conditions for forced
termination are carefully determined to ensure a performance improvement
over a timid policy.

1. CENTRALIZED DCA
Centralized DCA schemes require system-wide information and control for

making channel assignments. As expected, centralized DCA schemes can
theoretically provide the best performance. However, the enormous amount
of computation and communication among BSs leads to excessive system
latencies and renders centralized DCA schemes impractical. Nevertheless,
centralized DCA schemes often provide a useful benchmark to compare the
more practical decentralized DCA schemes.

1.1 MAXIMUM PACKING (MP)
The Maximum Packing (MP) algorithm was originally presented by Everitt

and Macfadyen in 1983 [106]. With the MP policy a call is blocked only if
there is no global rearrangement of calls to channels that will accommodate
the call. Accomplishing this task requires a controller with system-wide infor-
mation along with the ability to perform call rearrangements. The MP policy
has the ability to serve all calls in a network with the minimum number of
channels. Equipped with the capability, MP can yield the lowest new call
blocking and forced termination probabilities of any DCA scheme under any
traffic conditions.

Kelly [180] presented an interesting and enlightening analytical approach
to MP DCA, by modeling the MP policy as a circuit-switched network. This
allows some very powerful and well known network analysis tools to be applied
to the analysis of MP DCA. The analysis ignores situations where the MS is
moving from one cell to another or out of the service area, i.e., the handoff
and roaming problem. Upon a call arrival in a particular cell, the MP policy
checks to see if all reuse clusters that contain that cell have at least one channel
available. If so, then the call can be accommodated through channel rear-
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rangements; otherwise, the call is blocked. For example, consider the simple
system consisting of five cells shown in Fig. 13.2. In this example, co-channel
cells must be separated by at least two cells so there are three reuse clusters;

= (1,2,3), = (2,3,4), and = (3,4,5). When a call arrives
in cell 2, it can be accommodated if there is at least one channel available in
clusters and

The stochastic model for MP uses the following definitions:

= set of cells in the system.
= = number of cells in the system.

= total number of channels available.
= number of calls in progress in cell i.

n = = state vector.
= set of admissible states.

= traffic load in cell i.

The set of admissible states depends on the particular cell layout. Let J be
the number of complete or partial reuse clusters that can
be defined such that i) each reuse cluster differs by at least one cell, i.e., they
are not totally overlapping, and ii) all cells are contained in at least one such
cluster. For the example in Fig. 13.2, J = 3. Now let be the
demand matrix, where = 1, if i = j and if cell j is in the same cluster as
cell i; otherwise, For the example in Fig. 13.2

Matrix A tabulates the channel requirements for servicing calls that arrive in
each of the cells. For example, a call arrival in cell 2 requires that a channel
be available in and but not in and, therefore,
and Finally, let be the number of channels that
are available in and Then the set of
admissible states is then given by
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It is well known (e.g., [179]) that n has the steady-state distribution

where G(N) is the normalizing constant

Then the steady-state probability that a call arrival in cell i is blocked is

where is a length K vector with a ‘1’ at position i and ‘0’ elsewhere. Even
though appears to have a compact closed form expression, the computation
of G(N) is prohibitive except for very simple cases. Therefore, approximate
methods are usually employed. One approximation assumes that the availability
of channels in the clusters are independent events. This independence
assumption leads to

where the solve the nonlinear equations

with

being the Erlang-B formula. Kelly [180] showed that there is an unique solution
to the above nonlinear equations. The intuitive notion behind this approxima-
tion is that when the call arrivals of rate in cell r are thinned by a
factor of by each cluster before being offered to

1.2 MAXMIN SCHEME
The MAXMIN scheme was introduced by Goodman et al. [145]. With the

MAXMIN scheme, a MS is assigned a channel that maximizes the minimum C/I
that any MS will experience in the system at the time of assignment. Assuming
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that the link quality depends on the average received C/I, the C/I of at its
serving BS is

where the are independent Gaussian random variables with the den-
sity in (1.5) and (1.6), and is the distance between and the BS for
The set I consists of all MSs other than that are using the same channel.
A MS that requires service is assigned the channel j that gives

where i and j index the set of MSs and channels, respectively, C is the set
of channels that are available at the BS corresponding to the MS that requires
service, is the C/I of at its BS, and S is the set of all MS in service
including the MS that requires service. We have already seen methods for C/I
monitoring in Section 10.6.

2. DECENTRALIZED DCA
2.1 FIRST AVAILABLE (FA) AND NEAREST

NEIGHBOR (NN)
In 1972, Cox and Reudnik [72] proposed four basic decentralized DCA al-

gorithms and compared them to FCA for the case of linear highway macrocells:
First Available (FA), Nearest Neighbor (NN), Nearest Neighbor+1 (NN+1),
and Mean Square (MSQ). All four schemes allow a BS to acquire any idle
channel that is not being used in its interference neighborhood, defined as the
set of surrounding cells that can interfere with the BS. The schemes differ in
the way that the channel selected should more than one channel be available
for acquisition. The FA scheme acquires the first available channel found in
the search. Assuming that a channel can be reused cells away without
causing excessive co-channel interference, the NN policy acquires the channel
that is being used by the nearest BS at distance or greater. The NN+1
policy acquires the channel that is in use at the nearest BS at distance
or greater with the goal of allowing more MSs to retain the same channel as
they cross cell boundaries. The MSQ policy seeks to assign the available chan-
nel that minimizes the mean square of the distances among all BSs using the
same channel. The DCA schemes were shown to outperform the FCA schemes
in terms of probabilities of new call blocking and forced termination, except
under conditions of heavy traffic. Of these four DCA schemes, the NN policy
performs the best.
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2.2 DYNAMIC RESOURCE ACQUISITION (DRA)
Nanda and Goodman [244], have proposed a distributed DC A strategy called

Dynamic Resource Acquisition (DRA). When a channel must be selected for
acquisition or release by a BS, DRA calculates a reward/cost function for each
channel. The reward associated with a channel release is the number of cells
in the interference neighborhood of the BS that could acquire the channel
after it is released. When a channel is released, the busy channel giving the
largest reward is selected. Channel rearrangements may be required to do this.
The cost associated with a channel acquisition is the number of cells in the
interference neighborhood of the BS that would be deprived from using the
acquired channel. When a channel is acquired, the available channel having
the smallest cost is selected. In the event of a tie in the reward/cost function,
the released/acquired channel is chosen randomly.

As described in [244], the calculation of the reward/cost function requires
channel usage information from all the cells within the DRA neighborhood
of a BS. The DRA neighborhood of a BS is the set of cells whose interference
neighborhoods overlap with the interference neighborhood of that BS. Any
cell outside the DRA neighborhood of a BS will not affect the calculation
of the reward/cost function associated with that BS. Fig. 13.3 illustrates the
reward/cost functions associated with three carriers for a 2-D grid of square
cells. The cell under consideration is shaded black. In case of a carrier
acquisition, Channel 2 would be selected by the given BS since it has the
smallest cost. Channel 3 could not be selected, because it would violate the
co-channel reuse constraint. If Channels 1 and 2 are active in the given cell
and a carrier is to be released, then Channel 1 would be selected since it gives
the largest reward.
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3. FULLY DECENTRALIZED DCA
3.1 CHANNEL SEGREGATION (CS)

Akaiwa and Andoh [9] proposed a distributed adaptive self-organizing DCA
strategy whereby the BSs use Channel Segregation (CS) to develop favorite
channels through an evolutionary process that is based on the criteria of elimi-
nating unnecessary interference. Their scheme has been developed for TDMA
systems with the assumption that each BS can access any channel by tuning a
carrier frequency and selecting a time slot. CS also accounts for the effect of
unaccessible channels where a call can be blocked in a cell even when there
are idle channels because of the restriction placed on the number of different
carrier frequencies that may be simulatneously used, i.e., the BS has a finite
number of radio ports each of which can be tuned to only one frequency.

A flowchart of the CS algorithm is shown in Fig. 13.4. Each BS ranks the
channels according to a priority function P(i), where a large P(i) corresponds
to a high priority, e.g., in [9] is the number of
successful uses of the channel plus the number of accesses to the channel when
it is idle but unaccessible, and . is the total number of trials for the channel.
When a call arrives, the BS senses the highest priority channel from the list
of channels it is not currently using. If the channel is sensed idle, then the
channel is checked for accessibility. If accessible, it is acquired and its priority
is increased; otherwise, its prioity is increased and the BS recursively senses
the next highest priority channel that it is not currently using. If all channels
are sensed busy, then the call is blocked. Akaiwa and Andoh [9] demonstrated
by simulation that the CS policy outperforms FCA and the FA DCA algorithm.

The steps within the dashed box in Fig. 13.4 are a modification so that
the original CS algorithm developed by Akaiwa [8] for FDMA systems can
be applied to TDMA systems. Simulation results show that this modification
achieves the goal of gathering channels with the highest priorities onto the
same carrier frequency, thus reducing the probability of call blocking due to
the unavailability of a BS transceiver.

3.2 CHANNEL SEGREGATION WITH VARIABLE
THRESHOLD

Another channel segregation scheme has been proposed by Hanabe et al.
[160] that uses prioritized orderings with a variable interference threshold. The
channels are ranked from highest to lowest according to their priority values.
Each BS measures the interference levels of its currently unused channels. For
each channel, the priority value is decreased if the interference level is higher
than a predefined threshold and the threshold for that channel is decreased.
Likewise, the priority value is increased if the interference level is lower than
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a predefined threshold and the threshold for that channel is increased. Hanabe
et al. do not clearly define their priority function. However, it is likely that the
priority function is defined as the ratio of number of times that the interference
level of a channel is less than the threshold to the total number of times the
channel is sensed. The interference threshold is varied depending on the ranking
of the channel in the priority list. For example, the particular threshold that
Hanabe et al. propose is as follows

For the example in [ 160], and where is the total
number of channels in the system, T(k) is the threshold, is the minimum
required C/I, and is a constant margin. Upon call arrival, the highest priority
idle channel that meets the C/I threshold is chosen. If no suitable channels are
available, the call is blocked. If the C/I drops below the required level during
a call, a handoff procedure is initiated. In Hanabe et al.’s scheme, handoffs are
not prioritized and are treated the same as new call arrivals.

The rationale for using a variable threshold T(k) for each channel in (13.11)
can be answered by examining the case where the thresholds are fixed. Allo-
cation of a high priority channel with a fixed threshold is more likely to cause
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interference since the C/I thresholds for all channels are the same. The reason
is that a higher priority channel will be acquired over a lower priority channel
if both channels exceed the C/I threshold, regardless of whether or not a lower
priority channel would cause less interference to neighboring cells. Thus the
allocation of the higher priority channel may cause service interruptions, dead-
locks, and instability. For the case of a variable threshold, a higher threshold
is assigned to higher priority channels to reduce the probability of co-channel
interference, and a lower threshold is assigned to lower priority channels to
decrease the probability of blocking.

3.3 MINIMUM INTERFERENCE (MI) SCHEMES
Schemes based on Minimum Interference (MI) have been presented by

Goodman et al. [145]. The basic MI scheme has been incorporated into the
CT-2 and DECT systems. With these schemes, the MS signals the BS with
the strongest paging signal for a channel. The BS measures the interference
level on all channels that it is not already using. The MS is then assigned
the channel with the minimum interference. This policy coupled with mobile
controlled handoff (MCHO) guarantees good performance. Variations of the
MI scheme have been proposed that differ in the order in which MSs are
assigned channels. These include Random Minimum Interference (RMI),
RMI with Reassignment (RMIR), and Sequential Minimum Interference
(SMI). The RMI scheme serves calls in the order that they arrive. The RMIR
scheme serves the call requests according to the RMI scheme, but afterwards
each MS is reassigned according to the MI policy. The order of reassignments
is random. Those MSs initially denied service try again to acquire a channel.
The procedure is repeated a fixed number of times. The SMI algorithm assigns
channels according to the MI scheme but in a sequential order. In [145] linear
microcells are considered and the sequence that is followed is to serve a MS
only after all MS to its left have had a chance to be served. This, however,
requires some co-ordination between BSs and the extension to 2-D schemes is
not obvious. Goodman et al. [145] showed that the probability of blocking
decreases with FCA, RMI, RMIR, SMI, in that order.

3.4 AGGRESSIVE AND TIMID DCA STRATEGIES
Distributed self organizing DCA algorithms that use aggressive and timid

strategies were first introduced by Cimini and Foshini [55]. These simple
autonomous DCA algorithms can self-organize with little loss in capacity com-
pared to the best globally coordinated channel selection algorithm. In their
paper, two classes of algorithms were studied; timid where a MS acquires a
channel only if the channel is free of interference, and aggressive where a
MS can acquire a channel even if it is not free of interference. The studies in
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[55] showed that a linear array of cells could self organize its placement of a
single channel to saturate the array from random starting arrangements. An
array is saturated when no additional cells can use a channel without violating
the co-channel reuse constraint. Channel usage in the array organizes itself
according to the DCA policy. The performance of the algorithm is measured
in terms of the saturation density, defined as the ratio of the number of cells
using a particular channel to the number of cells in the arrary. Timid algorithms
which require no call rearrangements have been shown to have saturation den-
sities that compare favorably with FCA, while the aggressive algorithms have
higher saturation densities at the expense of some instability. This is due to a
simulated annealing mechanism where an instability perturbs a system so as
to escape a local optimum in an attempt to reach the global optimum.

The saturation densities can be derived for the case of linear and hexagonal
planar cells with R-cell buffering1. For linear cells, the maximum and minimum
saturation densities are The
saturation density can also be obtained for the random placement of a channel
in a linear array. In this case, cells sequentially acquire the channel; the next
cell to acquire the channel is chosen uniformly from those cells not already
using the channel that could use the channel without violating the co-channel
reuse constraint. The derivation of the saturation density in this case is quite
lengthy but leads to the result [57]

The saturation density can also be obtained as a function of the traffic load
as [57]

which has a unique solution in the interval For
hexagonal planar cells the minimum and maximum saturation densities are

However, expressions for and for the hexagonal planar array are
unknown.

1The reuse factor N is related to the number of buffer rings R as follows. For linear cells N = R + 1. For
hexagonal planar cells, where for R odd i = j = (R + l)/2, and for R even i = R/2
and j  = R/2 + 1.
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For the case of a single channel the blocking probability has the exact form
[57]

For the case of multiple channels, Cimini et al. have derived a very accurate
approximation for the call blocking performance of timid algorithms. They
also derived lower bounds on the call blocking performance of aggressive
algorithms [56]. If a total of channels are available, the effective number of
channels available for use in a reuse cluster of size N is where is called
the normalized channel utilization defined as the saturation density that is
achieved with a particular algorithm C to the maximum possible saturation
density Values for are tabulated in Table 13.1. For FCA, each
cell has available channels and the blocking probability can be
obtained from the Erlang-B formula where is the
traffic load per cell. For the case of the timed algorithm a call is blocked
if all channels are use in the interference neighborhood. To approximate the
blocking probability for the timid algorithm, we replace by and m by

To lower bound the blocking probability with
an aggressive algorithm, we replace as before, and
so that The performance of a practical aggressive algorithm
will lie somewhere between the timid algorithm and the aggressive bound.
Finally, we note that the blocking probability with an aggressive algorithm
includes the calls that are blocked and the calls that are dropped because the
aggressive algorithm has taken the channel and another suitable channel cannot
be found.

4. HYBRID FCA/DCA SCHEMES
DCA schemes perform very well under light non-stationary non-homogeneous

traffic. However, under conditions of uniformly heavy traffic FCA outperforms
most of the DCA schemes, except perhaps MP. As a result of this behavior
efforts have been directed toward hybrid FCA/DCA schemes that are intended
to provide a compromise between FCA and DCA. Cox and Reudink [73] in-
troduced a hybrid scheme, called Dynamic Channel Reassignment (DCR)
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where each cell is assigned number of fixed channels, while the remaining
channels are available for DCA. Fixed channels are used first to accommodate
call requests. Calls that cannot be serviced by the fixed channels are offered to
the dynamically assigned channels. The dynamic channel that is selected can
be obtained by using any of the elementary schemes such as FA, NN, NN+1,
etc. Upon a call completion on a fixed channel, DCR executes a search to
determine if a call nominally assigned to a dynamic channel can be reassigned
to the newly released fixed channel.

5. BORROWING SCHEMES
Engel and Peritsky [101] introduced an FCA scheme with borrowing. The

channels that are assigned to each BS are divided into two sets, fixed and
borrowable. The fixed channels can only be used by the BS they are assigned
to, while the remaining channels can be borrowed by a neighboring BS if
necessary. Calls are serviced by using the fixed channels whenever possible.
If necessary a channel is borrowed from a neighboring cell to service the call
provided that the use of the borrowed channel does not violate the co-channel
reuse constraint. The channel is borrowed from the neighboring BS having
the largest number of available channels for borrowing. Improvements on this
scheme were also proposed by Engel and Peritsky, where a call being serviced
by a borrowed channel is transferred to a fixed channel whenever a fixed channel
becomes available. The same idea was proposed by Anderson [13]. Scheduled
and predictive channel assignment schemes have also been proposed, where
the ratio owned to borrowable channels is dynamically varied according to the
traffic conditions.

5.1 BORROWING WITH CHANNEL ORDERING
(BCO)

Elnoubi et. al. [100] proposed a channel borrowing strategy that makes
use channel orderings, called Borrowing with Channel Ordering (BCO). A
group of channels is initially assigned to each cell according to a fixed channel
assignment; these channels are called nominal channels and are arranged in an
ordered list. The call arrival policy for BCO is illustrated by the flow chart
in Fig. 13.5. Upon a call arrival in a cell, the BS searches for an available
nominal channel nearest to the beginning of the channel ordering. If a nominal
channel is available it is assigned to the call; otherwise, the BS attempts to
borrow a channel from the adjacent cell having the largest number of channels
available for borrowing. A channel is available for borrowing if it is unused
in the adjacent cell and the other two co-channel cells. To illustrate this point,
refer to Fig. 13.7. If cell Bl borrows a channel c from cell A1, then cells A1,
A2, and A3 are locked from using channel c since their use of channel c will
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violate the co-channel reuse constraint. Being blocked, channel c can neither
be used to service a call in these three cells nor borrowed from these three
cells. Finally, when a channel is borrowed from an adjacent cell, the available
channel appearing nearest to the end of the channel ordering of the adjacent
cell is selected. If no channels are available for borrowing, the call is blocked.

The call departure policy for BCO is illustrated in Fig. 13.6. When a call
terminates on a borrowed channel, the borrowed channel is released in the
three cells where it is locked. When a call terminates on a nominal channel and
there are calls in progress with the same BS on borrowed channels, then the
channel that is borrowed from the adjacent cell with the largest number of lent
channels is released in the three cells where it is locked and its associated call
is reassigned to the newly idle nominal channel. Finally, if a call completes
on a nominal channel and there are no calls in progress with the same BS on
borrowed channels, the call occupying the nominal channel nearest to the end
of the channel ordering is reassigned to the newly idle nominal channel.

Kuek and Wong [184] introduced a DCA scheme called Ordered Dynamic
Channel Assignment/Reassignment (ODCAR) that also combines channel
ordering with channel rearrangements. The differences between the BCO and
ODCAR schemes are very minor and quite subtle. BCO borrows a channel
from the adjacent cell having the largest number of available channels for
borrowing, while ODCAR borrows a channel from the adjacent cell having the
largest number of available nominal channels that it could use to service its
own calls. When a call completes on a nominal channel and there are calls



662

in progress with the same BS on borrowed channels, then BCO releases the
channel that is borrowed from the adjacent cell with the largest number of
lent channels while ODCAR releases the channel that is borrowed from the
adjacent cell with line fewest number of nominal channels. Finally, when a call
completes on a borrowed channel BCO simply releases the channel in the three
cells where it is locked, while ODCAR again releases the borrowed channel
from the adjacent cell with the fewest number of nominal channels.

5.2 BORROWING WITH DIRECTIONAL LOCKING
Zhang and Yum [378] introduced a new scheme called Borrowing with

DireCtional Locking (BDCL) and compared it with borrowing with channel
ordering (BCO). Referring to the N = 7 cell reuse pattern in Fig. 13.7, the
BCO scheme operates as follows. If cell Bl borrows a channel c from cell A1,
then cells Al, A2, and A3 are locked from using channel c since their use of
channel c would violate the co-channel reuse constraint. In the BDCL scheme,
instead of locking channel c in cell A3 in all directions, channel c only needs
to be locked in directions 1, 2, and 3. Cells that lie in the other three directions
from A3, say B2, can freely borrow channel c from cell A3 without violating the
co-channel reuse constraint. Whether or not channel c may be borrowed from
A3 depends, however, on its locking conditions in A4, A5, and A6. Should the
channel happen to be locked in A4, A5, or A6 but the cell locking is beyond B2’s
interference neighborhood, then B2 could still borrow channel c. This scheme
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increases the number of channels available for borrowing over the straight BCO
scheme. Furthermore, the BDCL scheme uses channel rearrangements similar
to the channel ordering scheme proposed by Elnoubi et al. [100], except that
the directional locking mechanism is accounted for. Zhang and Yum [378]
concluded that the BDCL scheme outperforms the BCO and FCA schemes in
terms of blocking probabilities when the cells have nonuniform but stationary
traffic loads.

5.3 BORROWING WITHOUT LOCKING
A borrowing scheme, Channel Borrowing Without Locking (CBWL), has

been proposed by Jiang and Rappaport [174] that does not require channel
locking by using borrowed channels with a reduced power level to limit inter-
ference with co-channel cells. This allows the channel to be reused in all cells
except the cell from which it has been borrowed. However, it also implies that
channels can only be accessed in part of the borrowing cell. To determine if
a channel can be borrowed with enough signal strength, the BS broadcast a
borrowed channel sensing signal with the same reduced power of a borrowed
channel.

The CBWL scheme divides the channels into six groups that can be lent
to the neighboring cells, such that channels in the ith group can only be lent
to the ith adjacent cell. This principle of directional lending is illustrated in
Fig. 13.8, where channels in the group Al can be borrowed by MSs in all of the
B cells. Because of the reduced power level of borrowed channels, the MSs in
the B cells that borrow the group Al channels will be concentrated along the
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A-B cell boundaries. The CBWL scheme reduces the BS complexity because
each BS does not need to have the capability of transmitting and receiving on
all the channels assigned to its neighboring cells, but only a fraction of them
in each cell. Furthermore, the division of borrowable channels into six groups
limits co-channel interference so that locking is not required.

Various forms of channel rearrangements can be used enhance the scheme.
For example, if cell B wishes to borrow a channel from cell A, the call is
blocked if all the channels in group Al of cell A are busy. However, it may
be possible for cell A to transfer one of the calls to another group, say A2, to
accommodate the borrow request. If this is not possible, cell A could itself
borrow a channel from an adjacent cell to free up a channel to lend to cell B.
Many other types of rearrangement policies are also possible.

5.4 COMPACT PATTERN BASED DCA
Yeung and Yum [373] introduced Compact Pattern based DCA (CPDCA),

that attempts to dynamically keep the co-channel cells of any channel to a com-
pact pattern, where a compact pattern of a network is the channel allocation
pattern with the minimum average distance between co-channel cells. In other
words, CPDCA attempts to increase spectral efficiency by keeping all channels
at their minimum co-channel reuse distance. CPDCA accomplishes this task in
two stages; i) channel acquisitions where an optimal idle channel is assigned to
the MS, and ii) channel packing for the restoration of the compact patterns upon
the release of a compact channel. Channel packing is achieved by reassigning
at most one call per channel release.
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Channels are assigned by using system-wide call arrival rate information to
assign a channel that has a compact pattern that will yield the largest reduction
in the overall system blocking probability. If a compact pattern is not available,
the most optimal non-compact pattern is selected. If a call completes on a
compact channel, CPDCA attempts to reassign a call on a noncompact channel
to the newly idle compact channel. If no such call exists, CPDCA reassigns a
call on the compact pattern that is least utilized to the newly idle channel. The
first step minimizes the number of noncompact channels being used, while the
second step packs the ongoing calls onto complete compact patterns. Yeung
and Yun have shown their CPDCA scheme to outperform BDCL.

6. DIRECTED RETRY AND DIRECTED HANDOFF
Everitt [104] introduced the directed retry (DR) and directed handoff

(DH) channel assignment algorithms. If a BS does not have an idle channel
available to service a call with the DR policy, the MS tries to acquire an idle
channel in any other cell that can provide a satisfactory signal quality. DR
exploits the overlapping nature of cells in a practical cellular system, where
some percentage of MSs can establish a suitable link with more than one BS.
DH also exploits the overlapping nature of cells to direct some of the ongoing
calls in a heavily loaded cell to an adjacent cell that is carrying a relatively
light load. Both the DR and DH schemes can be used in conjunction with
either FCA or DCA, and Everitt concluded that FCA and maximum packing
DCA in conjunction with the combination of DR and DH offer about the same
performance. Therefore, FCA in conjunction with DR and DH is the preferred
scheme, since an improvement over FCA can be gained without the added
complexity of DCA.

7. MOVING DIRECTION STRATEGIES
The moving direction (MD) strategy, proposed by Okada and Kubota, ex-

ploits information about the MS movement to reduce forced terminations and
channel changes [250], [251]. The strategy attempts to assign an available
channel from among those channels already assigned to MSs elsewhere in the
service area that are moving in the same direction as the MS under considera-
tion. Sets of MSs moving in the same direction are formed. When a MS enters
a cell, a MS from the same set is probably leaving a cell. This allows both MSs
to retain the same channel, thus reducing both the number of changes changes
and probability of forced termination. This method is particularly useful for
highway microcell deployment, where the traffic direction is highly predictable.
Okada and Kubota compared the MD strategy with Cox and Reudnick’s FA,
NN, and NN+1 strategies [251]. The MD strategy was shown to offer the
lowest channel changing rate and the lowest probability of forced termination.
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However, the NN strategy provided a slightly lower probability of new call
blocking.

A variation of the MD scheme considers both Speed and Moving Direction
(SMD) [249]. MS are divided into two classes; high speed MS (HSMS) who
are traveling at 50 to 60 km/h and low speed MS (LSMS) who are traveling
at 0 to 4 km/h. To reduce the probability of forced termination and channel
changing rate, SMD uses the MD policy for its HSMS call requests. For the
LSMS, the NN strategy is employed since LSMSs do not experience forced
terminations or channel changes as frequently as HSMSs. Again, the SMD
scheme was shown to outperform the FA, NN, and NN+1 policies in terms
of channel changing rates and the probability of forced termination. Finally,
we mention that a variety of velocity estimation techniques are available as
discussed in Section 10.3. Moving direction information can be obtained by
using the past signal strength history in LOS environments [23] or the sign of
the Doppler.

8. REDUCED TRANSCEIVER COVERAGE
Takeo et al. [317] proposed a scheme where nonuniform traffic is handled

by adjusting the BS transmit power level of the control channel according to the
traffic variance for every control period. Since the MS uses the control channel
to determine which BS to connect to, the effective cell size is dynamically
varied. Highly loaded cells decrease the transmit power to shrink the cell sizes,
while lightly loaded cells increase the transmit power to enlarge the cell sizes.
This scheme may cause some unwanted side effects, for example, handoffs can
occur even for stationary MSs. The experimental results in [317] suggest that
the call blocking probability increases in proportion to a decrease in the control
period and, therefore, frequent updating of the control channel power should
be avoided. Takeo et al. [317] did not address the problem that arises when
many adjacent cells are heavily loaded, a potentially deleterious situation since
it may result in coverage gaps within a particular reuse cluster.

8.1 REUSE PARTITIONING
Reuse partitioning employs a two-level cell plan where clusters of size M are

overlaid on clusters of size Fig. 9.20 shows a FCA scheme using
reuse partitioning with l and As discussed in Section 9.5.1, reuse
partitioning divides the available channels into two sets; one set can be used by
the inner cells only, while the other set can be used by both the inner and outer
cells. Reuse partitioning uses rearrangements so that whenever possible MSs
in the inner cells are assigned channels allocated for use in the inner cells only.

An autonomous reuse partitioning (ARP) scheme has been suggested by
Kanai [176]. With this scheme an identical ordering of channels is given to
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all BSs. Upon call arrival, the channels are checked in order and the first one
exceeding a C/I threshold for both the forward and reverse links is acquired. If
no channels are available the call is blocked. The advantage of using a fixed
ordering is that the channels higher in the ordering are used more frequently
and, hence, have higher interference levels. This enables each BS to acquire
channels with minimum C/I margins without the need for sorting channels
according to their interference levels. The algorithm is self organizing in the
sense that channels high in the ordering (with high interference levels) are
allocated to MS that are close to a BS (with strong received signal levels).
Channels low in the ordering tend to be allocated to MSs that are far from a BS
with weak received signal levels.

Another scheme, self-organized reuse partitioning (SORP) has been pro-
posed by Furukawa and Yoshihiko [125]. The BSs allocate channels by mea-
suring the power levels transmitted from the MSs. This method relies upon a
table at each BS that contains, for each channel, the average transmit power
for MSs using the channel in its cell and all the surrounding cells. The table is
updated with each call arrival and the update information is shared among the
BSs. When a call arrives, the BS obtains the output power of the calling MS
and assigns that channel with the corresponding average transmit power that is
closest to that of the calling MS. The channel is acquired if available; other-
wise the second closest candidate is examined, and so on. As a result of this
procedure in each BS, channels that correspond to the same power are grouped
autonomously for self-organizing reuse partitioning. The SORP scheme was
shown to offer about the same blocking probability as the ARP scheme, but
SORP requires less time to search for a channel and generally provides a higher
C/I.

9. HANDOFF PRIORITY
Since the forced termination of a call in progress is worse than the blocking

of a new call, it is important to consider handoff priority in the design of
a channel assignment strategy. This is especially important in microcellular
systems with their increased number of handoffs. Two possible methods of
achieving handoff priority are to use guard channels where a fraction of the
channels are reserved for handoff requests only [170], and handoff queueing
where a handoff request from a MS is placed in a queue with the target BS while
the MS maintains a radio link with its serving BS [170], [129]. Both methods
are known to decrease the probability of dropped calls. However, queueing
does this with a smaller increase in the probability of new call blocking.

Handoff queueing exploits the time interval that the MS spends in the handoff
region, i.e., between the time when the handoff request is generated and the
time when the call will be dropped due to a degradation in link quality. The
simplest queueing scheme uses a first in first out (FIFO) policy. More elaborate
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queueing schemes use measurement based priority, where the queue is ranked
according to the measured link quality of the MSs in the queue [318]. MSs
with the lowest link quality are placed in the highest priority class, and the
handoff queue is sorted continuously according to the priority classes.

10. EXAMPLE DCA SCHEMES FOR TDMA SYSTEMS
We assume a TDMA system with carrier groupings, where the calls are

packed into TDMA carriers such that each cell acquires the minimum number
of carriers required to carry the calls. This packing may require channel
rearrangements when the channels are released. A benefit of carrier groups is a
reduction in the computation required to make decisions regarding acquisitions
and releases. This reduction in complexity reduces the time required to select
a channel, thus lowering the probability of dropped call.

Whenever a channel is needed a TDMA DCA scheme follows a strategy
which, if necessary, selects a carrier for acquisition according to a carrier
acquisition criterion. Likewise, when a channel is released another strategy
is followed which, if necessary, selects a carrier to be released according to a
carrier release criterion. The flow charts in Figs. 13.9 and 13.10 illustrate
the general procedure for acquiring and releasing channels and carriers. The
shaded blocks are steps that support handoff queueing and will be discussed
later in the chapter.

ACQUIRE CARRIER Policy (non-queueing case). As Fig. 13.9 shows,
the following policy is executed upon a new call or handoff arrival:

1. If at least one idle channel is available among the already acquired carriers,
then assign an idle channel to the call; otherwise attempt to acquire a new
carrier according to the carrier acquisition criterion.

(a) If the carrier acquisition is successful, then assign one channel of the
newly acquired carrier to the call; otherwise block the call.

RELEASE CARRIER Policy (non-queueing case). As Fig. 13.10 shows,
the following policy is executed upon a call completion or a handoff departure:

1. If the channel release will not yield an idle carrier, then no carrier is released;
otherwise a carrier is selected for release according to the carrier release
criterion.

(a) The call that occupies the carrier selected for release is reassigned to
the newly idle channel, and the selected carrier is released.
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10.1 THE SIMPLE DCA (SDCA) STRATEGY
Elnoubi et al. [100] proposed the BCO strategy that makes use of different

channel orderings in each cell. Here, we consider a channel assignment strategy
that uses carrier orderings rather than channel orderings [356]. However,
unlike the BCO strategy, the carriers are not explicitly divided into nominal
and borrowed sets with a specified rule for borrowing carriers. In our scheme,
each cell has its own carrier ordering, and no two cells separated less than
the frequency reuse distance have the same carrier ordering. The orderings
are designed so that carriers occurring near the beginning of a cell’s carrier
ordering occur near the end of the carrier orderings of the cells in its interference
neighborhood. For example, suppose there are 9 available carriers with a 3-cell
reuse cluster. Three different carrier orderings are necessary to ensure that
cells within the frequency reuse distance have distinct carrier orderings. For
example, the following carrier orderings will do.

These carrier orderings are obtained by first listing the 9 available carriers
column-wise until they are all assigned. Then columns 4 and 5 are permutations
of the 3rd column, columns 6 and 7 are permutations of the 2nd column, and
columns 8 and 9 are permutations of the 1st column. Notice that Carriers 1, 2,
and 3 each appear first in one of the orderings and appear near the end of the
other two orderings.

The carrier selection criterion is as follows. When a carrier is needed in
a cell, the available carrier occurring nearest to the beginning of the cell’s
carrier ordering is selected. If there are no available carriers, then the carrier
acquisition fails. When a carrier is released in a cell, the busy carrier occurring
nearest to the end of the cell’s carrier ordering is selected. This may require a
rearrangement of calls within a cell to carriers that are closer to the beginning
of the cell’s carrier ordering. The above strategy is hereafter referred to as
the simple dynamic channel assignment (SDCA) strategy, because of the
simplicity of the carrier selection criterion.

Note that the SDCA scheme does not need an exchange of information
within the interference neighborhoods. The busy/idle status of carriers can be
determined by passive non-intrusive monitoring at each BS.

10.2 A QUEUEING DCA STRATEGY
Forced terminations of calls in progress are worse than blocking of new calls.

Forced terminations or handoff blocking occurs when an active call crosses a
cell boundary, and the target cell cannot accommodate the additional call. As
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described in [170], [129], one way to establish handoff priority is to queue
the handoff attempts. If the target cell is momentarily unable to accommodate
the additional call, the MS maintains its link with the source cell and enters a
queue in the target cell. A queue failure occurs when either the signal level
drops below some threshold before the call can be serviced by the target cell,
the time spent in the queue exceeds a time-out interval, or the queue overflows.
A queue success occurs when a channel becomes available and the queue is
non-empty. The newly available channel is then assigned to the call at the head
of the queue, and a channel within the source cell is released. Here we combine
handoff queueing with DCA.

In a DCA strategy, there are two ways for a channel to become available in
a cell. Either a call terminates (due to a handoff or completion) or a carrier is
released somewhere in the interference neighborhood thus allowing the carrier
to be acquired by the cell. When a cell releases a carrier, there may be multiple
cells in its interference neighborhood that could acquire the released carrier
to service their queued calls. However, the frequency reuse constraint will
be violated if all these cells acquire the carrier. To determine which cells
may acquire the carrier, we may assume that each cell has a subset of carriers
designated as owned carriers. The owned carriers are a subset at the beginning
of the carrier orderings. Owned carriers are distributed so that no two cells
separated less than the frequency reuse distance share any owned carriers.
The remaining carriers are designated as borrowed carriers. Considering the
previous example in (13.17) where 9 carriers were distributed among three
carrier orderings, the owned and borrowed carrier orderings are

Cells tend to use their owned carriers before borrowing carriers from other
cells. When a cell releases a borrowed carrier, the cells in the interference
neighborhood that own the released carrier are given the first opportunity to
service their handoff queues. If any of these cells have queued calls, then they
can acquire the carrier without violating the frequency reuse constraint. If none
of the owner cells in the interference neighborhood acquire the released carrier,
then some of the remaining cells in the interference neighborhood may acquire
the carrier to service their handoff queues.

A strategy combines DCA and handoff queueing is described below along
with the flow charts in Figs. 13.9, 13.10 , 13.11, and 13.12.

ACQUIRE CARRIER Policy (queueing case). Referring to Fig. 13.9, the
following policy is executed upon a new call arrival or handoff attempt:
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1. If the handoff queue is not empty, then either queue the handoff call or drop
the new call; otherwise

(a) If there is at least one idle channel, then assign an idle channel to the call;
otherwise try to acquire a according to the carrier acquisition criterion.

i. If the carrier acquisition is successful, then assign one channel of
the newly acquired carrier to the call; otherwise either queue the
handoff call or drop the new call.

RELEASE CARRIER Policy (queueing case). Referring to Fig. 13.10, the
following policy is executed upon a call completion, a handoff, or a failure
from the handoff queue of an adjacent cell:

1. If the handoff queue is not empty then assign the newly available channel
to the call at the head of the handoff queue. The channel currently serving
the call is released according to the RELEASE CARRIER policy.

2. If the channel release will yield an idle carrier, then a carrier is selected
for release according to the carrier release criterion. The call that occupies
the carrier selected for release is reassigned to the newly idle channel, the
selected carrier is released, and the SERVICE INTERFERENCE CELLS
policy is executed.

SERVICE INTERFERENCE CELLS Policy. Referring to Fig. 13.11, the
following policy is executed whenever a carrier is released:

1. If a borrowed carrier is released then any owner cell in the interference
neighborhood that has a non-empty handoff queue and can acquire the
released carrier without violating the reuse constraint, will acquire the car-
rier and service its handoff queue according to the SERVICE HANDOFF
QUEUE policy.

2. After the owner cells are given the opportunity to service their queues, the
remaining cells in the interference neighborhood are given the opportunity
to service their handoff queues by using the SERVICE HANDOFF QUEUE
policy.

SERVICE HANDOFF QUEUE Policy. Referring to Fig. 13.12, whenever
a carrier is acquired in a cell having a non-empty handoff queue, the following
policy is executed:

1. An empty slot is assigned to the call at the head of the handoff queue, and
the channel currently serving the call is released by using the RELEASE
CARRIER policy.
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(a) Step 1. is executed until either all of the available slots are filled or the
handoff queue is empty.

10.3 AN AGGRESSIVE DCA STRATEGY
DCA strategies increase trunking efficiency by assigning channels to cells

as they are needed. Care must be taken to avoid a poor allocation of channels;
otherwise capacity will suffer. With SDCA, the carriers are acquired and
released according to a carrier acquisition and release criteria that attempts to
maximize capacity by favoring tightly packed arrangements of co-carrier cells.
This strategy is similar to the 2-D RING strategy in [173] and suffers from the
same problem; when a carrier is selected for acquisition, multiple carriers must
be available for the carrier acquisition criteria to yield any advantage. The more
carriers available for each selection process the better. At high traffic loads,
very few carriers may be available for acquisition. In fact there may be only
one or none, in which case there is no choice. Under such conditions, carriers
tend to be assigned where they can be, rather than where they should be, and
capacity suffers [105]. Under such conditions DCA strategies usually perform
worse than FCA.

As discussed in Section 3.4 the performance at high traffic loads can be
improved by using an aggressive policy where, under certain conditions, a cell
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that cannot acquire a carrier may force a surrounding cell to give up a carrier
so that it may service one or more calls. Thus, a cell can actually take a carrier
from its neighbors if none are otherwise available, according to the following
TAKE CARRIER policy.

TAKE CARRIER Policy. Referring to Fig. 13.13, the following policy is
executed when a call is in jeopardy due to a handoff failure (in the no queueing
case), a queue failure, or the execution of the TAKE CARRIER policy in
another cell:

1. The entire set of carriers is examined. If all carriers are being used, then the
TAKE CARRIER policy fails; otherwise, all unused carriers are examined,
and the number of calls within the interference neighborhood that will be
placed in jeopardy by taking each carrier is calculated. Note that the number
of jeopardized calls must be determined at each cell in the interference
neighborhood. The carrier that will place the fewest number of calls in
jeopardy is selected. In event of a tie, the carrier appearing earliest in the
carrier ordering is selected. Let be the number of calls that will be placed
in jeopardy by taking the selected carrier.

2. The number of calls that will be serviced by taking the selected carrier,
is calculated. For a handoff attempt and no queueing, for a queue



Channel Assignment Techniques 675

failure, is the minimum of the number of queued calls and the number
of slots per carrier for a carrier that is lost to another cell executing the
TAKE CARRIER policy, ranges from 1 to .

3. If the selected carrier is owned and or if the selected carrier is not
owned and then the TAKE CARRIER policy fails; otherwise all
cells in the interference neighborhood that are currently using the selected
carrier are told to release it.2

4. Each cell in the interference neighborhood releases the selected channel.

5. The selected channel is taken. For a handoff attempt (no queueing), the
handoff is completed. For a queue failure, the SERVICE HANDOFF
QUEUE policy is executed. For a carrier that is lost to another cell executing
the TAKE CARRIER policy, the slots of the taken carrier are assigned to
the calls in jeopardy.

6. Each cell that was forced to release the selected carrier executes the SER-
VICE INTERFERENCE CELLS policy.

7. Each cell that was forced to release the selected channel and still has calls
in jeopardy after the cell taking the carrier services its queue, executes the
ACQUIRE CHANNEL policy.

(a) If the carrier acquisition is successful, then the cell executes the SER-
VICE HANDOFF QUEUE policy; otherwise it executes the TAKE
CARRIER policy.

(b) If a cell from which a carrier was taken cannot obtain a new carrier, it
must drop some of its calls. Queued calls are dropped first because they
are in greater danger of being dropped than active calls. If more calls
must be dropped after dropping the queued calls, then active calls are
dropped until there are no excess calls.

Note that the TAKE CARRIER policy is only executed if the SCDA carrier
acquisition criteria fails to acquire a carrier. Unlike SCDA, the TAKE CAR-
RIER policy acquires carriers that place the fewest number of calls in jeopardy.
From a practical standpoint it is important to note that the aggressive SCDA
strategy requires communication among BSs in the interference neighborhood
to execute the TAKE CARRIER policy.

2When there is no queueing _ and, therefore, only an owned carrier can be taken that will not place
more than one call in jeopardy.
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10.4 SIMULATION MODEL, RESULTS, AND
DISCUSSION

Consider a microcellular environment consisting of a rectangular grid of
intersecting streets, as shown in Fig. 13.14. It is assumed that MS traffic
flowing off an edge of the grid wraps around to the opposite edge. However,
the interference neighborhoods of each cell do not wrap around. If two cells
are on opposite edges of the grid, such that MSs leaving one cell enter the
other, they may simultaneously use the same carrier since they are not spatially
adjacent.

Line-of-sight co-channel cells must be separated by at least 3 cells. There
are no reuse constraints on non line-of-sight co-channel cells, due to the corner
effect. The frequency reuse factor is 4, meaning that the set of carriers must be
divided into 4 subsets for FCA, and for SDCA there must be 4 different carrier
orderings. The interference neighborhood and cell reuse pattern is shown in
Fig. 13.15.

To account for the uneven distribution of teletraffic in the microcellular
environment the identical active-dormant Markov model from [244] is used,
but modified to account for handoff queueing. The model is Markovian so that
all events occur with exponentially distributed interarrival times. However, the
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parameters of the distributions change with time to reflect the time-varying
nature of the model. The state of cell i at any time can be described by the
following parameters

New call arrival rate:
Number of active calls:
Number of queued calls:

New Call Arrivals:. Call arrivals in cell i are Poisson with rate This
parameter is binary valued, where These two new call
arrival rates correspond to two different cell modes, active and dormant. The
arrivals of new calls in different cells are assumed to be independent, so the
global call arrival rate is
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Call Completions:. The duration of each call is exponentially distributed
with mean In cell i there are active calls and queued calls,
any of which could be completed at any time. These calls are assumed to be
independent, so the call completion rate in cell i is

The completion of calls in different cells are assumed to be independent. There-
fore, the global call completion rate is:

Handoff Attempts. A handoff is attempted whenever an active call crosses
a cell boundary and needs to be serviced by the target cell. To determine the
handoff rate, it is assumed that each call is handed off an average of h times
over its duration. Since the traffic flows wrap around the grid edges, the handoff
calls are uniformly distributed to one of the four neighboring cells. Queued
calls can be safely assumed to never cross a cell boundary, because the time
required to traverse a cell will be much longer than the maximum time allowed
in the handoff queue. Therefore, queued calls do not contribute to the handoff
rate. The handoff rate in cell i is

Call handoffs in different cells are assumed to be independent, so the global
handoff attempt rate is

Mode Transitions. Each cell remains in its current mode for duration D,
where D is exponentially distributed with mean If the cell is in active
mode, then and if the cell is in dormant mode, then
If there are active cells and dormant cells, then the global active-
to-dormant and dormant-to-active transition rates are, respectively,

The probability of a cell being in the active mode is
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As the simulation progresses, five types of events are generated: new call
arrivals, call completions, handoff attempts, active-to-dormant mode transi-
tions, and dormant-to-active mode transitions. All events occur independently.
Therefore, five random times are generated and the next event corresponds to
the one with the minimum time. Once an event is selected, the event must be
randomly assigned to a cell. The probability of cell i being selected for each
type of event is

New call arrival:
Call completion:

Handoff Attempt:

The active to dormant traffic ratio specifies the
ratio of the new call arrival rates in the active and dormant cells. To complete
the model, we specify the offered traffic per cell, Then the active and dormant
call arrival rates are:

where is as defined in (13.26). The parameters used in the simulations
are as follows

Number of cells:
Total number of carriers: 40

Number of slots per carrier: 3
Number of channels per cell (FCA): 30

Number of owned carriers per cell (DCA): 10
Average call duration: 120s

Average number of handoffs per call: 3
Average duration of the ACTIVE mode: 60s

Average duration of the DORMANT mode: 600s
ACTIVE to DORMANT traffic ratio: 5

Offered traffic: 0-50 Erlangs
Queue size: 10
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Figs. 13.16 through 13.17 compare the probability of new call blocking and the
probability of forced termination for the FCA, SDCA, and aggressive SDCA
strategies. Results are shown without handoff queueing and with a 5-second
handoff queue. Observe from Fig. 13.16 that a substantial reduction in the
probability of new call blocking is achieved by using SDCA as compared
to FCA. Handoff queueing causes a sight increase in the probability of new
call blocking because handoff calls are given priority over new calls when a
channel has been released and is available for acquisition. Aggressive SDCA
also causes a very slight increase in the probability of new call blocking over
non-aggressive SDCA. Fig. 13.17 shows that both handoff queueing and SDCA
significantly lower the probability of forced termination. Aggressive SDCA
tends to be more effective than the non-aggressive SCDA when these schemes
are combined with handoff queueing.

Carrier Acquisitions. It is useful to determine the increase in the rate of
carrier acquisitions that results from using aggressive SDCA. Fig. 13.18 plots
the cell carrier acquisition rate for aggressive and non-aggressive SDCA. Notice
that the carrier acquisition rates at lower traffic loadings are almost the same.
At higher traffic loadings hand-off queueing has the largest effect on the carrier



Channel Assignment Techniques 681

acquisition rate. However, aggressive SDCA causes only a very slight increase
in the carrier acquisition rate over non-aggressive SDCA.

The results presented here have been obtained under the assumption that
the interference (and DRA) neighborhoods are symmetrical (cell A interferes
biconditionally with cell B) and the average traffic loading is identical for
all cells. This is not true of a practical system and, therefore, preassigned
carrier orderings should not be used. In an actual microcellular system an
adaptive, self-organizing algorithm for ordering of carriers and the selection
of owned carriers is preferable. Also, an adaptive aggressive strategy may be
employed that uses current performance (e.g., the current new call blocking
and forced termination probabilities) and perhaps forward-looking strategies
[105] to make a more informed decision when to take a carrier. It is expected
that some performance deterioration will result over the ideal symmetrized case
presented here, because of the aforementioned network asymmetries and the
finite convergence rate of the adaptive algorithms.

Finally, the channel assignment strategies as described do not take into
consideration the arrangement of calls on the carriers. In reality, the C/I is
not the same for each channel. A more effective strategy also arranges the
calls in order to combat the unpredictable signal and interference variations
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present in microcells. Finally, the use of hand-off queueing will exaggerate the
cell boundaries thereby causing increased co-channel interference. Unlike the
purely statistical model that is used here, the study of these issues will require
explicit models for the mobility of MSs and the radio propagation environment.

11. CONCLUDING REMARKS
Although it is very difficult to arrive at a consensus as to what the best

channel assignment algorithm is, an effective DCA algorithm should possess
distributed control mechanisms, handoff prioritization, high channel utilization,
and stability. Unfortunately, there is no single DCA algorithm that combines
all these features and the best solution is sure to depend on the service area
characteristics. For example, cordless phones require a fully decentralized
algorithm while urban microcells should allow some limited communication
among BSs. Although some very interesting DCA schemes have been proposed
in the literature, not all the issues have been sufficiently addressed to make them
practical. Many of the current systems either require too much computation and
communication among BSs, yield low channel utilization, or exhibit instability.
As a result, DCA will be an active area of research for some time.



Channel Assignment Techniques 683

In general, the analytical treatment of DCA algorithms is quite difficult and
few results have appeared in the literature. Most of DCA algorithms are derived
on an ad hoc basis and evaluated by computer simulation. The development
of new analytical tools is important for systematic development and will yield
valuable insight into the performance of new DCA algorithms.

Much of the existing literature has separated the handoff problem from the
channel assignment problem. However, these two problems linked and it is
desirable that they receive unified treatment. For example, one performance
measure for a handoff algorithm is the mean number of handoffs against the
handoff delay. However, such an analysis usually proceeds under the assump-
tion that a channel will always be available for a handoff. Clearly, this is not the
case in practice. Most channel assignment schemes are designed for a single
application, i.e., voice services. However, future systems will have to support
a variety of multimedia applications that have different GOS requirements and
require different types and amounts of network resources including channel
resources, delay, etc. The channel assignment problem for multimedia services
is an open area for research.

Problems
11.1. Suppose that the maximum packing (MP) policy is used with the system

shown in Fig. 13.2. Suppose that 10 channels are available for use within
each of the three reuse clusters

a) Compute the number of admissible states

b) By using the approximation in (13.6) compute the approximate blocking
probabilities for each cell assuming a traffic load of Erlangs in each
cell.

c) Compare the blocking probabilities in part b) with FCA for the same
traffic load.

11.2. Show that the maximum and minimum saturation densities for a linear
array of cells is and

11.3. Show that the maximum and minimum saturation densities for a planar
array of cells are

11.4. Consider a linear array of cells with R = 1 and a total of
channels. Plot the blocking probability, against the offered traffic per
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cell, with FCA, timid DCA, and aggressive DCA. What conclusions can
you make?

11.5. Derive equation (13.12).



Appendix A
Probability and Random Processes

The theory of probability and random processes is essential in the design and
performance analysis of communication systems. This Appendix presents a
brief review of the basic concepts of probability theory and random processes.
It is intended that most readers have already had some exposure to probability
and random processes, so that this Appendix is intended to provide a brief
overview. A very thorough treatment of this subject is available in a large
number of textbooks, including [256], [196].

1. CONDITIONAL PROBABILITY AND BAYES’
THEOREM

Let A and B be two events in a sample space S. The conditional probability
of A given B is

provided that If P(B) = 0, then is undefined.
There are several special cases.

If then events A and B are mutually exclusive, i.e., if B occurs
then A could not have occurred and

If then knowledge that event B has occurred implies that event A
has occurred and so

If A and B are statistically independent, then
and so

There is a strong connection between mutually exclusive and independent
events. It may seem that mutually exclusive events are independent, but just



686

the exact opposite is true. Consider two events A and B with
and If A and B are mutually exclusive, then and

Therefore, mutually exclusive events with
non-zero probability cannot be independent. Thus disjointness of events is a
property of the events themselves, while independence is a property of their
probabilities.

In general, the events i = 1 , . . . , n, are independent if and only if
for all collections of k distinct integers chosen from the set
(1 ,2 , . . . , n), we have

for
In summary

If is a sequence of mutually exclusive events, then

If is a sequence of independent events, then

Total Probability. The collection of sets i = 1 , . . . , n forms a partition
of the sample space S if and For any event

we can write

That is, every element of A is contained in one and only one Since
the sets are mutually exclusive.

Therefore,

This last equation is often referred to as total probability.
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Bayes’ Theorem. Let the events i = 1 , . . . , n be mutually exclusive such
that where S is the sample space. Let A be an event with nonzero
probability. Then as a result of conditional probability and total probability:

a result known as Bayes’ theorem.

2. MEANS, MOMENTS, AND MOMENT
GENERATING FUNCTIONS

The kth moment of a random variable, is defined as

where is the probability distribution function of X ,

and is the probability density function (pdf) of X.
The kth central moment of the random variable X is The
variance is the second central moment.

The moment generating function or characteristic function of a random
variable X is

where Note that the continuous version is a Fourier transform, except
for the sign in the exponent. Likewise, the discrete version is a z-transform,
except for the sign in the exponent.

The probability distribution and probability density functions of discrete
and continuous random variables, respectively, can be obtained by taking the
inverse transforms of the characteristic functions, i.e.,

and
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The  cumulative distribution function (cdf) of a random variable X is
defined as

The complementary distribution function (cdfc) is defined as

3. SOME USEFUL PROBABILITY DISTRIBUTIONS
3.1 DISCRETE DISTRIBUTIONS
Binomial Distribution. Let X be a Bernoulli random variable such that
X = 0 with probability 1 – p and X = 1 with probability p. Although X is
a discrete random random variable with an associated probability distribution
function, it is possible to treat X as a continuous random variable with a pdf
by using dirac delta functions. In this case, the pdf of X has the form

Let where the . are independent and identically distributed
with density Then the random variable Y is an integer from the set
{0,1, . . . , n} and the probability distribution of Y is

The random variable Y also has the pdf

Poisson Distribution. The random variable X has a Poisson distribution if

Geometric Distribution. The random variable X has a geometric distribu-
tion if
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3.2 CONTINUOUS DISTRIBUTIONS
Many communication systems are affected by additive Gaussian noise.

Therefore, the Gaussian distribution and various functions of Gaussian distribu-
tions play a central role in the characterization and analysis of communication
systems.

Gaussian Distribution. A Gaussian random variable has the pdf

where is the mean and is the variance. Sometimes
we use the shorthand notation meaning that X is a Gaussian
random variable with mean and variance . The random variable X is said
to have a standard normal distribution if X N(0,1).

The cumulative distribution function (cdf) of X is

The cdf of a standard normal distribution defines the Q function

and the cdfc defines the function

If X is a non-standard normal random variable, then

Quite often the cumulative distribution function of a Gaussian random vari-
able is described in terms of the error function erf(x) and the complementary
error function erfc(x), defined by

The complementary error function and Q function are related as follows
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Rayleigh Distribution.  and be indepen-

dent normal random variables. The random variable is said
to be Rayleigh distributed. To find the pdf and cdf of R first define

Then

By using a bivariate transformation of random variables

where

Since

we have

It follows that the marginal pdf of R is

The cdf is

Rice Distribution. and be indepen-
dent normal random variables with non-zero means. The random variable

has a Rice distribution or is said to be Ricean distributed. To
find the pdf and cdf of R again define Then by using a
bivariate transformation and
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However,

Hence,

The marginal pdf of R is

The zero order modified Bessel function of the first kind is defined as

Therefore,

The cdf of R is

where Q(a, b) is called the Marcum Q-function.
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Central Chi-Square Distribution. Let and Then
it can be shown that

The characteristic function of Y is

Now define the random variable where the are independent
and Then

Taking the inverse transform gives

where (k) is the Gamma function and

if k is a positive integer. If n is even (which is usually the case in practice) and
we define m = n/2, then the pdf of Y defines the central chi-square distribution

and the cdf of Y is

The exponential distribution is a special case of the central chi-square
distribution when m = 1. In this case
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Non-Central Chi-Square Distribution. and
Then

The characteristic function of Y is

Now define the random variable where the are independent
normal random variables and Then

Taking the inverse transform gives

where

and is the modified Bessel function of the first kind and order k, defined
by

If n is even (which is usually the case in practice) and we define m = n/2,
then the pdf of Y is

and the cdf of Y is

where is called the generalized Q-function.
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Multivariate Gaussian Distribution. Let be
correlated Gaussian random variables covariances

Let

where is the transpose of X. Then the joint pdf of X defines the multivariate
Gaussian distribution

where is the determinant of

4. UPPER BOUNDS ON THE CDFC
Several different approaches can be used to upper bound the area under the

tails of a probability density function including the Chebyshev and Chernoff
bounds.

Chebyshev Bound. The Chebyshev bound is derived as follows. Let X be
a random variable with mean variance and pdf pX(x). Then the
variance of X is

Hence,

The Chebyshev bound is straightforward to apply but it tends to be quite loose.
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Chernoff Bound. The Chernoff bound is more difficult to compute but is
much tighter than the Chebyshev bound. To derive the Chernoff bound we use
the following inequality

where u(x) is the unit step function. Then,

The Chernoff bound parameter can be optimized to give the tightest
upper bound. This can be accomplished by setting the derivative to zero

Let be the solution to the above equation. Then

Example A.1
Let be independent and identically distributed random

variables with density

Let

Then

For and
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Chebyshev Bound
To compute the Chebyshev bound we first determine the mean and variance

of Y .

Hence,

Then by symmetry

For n = 10 and p = 0.1

Chernoff Bound
The Chernoff bound is given by

However,

To find the optimal Chernoff bound parameter we solve
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giving

Hence,

For n = 10 and p = 0.1

Notice that the Chernoff bound is much tighter that the Chebyshev bound in
this case.

5. RANDOM PROCESSES
A random process, or stochastic process, X ( t ) , is an ensemble of sample

functions together with a probability rule which
assigns a probability to any event associated with the observation of these
functions. Consider the set of sample functions shown in Fig. A. 1. The sample
function corresponds to the sample point in the sample space and, occurs
with probability The number of sample functions, in the ensemble
may be finite or infinite. The function is deterministic once the index
is known. Sample functions may be defined at discrete or continuous instants
in time, and their values (parameters) at these time instants may be discrete or
continuous in time also.

Suppose that we observe all the sample functions at some time instant
and their values form the set of numbers Since

occurs with probability the collection of numbers
forms a random variable, denoted by By observing the set

of waveforms at another time instant we obtain a different random variable
A collection of n such random variables,

has the joint cdf

A more compact notation can be obtained by defining the vectors
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Then the joint cdf and joint pdf are, respectively,

A random process is strictly stationary if and only if the joint density
function (x) is invariant under shifts of the time origin. In this case, the
equality

holds for all sets of time instants and all time shifts Many
important random processes that are encountered in practice are strictly sta-
tionary.

5.1 MOMENTS AND CORRELATION FUNCTIONS
To describe the moments and correlation functions of a random process, it

is useful to define the following two operators

ensemble average

time average .
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The ensemble average of a random process at time t is

The time average of a random process is

In general, the time average is also a random variable, because it
depends on the particular sample function that is selected for time averaging.

The autocorrelation of a random process X ( t ) is defined as

The autocovariance of a random process X ( t ) is defined as

A random process is strictly stationary only if

Hence, for a strictly stationary random process

where
If a random process satisfies the following conditions

then it is said to be wide sense stationary. Note that a strictly stationary
random process is always wide sense stationary, but the converse may not be
true. However, a Gaussian random process is strictly stationary if it is wide
sense stationary. The reason is that a joint Gaussian density of the vector

is completely described by the means and
covariances of the
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Properties of The autocorrelation function, of a stationary
random process satisfies the following properties.

5. If then i.e., if X(t) is periodic,
then is periodic.

A random process is ergodic if for all g(X) and X

For a random process to be ergodic, it must be strictly stationary. However,
not all strictly stationary random processes are ergodic. A random process is
ergodic in the mean if

and ergodic in the autocorrelation if

Example A.2
Consider the random process

where A and are constants, and

The mean of X(t) is
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and autocorrelation of X (t ) is

It is clear that this random process is wide sense stationary.
The time-average mean of X(t) is

and the time average autocorrelation of X (t) is

By comparing the ensemble and time average mean and autocorrelation, we
can conclude this random process is ergodic in the mean and ergodic in the
autocorrelation.
Example A.3

In this example we show that This inequality can be
established through the following steps.
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Therefore,

Example A.4
Consider the random process

In this example we will find the probability density function of Y (0), the joint
probability density function of Y  (0) and and determine whether or not
Y(t) is stationary.

1. To find the probability density function of Y (0), note that

Therefore,

2. To find the joint density of Y (0) and note that

Therefore

and

3. To determine whether or not Y(t) is stationary, note that

Since the second moment varies with time, this random process is not
stationary.
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5.2 CROSSCORRELATION AND
CROSSCOVARIANCE

Consider two random processes X(t) and Y(t). The crosscorrelation of
X( t)and Y(t) is

The correlation matrix of X(t) and Y (t) is

The crosscovariance of X ( t ) and Y(t) is

The covariance matrix of X(t) and Y (t ) is

If  X ( t ) and Y(t) are each wide sense stationary and jointly wide sense station-
ary, then

where

Properties of The crosscorrelation function has the fol-
lowing properties.

and Y(t) have zero mean.

Classifications of  Random Processes. Two random processes X (t) and Y (t)
are said to be

uncorrelated if and only if

orthogonal if and only if
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statistically independent if and only if

Furthermore, if or then

uncorrelated orthogonal

statistically independent uncorrelated .

Example A.5
Find the autocorrelation function of the random process

where X(t) and Y(t) are wide sense stationary random processes.
The autocorrelation function is

If X(t) and Y(t) are uncorrelated, then

and

If X (t) and Y(t) are uncorrelated and zero-mean, then

Example A.6
Can the following be a correlation matrix for two jointly wide sense station-

ary zero-mean random processes?

Note that the following two conditions are violated.

and Y(t) have zero mean.

Therefore, is not a valid correlation matrix.
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5.3 COMPLEX-VALUED RANDOM PROCESSES
A complex-valued random process is given by

where X(t) and Y(t) are real random processes.

Autocorrelation Function. The autocorrelation function of a complex-valued
random process is

If Z(t) is wide sense stationary, then

Crosscorrelation Function. Consider two complex-valued random processes

The crosscorrelation function of Z(t) and W(t) is

If X(t), Y(t), U(t), and V(t) are pairwise wide sense stationary random
processes, then

The crosscorrelation of a complex wide sense stationary random process satis-
fies the following property
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It also follows that

5.4 POWER SPECTRAL DENSITY
The power spectral density (psd) of a random process X(t) is the Fourier

transform of the autocorrelation function, i.e.,

If X ( t ) is real, then is real and even. Therefore,
meaning that is also real and even. If X(t) is complex, then

, and meaning that is real
but not necessarily even.

The power, P, in a random process X ( t ) is

a result known as Parseval’s theorem.
The cross power spectral density between two random processes X ( t ) and

Y(t) is

If X ( t ) and Y(t) are both real random processes, then

and
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If X ( t ) and Y(t) are complex random processes, then

and

5.5 RANDOM PROCESSES FILTERED BY LINEAR
SYSTEMS

Consider the linear system with impulse response h ( t ) , shown in Fig. A.2.
Suppose that the input to the linear system is a wide sense stationary random
process  X( t),    with mean           and autocorrelation                   The input and
output are related by the convolution integral

Hence,

The output mean is

The output autocorrelation is

Taking transforms, the output psd is
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Example A.7
Consider the linear system shown in Fig. A.2. In this example we will find

the crosscorrelation between the input and output random processes, X ( t ) and
Y(t), respectively. The crosscorrelation is given by

Also,

Example A.8
Suppose that X ( t ) is a Gaussian random process with mean and covari-

ance function In this example we find the joint density of
and If a Gaussian random process is passed through a linear fil-
ter, then the output process is also Gaussian. Hence, and have joint
Gaussian density function as defined in (A.40) that is completely described in
terms of their means and covariances.
Step 1: Obtain the mean and covariance matrix of and

The crosscovariance of and is

Now Also, from the previous example
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Therefore,

Also

Hence, the covariance matrix is

Step 2: Write the joint density function of and
Let

Then

5.6 DISCRETE-TIME RANDOM PROCESSES
Let where n is an integer time variable, be a discrete-time

random process. Then the mth moment of is

The autocorrelation of is
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and the autocovariance is

If        is a wide sense stationary random process, then

The psd of a discrete random process is

where

Note that for any integer k.
Consider a discrete-time linear time-invariant system with impulse response

The input, and output, are related by the convolution sum

The output mean is

and the output autocorrelation is

The output psd is
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5.7 CYCLOSTATIONARY RANDOM PROCESSES
Consider the random process

where is a sequence of complex random variables with mean and
autocorrelation and is a real deterministic shaping
function. Note that the mean of X ( t )

is periodic. The autocorrelation of X ( t ) is

It is easy to show that
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Therefore, is periodic in t with period T.
The time-averaged psd of X ( t ) can be computed by first determining the

time-average autocorrelation

and then taking the Fourier transform in (A.66).
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Differential encoding, 245
Digital cellular systems

cdma2000 and W-CDMA, 8
GSM/DCS180Q/PCS1900, 3
IS-54 and IS-95, 5
PDC,7
UWC-136 and EDGE, 8

Digital modulation

CPFSK, 184
CPM, 182
GMSK, 189
LGMSK, 192
MSK, 184
Multiresolution modulation, 177
OFDM, 175

ICI, 254
OQPSK, 169
Orthogonal modulation, 172
Power spectral densities, 198
PSK, 168
QAM, 165
Signal representation, 154

Complex envelope, 154
Correlation, 161
Envelope-phase form, 155
Equivalent shaping function, 155
Euclidean distance, 161
Quadrature form, 155
Signal Correlation, 159
Signal Energy, 159
Standard form, 154
Vector space representation, 155

TFM, 195
Vector-space representation, 155

Gram-Schmidt procedure, 156
Directional antennas, 516
Diversity techniques, 275

Diversity combining, 276
Equal gain, 284
Maximal ratio, 280
Postdetection equal gain, 289
Selective, 277
Switched, 286

Transmit Diversity, 291

Types, 275,495
Diversity

Macrodiversity, 27
Doppler shift, 42
Doppler spectrum, 47
DS spread spectrum, 459

Basic receiver, 461
Frequency-selective fading, 491

RAKE receiver, 495
tapped delay line model, 494

Long code, 459
PN chip, 459
Power spectrum, 475
Processing gain, 459
Short code, 459
Spreading waveform, 459
Tone interference, 478

Long code, 490
Short code, 484

Envelope correlation, 56
squared-envelope correlation, 60

Envelope distribution
Nakagami fading, 53
Rayleigh fading, 50
Ricean fading, 51

Envelope phase, 55
Envelope spectrum, 56
Equalizers

Sequence estimation, 304, 329
Symbol-by-symbol, 302, 317

Decision feedback equalizer, 326
Minimum mean-square-error, 322
Linear, 319
Zero-forcing, 319

Error probability, 234
PAM, 246
QAM, 248
Biorthogonal signals, 251
Bit vs. symbol error, 239

Gray coding, 239
Lower bounds, 239
MSK, 256
OFDM, 252
Orthogonal signals

Coherent detection, 249
Pairwise error probability, 236
PSK, 240

Differential detection, 244
Rayleigh fading, 244

Upper bounds, 237
Union bound, 237

Events
Mutually exclusive, 685
Statistically independent, 685

Fade Duration, 66
Fading simulators, 80

Filtered Gaussian noise, 79
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Sum of Sinusoids, 81
Multiple envelopes, 85

Wide-band channels, 90
T-spaced model, 92
-spaced channel, 90

COST207 models, 91
Fading, 40
FDMA, 3

Duplexer, 3
FH spread spectrum, 462

Slow frequency hopped, 462
Fast frequency hopped, 463

Folded spectrum, 162
Frequency reuse, 17

Adjacent channel interference, 21
Cellular concept, 16
Co-channel interference, 21
Co-channel reuse distance, 18
Co-channel reuse factor, 18
Interference neighborhood, 535, 653
Outage, 22
Reuse cluster, 17
Universal, 568

FSK, 172
GMSK, 189

Frequency shaping pulse, 191
Gaussian filter, 190
Power spectral density, 218

Gold sequences, 469
Construction, 469
Properties, 470

Grade of service, 649
Forced termination, 649
New call blocking, 649

Gray coding, 239
Hadamard matrix, 173, 473
Hamming distance, 395
Handoff algorithms, 590

Backward, 590
Direction biased, 596
Forward, 591
Hard

Signal strength, 595
Mobile assisted, 590, 595
Mobile controlled, 590
Network-controlled, 590
Soft C/I-based, 597
Velocity adaptive, 617

Performance, 620
Handoffs

Analysis
co-channel interference, 624

Handoff priority, 648, 667, 671
guard channels, 648, 667
handoff queueing, 667,671

Hard, 27, 591
Analysis, 621

Comer effect, 592
Hysteresis, 591

Intercell handoff, 589
Intracell handoff, 589
Signal strength averaging, 698
Soft, 7, 28, 593

Analysis, 627
Power control, 593

Velocity estimation, 604
Hard decision decoding, 414

minimum distance decoding, 416
IMT-2000, 8
Interference Cancellation, 306
Interleaving, 418

S -random, 445
Block, 418
Random, 445

Intersymbol interference, 164
ISI channels

Discrete-time channel model, 311
Discrete-time channel model

Channel vector, 314
Diversity reception, 314
Minimum phase, 312
Noise whitening filter, 311

Fractionally-spaced receiver, 315
ISI coefficients, 311
Modeling of, 307
Optimum receiver, 310
Vector-space representation, 309

Isotropic scattering, 45
Kasami sequences, 471

Construction, 471
Level crossing rate, 61
LGMSK, 192
Link budget, 23

Handoff gain, 25
Interference loading, 25
Maximum path loss, 24
Receiver sensitivity, 24
Shadow margin, 25

Link imbalance, 32
Log-normal approximations

Farley’s method, 134
Fenton-Wilkonson method, 130
Schwartz-Yeh method, 132

Macrodiversity, 554
Probabilty of outage, 556
Shadow correlation, 557

Microcellular systems, 18
Manhattan microcells, 19
Highway microcells, 19
overlay/underlay

cluster planning, 533
micro area, 534

Minimum mean-square error equalizer, 322
Adaptive solution, 324
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Performance, 324
Tap solution, 323

MLSE, 329
T/2-spaced receiver, 337

Practical receiver, 359
Timing phase sensitivity, 361

Adaptive receiver, 335
Per survivor processing, 337

Branch metric, 332
Error event, 342
Error probability, 341

T/2-spaced receiver, 355
Computing union bound, 349
Error-state diagram, 350
Fading ISI channels, 346
Pairwise error probability, 344
Stack algorithm, 351
Static ISI channels, 344
Union bound, 342

Likelihood function, 332
Log-likelihood function, 332
MIMO receiver, 362

T/2-spaced receiver, 371
Discrete-time channel model, 366
Channel model, 363
IRC receiver, 378
J-MLSE receiver, 364
Pairwise error probability, 370
Viterbi algorithm, 370

State diagram, 334
States, 332
Trellis diagram, 334
Viterbi algorithm, 332

Mobile radio propagation
Multipath fading, 20
Path Loss, 20
Shadowing, 21

Modulation
bandwidth efficiency, 153
desirable properties, 153

Moments
Central moment, 687
Characterisitic function, 687
Generating function, 687
Variance, 687

MSK, 184
Error Probability, 256
OQASK equivalent, 185
Power spectral density, 217

Multipath fading, 20
Average delay, 77
Channel output autocorrelation, 79
Classifications of channels, 75

US channel, 76
WSS channel, 75
WSSUS channel, 76

Coherence time, 79

Correlation functions, 74
Delay spread, 76
Doppler shift, 42
Doppler spectrum, 47
Envelope correlation, 44, 56
Envelope distribution, 50
Envelope phase, 55
Envelope spectrum, 44, 56
Fade duration, 66
Flat, 41,44,71

Rayleigh, 51
Frequency non-selective, 41
Frequency selective, 71

coherence bandwidth, 78
multipath intensity profile, 77

Isotropic scattering, 45
Level crossing rate, 61
Phase distribution, 50
Power delay profile, 77
Rayleigh fading, 50
Ricean fading, 51
Scattering function, 79
Simulation, 80

T-spaced model, 92
COST207 models, 91
Filtered Gaussian noise, 80
Sum of Sinusoids, 81
Multiple envelopes, 84
Wide-band channels, 90

Spatial correlation, 67
Squared-envelope correlation, 60
Transmission functions, 72
Zero crossing rate, 66

Multipath, 39
Multiresolution modulation, 177
Nakagami fading, 53
Non-coherent detection, 262

Error Probability, 264
OFDM, 175

Error Probability, 252
Interchannel interference, 253

FFT implementation, 177
ISI and guard interval, 179
Power spectral density, 208
Signal description, 175

OQPSK, 169
Power spectral density, 206

Orthogonal modulation
Bi-orthogonal signals, 174
Binary orthogonal codes, 173
FSK, 172
Orthogonal multipulse modulation, 175
Walsh-Hadamard sequences, 473

Orthogonal multipulse modulation, 175
Orthogonal signals

Error Probability
Coherent Detection, 249
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Non-coherent detection, 264
Outage, 22

Co-channel interference, 22
Probability of, 135
Thermal noise, 22

PAM, 167
Constellations, 167
Error probability, 246

Parseval’s theorem, 706
Path loss models, 103

COST231-Waiash-Ikegami model, 109
COST231-Hata model, 108
Flat earth model, 103
Free space, 103
Indoor microcells, 114
Lee’s area-to-area model, 105

Path loss Models
Macrocells, 103

Path loss models
Okumura-Hata and CCIR models, 104
Outdoor microcells, 108
Street microcells, 111

Corner effect, 112
Harley’s model, 111

Path loss exponent, 21
PCCC, 444
Power control, 593
Power delay profile, 77

Average delay, 77
Delay spread, 77

Power spectral densities, 198, 706
 207

Complex envelope, 199
Linear full response modulation, 203
Linear partial response modulation, 204
Uncorrelated data symbols, 203

CPFSK, 215
Cross, 706

Power spectral density
DS spread spectrum, 475

Power spectral densities
Full response CPM, 211
OMSK, 218

OFDM, 208
OQPSK, 206
PSK, 206
QAM, 205

Power spectral density

Probability distributions, 688
Binomial, 688
Central chi-square, 692
Exponential, 692
Gaussian, 689
Geometric, 688
Multivariate Gaussian, 694

Non-central chi-square, 693
Poisson, 688
Rayleigh, 690
Rice, 690

Probability
Bayes’ theorem, 687
cdf, 688
cdfc, 688
Complementary error function, 689
Conditional, 685
Error function, 689
pdf, 687
Total probability, 686

PSK, 168
Error Probability, 240

Differential detection, 258
Power spectral density, 206

Pulse shaping, 161
Folded spectrum, 162
Ideal Nyquist pulse, 163
Nyquist first cirterion, 162
Partial response

Duobinary, 204
Modified duobinary, 205

Raised cosine, 164
Roll-off factor, 164

Root-raised cosine, 164
QAM, 165

Error probability, 248
Power spectral density, 205
Signal constellations, 167

Radio propagation, 19, 39
Envelope fading, 40
Mechanisms, 19
Multipath fading, 41
Multipath, 39
Path loss models, 103
Path loss, 20
Shadowing, 98

Raised cosine, 164
RAKE receiver, 495

performance, 496
Random processes, 697

Autocorrelation, 699
Autocovariance, 699
Complex-valued, 704
Correlation matrix, 703
Covariance matrix, 703
Crosscorrelation, 702
Crosscovariance, 703
Cyclostationary, 711
Discrete-time, 709
Ergodic, 700

Autocorrelation, 700
Mean, 700

Linear systems, 706
Orthognonal, 703

MSK, 217

TFM, 218
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Statistically independent, 703
Strictly stationary, 698
Uncorrelated, 703
Wide sense stationary, 699

Rayleigh quotient, 345
Recursive systematic convolutional codes, 405
Reuse partitioning, 530

cell splitting, 532
Rice factor, 52
Ricean fading

Aulin’s model, 52
Rice factor, 52

Root-raised cosine, 164
RSSE, 340

subset transition, 340
subset trellis, 340
subset-state, 340

SCCC, 448
Sequence estimation

DDFSE, 337
MLSE, 330
RSSE, 340

Shadowing, 21,41,98
Area mean, 98
Composite shadow-fading distributions, 100

Gamma-log-normal, 102
Local mean, 98
Shadow standard deviation, 21
Simulation, 99

Signal strength averaging, 598
Sample averaging, 601
Window length, 599

Singleton bound, 396
Smart antennas

Performance
Bad areas, 526
Bad points, 526

Trunkpool techniques
Omni-trunkpool, 520
Sector-trunkpool, 520

Soft decision decoding, 414
Spatial correlation

Base station, 68
Spectral Efficiency, 30

Spatial efficiency, 31
Trunking efficiency, 32

Spreading sequences, 464
Aperiodic autocorrelation, 464
Full period autocorrelation, 464
Full period cross-correlation, 464
Partial period correlation, 465

Spreading waveforms, 465
m-sequences, 467
Autocorrelation, 466
Barker sequences, 472
Complementary codes, 475
Gold sequences, 469

Kasami sequences, 471
Variable length orthogonal codes, 474
Walsh-Hadamard sequences, 473

Spreading
Balanced quaternary, 461
Complex, 460
Dual-channel quaternary, 460
Spreading sequences, 464
Spreading waveforms, 466
Simple binary, 461

Standard Array decoding, 398
Switched beam antennas, 518

Performance, 524
Forward link, 524
Reverse link, 523

Trunkpool techniques, 520
Syndrome decoding, 399
TCM, 407

Asymptotic coding gain, 411
Design

Fading ISI channels, 429
Flat fading, 422
Static ISI channels, 429

Encoder, 407
Mapping by set partitioning, 407–408
Multidimensional TCM, 423

2-D trellis codes, 426
Multiple TCM (MTCM), 424
Parallel transition, 410
Partition chain, 408
Performance

AWGN channel, 412
Fading ISI channels, 427
Flat fading, 417
Transfer function, 417
Union bounds, 436

TDMA
GSM/DCS1800/PCS1900, 3
IS-54,5
PDC, 5,7

TFM, 195
GTFM, 197
Power spectral density, 218

Threshold effect, 22
Tone interference, 478
Transmission functions, 72

Delay Doppler-spread function, 74
Input delay-spread function, 72
Output Doppler-spread function, 72
Transfer function, 73

Trunking efficiency
Blocked calls cleared, 33
Erlang-B formula, 33
Erlang-C formula, 36
grade of service, 645

Trunkpool techniques, 520
Turbo codes, 443
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Parallel
Decoder, 446
Encoder, 444

Serial, 448
Weight distribution, 448

PCCC, 450
SCCC, 453

Upper bounds
Chebyshev bound, 694
Cheraoff bound, 416, 695
union-Chernoff bound, 417

Variable length orthogonal codes, 474
Velocity estimation, 604

Level crossing rate, 606
Covariance method, 608
Envelope, 606
Zero crossing rate, 606

Sensitivity, 611
Gaussian noise, 615

Sampling density, 618
Scattering distribution, 612

Viterbi algorithm, 332
path metrics, 333
Surviving sequences, 333

Walsh-Hadamard sequences, 473
Orthogonal CDMA, 473
Orthogonal modulation, 473

Wireless systems and standards, 3
Analog cellular systems, 3
Cordless telephones, 7
Second generation cellular systems, 3
Third generation cellular systems, 8
Wireless LANS and PANs, 14

Zero crossing rate, 66
Zero-forcing equalizer, 319

Adaptive solution, 320
Performance, 321
Tap solution, 319
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