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Preface

This book follows from my first edition and is intended to provide a thor-
ough, uptodate, treatment of wirelessphysical communications. Thebook is
derived from a compilation of course material that | have taught in a graduate-
level course on physical wireless communications at Georgia Tech over the past
decade. This textbook differs from others on the subject by stressng mathe-
matical modeling and analysis. My approach is to include detailed derivations
from first principles. The text is intended to provide enough background ma
terid for the novice student enrolled in a graduate level course, while having
enough advanced material to prime the more serious graduate students that
would like to pursue research in the area. The book is intended to stress the
fundamentals of mobile communications engineering that are important to any
mobilecommunication system. | havethereforekept thedescription of existing
and proposed wireless standards and systems to a minimum. The emphasis on
fundamental issues should benefit not only to students taking formal instruc-
tion, but also practicing engineers who are likely to aready have a detailed
familiarity with the standards and are seeking to deepen their knowledge of the
fundamentals and principles of this important field.

Chapter 1 begins with an overview that is intended to introduce a broad
array of issues relating to wireless communications. Included is a description
of various wireless systems and services, basc concepts of cellular frequency
reuse, and the link budget for cellular radio systems.

Chapter 2 treats propagation modeling and was inspired by the excellent
reference by Jakes. It begins with a summary of propagation models for
narrow-band and wide-band multipath channels, and provides a discussion
of channel smulation techniques that are useful for radio link analysis. It
concludes with adiscussion of shadowing and path loss models. Chapter 3 is
arelated chapter that provides a detailed treatment of co-channel interference,
the primary impairment in high capacity celular systems.
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Chapter 4 covers the various types of modulation schemes that are used
in mobile communication systems along with their spectra characterigtics.
Chapter 5 discusses the performance of digital signa on narrow-band flat
fading channels with avariety of recaiver structures, while Chapter 6 includes
atreatment of antenna diversity techniques.

Chapter 7 provides an extensive treatment of digital signaling on the fading
IS channels that are typica of mid-band land mobile radio systems. The
chapter begins with the characterization of 1Sl channels and goes on to discuss
techniques for combating 1Sl based on symbol-by-symbol equalization and
seguence estimation. The chapter concludes with adiscussion of co-channel
demodulation and co-channel interference cancellation.

Chapter 8 covers bandwidth efficient coding techniques. The chapter begins
with adiscussion of basic block and convolutional coding. It then goes on to
adetailed discussion onthedesign and performanceanalysisof convol utional
and trellis codes for additive white Gaussian noise channels, and interleaved fl at
fading channels. The chapter concludes with an introduction to Turbo coding.

Chapter 9 is devoted to soread spectrum techniques. The chapter begins
with an introduction to direct sequence and frequency hop spread spectrum.
Thisisfollowed by adetailed treatment of spreading sequences. Also included
is adiscussion of the effects of tone interference on direct sequence spread
spectrum, and the RAKE receiver performance on wide-band channels. The
chapter wraps up with adiscussion of theerror probability of direct sequence
code division multiple access.

Chapter 10 considers TDMA cdllular architectures. The chapter beginswith
adiscussion of conventional TDMA systems and how they are evolved to meet
traffic growth. Thisis followed by hierarchical overlay/underlay architectures.
Finaly, the chapter wraps up with macrodiversity TDMA architectures. Chap-
ter 11 isthe CDMA counterpart to Chapter 10 and considers issues that are
relevant tocellular CDMA, such as capacity estimation and power control.

Chapter 10 covers the important problem of link quality evaluation and
handoff initiation, and handoff performance, in cellular systems. Chapter 11
provides an overview of the various channel assignment techniques that have
been proposed for FDMA and TDMA cellular systems.

The book contains far too much detail to be taught in a one-semester course.
However, | believe that it can serve as a suitable text in most Situations through
the appropriate selection of material. My own preference for a one-semester
courseistoincludethefollowingin order: Chapter 1, Chapter 2, Sections 3.1
and 3.2, Chapter 4, Chapter 5, and Chapter 6. Then choose from Chapters 8
through 13 depending on my interest at thetime.

| would like to acknowledge al those who have contributed to the preparation
of this book. The reviewers Vijay Bhargava at the University of Victoria
and Sanjiv Nanda at Lucent Technologies were very valuable in the early



Preface XV

stages of the first edition of this book. The subsequent review by Upamanyu
Madhow at the University of Illinois and in particular the detailed review by
Keith Chugg a the University of Southern California were highly useful for
improving this book. | am grateful to my doctoral students, past and present,
who have contributed significantly to this book. The contributions of Wern-Ho
Sheen, Khalid Hamied, Mark Austin, Jeff (Lihbor) Yiin, Ming-Ju Ho, Li-Chun
(Robert) Wang, Krishna Narayanan, Dukhyun Kim, Jinsoup Joung, and John
(Yongchae) Kim are particularly noteworthy. Finaly, | would like to thank
BellSouth, GTE Labs, Motorola, Panasonic, Hitachi, Nortel, Korea Telecom,
WILAN, and the National Science Foundation, for sustaining my research
efforts in wirdless communications over the past 10 years. This research
experience has in many cases lead to material that | brought to the classroom
and have included in this book.

GORDON L. STUBER
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Chapter 1

INTRODUCTION

Wireless systems and services have undergone a remarkable development,
since the first cellular and cordless telephone systems were introduced in the
ealy 1980s Firg generation cellular and cordless telephone systems were
based on analog FM technology and designed to carry narrow-band circuit
switched voice services. Second generation cellular and cordless telephone
systems were introduced in the early 1990s that use digital modulation, and
offer improved spectral efficiency, and voice quality. However, these sec-
ond generation systems are still used for narrow-band voice and data services.
Third generation wireless systems, currently under development that offer sub-
stantially higher bit rates ranging from 9.6 kb/s for satellite users, 144 kb/s
for vehicular users, 384 kb/s for pedestrian users to 2.048 Mb/s for indoor
office environments. These systems are intended to provide voice, data, the
more bandwidth intensive multimedia services, while satisfying more stringent
availability and quality of service (QoS) requirements in all types environments.
Fourth generation systems are also on the horizon that will provide broadband
wireless access with asymmetric bit rates that approach 1 Ghl/s.

Radio access systems are often distinguished by their coverage areas and bit
rates, as shown in Fig. 1.1. Mobile satellite systems provide global coverage
to mobile users, but with very low bit rates. Land mobile radio systems use
terrestria cellular and microcellular networks to provide wide area coverage to
vehicular and pedestrian users. Fixed wireless access systems provide radio
connectivity over a campus or neighborhood area to stationary users. Findly,
wirdess local area networks provide stationary in-building users with very
high speed services.
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Outdoor Mobile

Figure 1.1.  Wireless Services.
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1. WIRELESS SYSTEMSAND STANDARDS
11 FIRST GENERATION CELLULAR SYSTEMS

The early 1970s saw the emergence of the radio technology that was needed
for the deployment of mobile radio systems in the 800/900 MHz band &t a
reasonable cost. In 1976, the World Allocation Radio Conference (WARC)
approved frequency allocations for cellular telephones in the 800/900 MHz
band, thus setting the stage for the commercia deployment of cellular systems.
In the early 1980s, many countries deployed first generation cellular systems
based on frequency division multiple access (FDMA) and analog FM technol -
ogy. With FDMA thereisasingle channel per carrier. When aMS accesses the
system two carriers (channels) are actually assigned, one for the forward (base-
to-mobile) link and one for the reverse (mobile-to-base) link. Separation of the
forward and reverse carrier frequencies is necessary to allow implementation
of a duplexer, a complicated arrangement of filters that isolates the forward
and reverse channels, thus preventing aradio transceiver from jamming itself.

In 1979, thefirst analog cellular system, the Nippon Telephone and Telegraph
(NTT) system, became operational. In 1981, Ericsson Radio Systems AB
fielded the Nordic Maobile Telephone (NMT) 900 system, and in 1983 AT&T
fielded the Advanced Mobile Phone Service (AMPS) as a tria in Chicago.
Several other first generation analog systems were also deployed in the early
1980sincluding TACS, ETACS, NMT 450, C-450, RTM S, and Radiocom 2000
in Europe, and JTACS/INTACS in Japan. The basic parameters of NTT, NMT,
and AMPS are shown in Table 1.1. The NMT 900 system uses frequency
interleaved carriers with a separation of 125 kHz such that overlapping carriers
cannot be used with the same base station. In the NTT, NMT, and AMPS
systems, a separation of 45 MHz is used between the transmit and receive
frequencies, 0 as to implement the duplexer.

12 SECOND GENERATION CELLULAR SYSTEMS

Second generation digital cellular systems have been developed throughout
theworld. Theseinclude the GSM/DCS1800/PCS1900 standard in Europe, the
PDC standard in Japan, and the IS 54-/136 and IS-95 standards in the United
States. Parameters of the air interfaces of these standards are summarized in
Tabs. 1.2 and 1.3, and a brief description of each follows.

121 GSM/DCSI1800/PCS1900

European countries seen the deployment of incompatible first generation
cellular systems that prevented roaming throughout Europe. As as result,
the Conference of European Postal and Telecommunications Administrations
(CEPT) established Groupe Speciale Mobile (GSM) in 1982 with the mandate
of defining standards for future Pan-European cellular radio systems. The GSM



Feature NTT NMT AMPS
Frequency Band 925-940/870-885 890-915/917-950 824-849/869-894
RL/FL® 915-918.5/860-863.5
(MHz) 922-925/867-870
Carrier Spacing 25/16.25 12.5° 30
(kHz) 6.25

6.25
Number of 600/2400 1999 832
Channels 560

280
Modulation analog FM analog FM analog FM

2RL = reverse link, FL = forward link
b frequency interleaving using overlapping channels, where the channel spacing is half the nominal channel

bandwidth.

Figure 1.2.

Table 1.1.  First generation cellular standards
0.577 ms Time Slot
TCH C SW C TCH G
57 1 26 1 57 8.25
R Guard time for burst transient response (Ramp time)

TCH  Traffic channel

C Control bit
SwW Synchronization word
G Guard bits

Time slot format for GSM. Units are in bits.

system (now “Global System for Mobile Communications’) was developed
to operate in a new frequency allocation, and made improved quality, Pan-
European roaming, and the support of data services its primary objectives.

GSM was deployed in late 1992 as the world's first digital cellular system.
In its current version, GSM can support full-rate (8 dots/carrier) and half-rate
(16 dots/carrier) operation, and provide various synchronous and asynchronous
data services at 2.4, 4.8, and 9.6 kb/s that interface to voiceband modems (e.g.,
V.22bis or V.32) and ISDN. GSM uses TDMA with 200 kHz carrier spacings,
eight channels per carrier with atime dot (or burst) duration of 0.577 ms, and
Gaussian minimum shift keying (GMSK) with araw bit rate of 270.8 kb/s. The
time dot format of the GSM traffic channels is shown in Fig. 12
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Variants of GSM have aso been developed to operate in higher frequency
bands. In Europe, the Digital Cellular System 1800 (DCS 1800) was devel oped
by ETSI asastandard for personal communi cation networks (PCNs). DCS 1800
IS a derivative of the GSM system, but differs in a number of ways. First,
DCS1800 operates in the 1710-1785 MHz (M S transmit) and 1805-1880 MHz
(BS transmit) bands, whereas GSM operates in the 900 MHz band. Second,
DCS 1800 is optimized for two classes of hand held portable units (rather than
mobile units) with a pesk power of 1 W and 250 mW, respectively. There are
aso some changes in the DCS 1800 standard to support overlays of macrocells
and microcells.

GSM is deployed in North America as PCS 1900 and operates in the 1830
1990 MHz PCS bands. PCS1900 is smilar to DCS1800, but with a few
differences. Oneisthe use of the ACELPEFR (Enhance Full Rate) vocoder that
was developed for the North American market. GSM has been a phenomenal
success.  In late 1997, 66 million GSM subscribers were serviced by 256
network operators in 110 countries.

122 1S54/136 AND IS95

In North Americathe primary driver for second generation systems was the
capacity limit felt by some AMPS operators in the largest US markets, eg.,
New York, Chicago, Los Angeles. One af the key objectives established by the
Cellular Telephone Industry Association (CTIA) was that any second genera-
tion cellular system must provide a 10-fold increase in capacity over AMPS.
Furthermore, since AMPS was aready deployed extensively throughout North
America, it was desirable that any second generation cellular system be reverse
compatible with AMPS. This eventually lead to the development of dual-mode
transceivers.

While Europe seen the convergence to the GSM standard, North America
seen the emergence of two second generation digital cellular standards, 1S
54/136 and 1S95, based on time division multiple access (TDMA) and code
division multiple access (CDMA) technology, respectively. The IS-54 stan-
dard was adopted in 1990, and specifies anew digital signaling scheme based
on F'TDMA with 30 kHz carrier spacings and /4 phase-shifted quadrature
differential phase shift keyed (7/4-DQPSK) modulation with araw bit rate of
48.6 kbi/s [95]. 1S54 and 1S-136 differ in the control channel; 1S-54 uses an
anaog control channel, whereas 1S-136 uses a digital control channel. The
IS-54/136 ar interface specifies 6 dots (or bursts) per frame, yielding 3 full
rate channels or 6 half rate channels per carrier. The burst format for the
1S-54/136 traffic channel is shown in Fig. 1.3. A straight forward deployment
of 1S-54/136 will offers 3 (6) times the cell capacity of AMPS for the full
(half) rate systems, respectively. Additional capacity gains are also possible.
1S-54/136 is now been deployed throughout North American and Indonesia.



.»—‘ 6.67 ms Time Slot ———‘

TCH TCH
SW o 1SACCH|  eacem « (FACCH) RSVD

28 12 130 12 130 12

r——; 6.67 ms Time Stot ‘——«

TCH SW TCH SACCH | ¢cC TCH
(FACCH) (FACCH) (FACCH)
6 16 28 122 12 12 122

Forward

Reverse

G Guard Bits

R Guard Time for burst transient response (Ramp time)
SACCH Slow Associated Control Channel

FACCH Fast Associated Control Channel

SW Synchronization Word

cC Color Code

TCH  Traffic Channel

RSVD Reserved

Figure 1.3.  Burst format for 1S-54/136 traffic channel. Units are in bits.

Just after the CTIA adopted 1S54 in 1990, another second generation digital
cellular system was proposed by Qualcomm based on CDMA technology.
In March 1992, CDMA was adopted as IS-95 [96]. With IS95, the basic
user data rate is 9.6 kb/s, which is spread by using PN sequence with a chip
(clock) rate of 1.2288 Mchips's (a processing gain of 128). The forward
channel supports coherent detection by using apilot channel (code) for channel
estimation. Information on the forward link is encoded by using a rate-1/2
convolutional code, interleaved, spread by using one of 64 Walsh codes, and
transmitted in 20 ms bursts. Each MS in a cell is assigned a different Walsh
code, thus providing complete orthogonality under ideal channel conditions.
Final spreading with a base-specific PN code of length 2 is used to mitigate
the multiple access interference to and from other cells. One of the major
drawbacks of the 1S-95 standard is that the coded downlink transmissions are
not interleaved across bursts and, therefore, the signd is susceptible to fading.

CDMA systems are susceptible to the near-far effect, a phenomenon where
MSs close into a BS will swamp out the signals from more distant MSs. For
CDMA systems to work well, al signals must be received with the same power,
acondition that isdifficult to achieve in an erratic land mobile radio propagation
environment. To combat the near-far effect, the 1S-95 reverse link uses fast
closed loop power control to compensate for fluctuations in received signal
power due to variations in the radio link. The information on the reverse link
is encoded by using a rate-1/3 convolutional code, interleaved, and mapped
onto one of 64 Walsh codes. Unlike the forward channel that uses the Walsh
codesfor spreading, the reverse link uses the Walsh codes for 64-ary orthogonal
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modulation. The BS receiver uses non-coherent detection, since no pilot signal
is transmitted on the reverse link. Final spreading is achieved with a user-
specific PN sequence of length 242 — 1. Both the BSs and the MSs use RAKE
recelvers to provide multipath diversity. A reguirement of the 1IS95 system
is the need for soft handoffs, where the MS maintain can a radio link with
multiple BSs in the boundary area between cells.

Ever since the introduction of 1S-95, there has been a continued debate over
the relative capacity of 1S-54/136 and 1S-95. Initial capacity claims for 1S-95
were 40 times AMPS. However, current estimates are more conservative and
experience from commercia deployments show a capacity that is 6 to 10 times
AMPS.

123 PDC

In 1991, the Japanese Ministry of Posts and Telecommunications standard-
ized Persona Digital Cellular (PDC). The air interface of PDC is similar in
some respects to 1S54/136. PDC uses TDMA with 3 full rate (6 haf rate)
channels per carrier, 25 kHz carrier spacings, and «/4-DQPSK modulation
with a raw bit rate of 42 kb/s. The burst format for the PDC traffic channels
is shown in Fig. 14. Notice that the synchronization word is placed near the
center of the PDC burst, whereas it is placed near the beginning of the IS
54/136 burst as shown in Fig. 1.3. Thisfeature better enables the PDC receiver
to track channel variations over the time slot. Another key feature of PDC
standard is the inclusion MS antenna diversity. Like 1S-54/136, PDC suffers
from degraded performance under conditions of low delay spread due to the
loss of multipath diversity. However, antenna diversity in the PDC MS receiver
maintains spatial diversity under these conditions. More details on the PDC
system can be found in the complete standard [280].

1.3 CORDLESS TELEPHONE SYSTEMS

Cordless telephones find several applications including domestic telephones,
telepoint (cordless phone booth), wireless PABX (private access business ex-
change), and wireless local loops or radio drops. Similar to cellular telephones,
first generation cordless telephones were based on analog FM technology. Since
their introduction, cordless telephones gained high popularity. However, first
generation cordless telephones have become victims of their own success; the
voice quality was/is unacceptable in high-density subscriber areas. Thislead to
the development of second generation digital cordless telephones. In Europe
two digital cordless telephone standards have been developed, CT2 and Digital
European Cordless Telephone (DECT) [325]. In Canada a modification of
CT2, caled CT2+, has been developed, that offers two-way calling, roaming,
and enhanced data service capabilities. In Japan, the Personal Handyphone
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Figure 1.4.  Time slot format for Japanese PDC. Units are in bits.
System (PHS) has been developed. The air interface parameters of various
cordless phone standards are summarized in Teb. 14

14 THIRD GENERATION CELLULAR SYSTEMS

In March 1992, WARC approved a worldwide spectra alocation in sup-
port of IMT-2000 (International Mobile Telephone by the Year 2000) in the
1885-2200 MHz band. The IMT-2000 standard has been developed by the
International Telecommunications Union Radio Communications (ITU-R) and
Telecommunications (ITU-T) sectors. Various standards bodies around the
world have provided inputs to the IMT-2000 standard definition. The vision
of IMT-2000 is to provide ubiquitous wireless network that can support voice,
multimedia and high-speed data communication. One of the main attributes
of IMT-2000 is the introduction of wireless wide-band packet-switched data
sarvices for wireless access to Internet with speeds up to 2 Mb/s. The key
principles of IMT-2000 are;

= Terminal and personal mobility with universal access and worldwide roam-
ing through the use of portable terminals. Persona mobility will be facil-
itated through the use of personalized telephone numbers. The success of
using a wireline telephone depends upon the knowledge of where a caled
party islocated. Asaresult, 80% of the calls never reach the intended party.
With persona communication services (PCS), inteligent networks (INs)
will be employed to assume the burden of locating a cadled party, leaving
the subscribers free to roam anywhere in the world.
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Feature GSM/DCS1800/PCS 1900 IS-54/136

Frequency Band GSM: 890-915/ 824-829/

RL/FL (MHz)* 935-960 869/894
DCS1800: 1710-1785/ 1930-1990/
1805-1880 1850-1910
PCS1900: 1930-1990/
1850-1910

Multiple Access F/TDMA F/TDMA

Carrier Spacing (kHz) 200 30

Modulation GMSK m/4-DQPSK

Baud Rate (kb/s) 270.833 48.6

Frame Size (ms) 4.615 40

Slots/Frame 8/16 3/6

Voice Coding (kb/s) VSELP(HR 6.5) VSELP (FR 7.95)
RPE-LTP (FR 13) ACELP (EFR 7.4)
ACELP (EFR 12.2) ACELP (12.2)

Channel Coding Rate-1/2 CC rate-1/2 CC

Frequency Hopping yes no

Handoff hard hard

2 RL = reverse link, FL = forward link

Table 1.2.

Second generation digital cellular standards

= Expanded range of services as implemented in two phases. Phase 1 will
support circuit and packet switched multimedia with asymmetric user data
rates up to 2 Mb/s. Phase 2 will provide user datarates up to 20 Mb/s. These
capabilities will enable applications such as web browsing, file transfer, e-
mail, and traveler information services, and multimedia services such as
video conferencing. The minimum requirements on user data rate for both
circuit and packet switched datain four different environments is as follows:

Vehicular: 144 kb/s
Pedestrian; 384 kb/s

Indoor office: 2 Mbls

Satellite: 9.6 kb/s

« Supplementary services such as cdl waiting, caler ID, store and forward,
etc.. Call management will become a necessity to ensure that PCS does not
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Feature PDC 1S-95

Frequency Band 810-826/ 824-829/

RL/FL (MHz)* 940-956 869-894
1429-1453/ 1930-1990/
1477-1501 1850-1910

Multiple Access F/'TDMA F/CDMA

Carrier Spacing (kHz) 25 1250

Modulation 7/4-DQPSK QPSK

Baud Rate (kb/s) 42 1228.8 Mchips/s

Frame Size (ms) 20 20

Slots/Frame 3/6 1

Voice Coding (kb/s) PSI-CELP (HR 3.45) QCELP (8,4,2,1)
VSELP (FR 6.7) RCELP (EVRC)

Channel Coding

rate-1/2 BCH

FL: rate-1/2 CC
RL: rate-1/3 CC

Frequency Hopping

no

N/A

Handoff

hard

soft

% RL = reverse link, FL = forward link

Table 1.3.  Second generation digital cellular standards

become a nuisance. That is, the subscribers must be able to control their
availability for receiving calls.

Unified, seamless, infrastructure that will unify diverse infrastructures such
aspaging, cellular, and satellite networks. In particular, the use of acommon
band for terrestria and satellite networks.

Integration of mobile and wire-line networks in attempt to achieve the strict
QoS controls wire-line networks. Tall line voice quality is one example.

Service transparency to provide the same services everywhere but with
different data rates. International roaming is also desirable with a virtual
home environment.

Spectral efficiency, quality, flexibility, and overdl cost improvement as a
result of the utilization of advanced technologies.

The migration to third generation wireless systems presents some difficult

challenges for wireless service providers including the following:
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Feature c12 CT2+ DECT PHS
Frequency Band (MHz) 864-868 944-948 1880-1900 1895-1918
Multiple Access FDMA F/TDMA F/TDMA F/TDMA
Duplexing TDD TDD TDD TDD
Carrier Spacing (kHz) 100 100 1728 300
Modulation GFSK GSFK GFSK m/4-DQPSK
Number of Carriers 40 40 10 77
Channels/Carrier 1 1 12 4
Bit Rate (kb/s) 72 72 1152 384
Speech Coding ADPCM ADPCM ADPCM ADPCM
32 kb/s 32 kb/s 32 kb/s 32 kb/s

Frame Size (ms) 2 2 10 5
Mean TX Power (mW) 5 5 10 10
Peak TX Power (mW) 10 10 250 80

Table 1.4.  Cordless telephone standards.

System revolution versus evolution. A revolutionary approach provides the
greatest flexibility. However, an evolutionary approach is more desirable
because there are enormous infrastructure investments in legacy systems,
and the maintenance of alarge existing subscriber base requires athird gen-
eration system that is reverse compatible with the existing second generation
systems.

Rapid and unpredictable growth leads to difficulty in system planning. High
spectrd efficiency isessential to support large subscriber bases. Developing
countries in particular are experiencing explosive growth due to the lack of
a wired infrastructure.

Changing customer needs requires a flexible solution.

Networ k management for effective radio resource and mobility management
with mixed services, billing, security, fraud prevention.

Mobile satellite systems can make globa spectral coordination very difficult.

Ten different multiple access schemes were originally proposed for IMT-
2000. Two of these schemes are based on TDMA approaches, namely DECT

and UWC-136. The remaining 8 proposals are based on wide-band CDMA,
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Feature UWC-136 UWC-136+ UWC-136HS UWC-136HS
vehicular indoor
GSM EDGE
Multiple TDMA TDMA TDMA TDMA
Access
Duplexing FDD FDD FDD FDD/TDD
Carrier 30 30 200 1600
Spacing (kHz)
Modulation m/4-DQPSK CCH: 8-PSK Q-0-QAM
7 /4-DQPSK
TXH: GMSK B-0-QAM
7/4-QPSK
DTCH: 8-PSK
Frame 40 40 4.615 4.615
Length (ms)
Slots/Frame 6 6 8 64@72us
16@72us
Bit Rate 438.6 72.9 812.5 5200
(kb/s) (8-PSK) (8-PSK) (Q-0-QAM)
48.6 270.8 2600
(QPSK/ (GMSK) (B-0-QAM)
DQPSK) 2600
(B-0-QAM)

Table 1.5. Parameters of UWC-136.

referring to a CDMA system having a bandwidth of 5 MHz or more. The
UWC-136 proposa is the 3G evolution of the 1S-136 family of standards.
Some parameters of the UWC-136 proposa are shown in Tab. 1.5. UWC-136
meets IMT-2000 requirements by using enhanced modulation techniques (IS-
136+) and using a wider band 200 kHz carrier (UWC-136HS) for services that
are not possible on the 30 kHz carrier. The UWC-136HS proposdl is the same
as EDGE (Enhanced Data for Globa Evolution) which is an enhanced GSM
ar interface. EDGE is asystem that is the convergence of the GSM and 1S-136
family of standards.

Table 16 summarizes the parameters for the two remaining wide-band
CDMA proposals to IMT-2000, namely W-CDMA and cdma2000. The com-
mon attributes of wide-band CDMA systems include the following:

* provision of multirate services
* packet data services
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Feature W-CDMA cdma2000
Multiple Access FDD: DS/CDMA FDD: DS-CDMA
TDD: T/CDMA TDD: T/CDMA
Chip Rate (Mcps) FDD: 1.024/4.096 1.2288/3.6864
8.192/16.384 7.3728/11.0593/
TDD: 4.096 14.7456
Carrier Spacing (MHz) (1.25),5,10,20 1.25,5,10,15,20
Frame Length (ms) 10 20
Modulation FDD: FL: QPSK FL: QPSK
RL: dual-channel RL: BPSK
QPSK
TDD: FL&RL: QPSK
Coding rate-1/2, 1/3 rate-1/2, 1/3,
K=9CC 114 K =9CC
optional rate-1/2, 1/3,
RS outer code 1/4, K =4 TC
Interleaving inter/intraframe intraframe
Spreading FDD: FL: BPSK QPSK
RL: QPSK
TDD: FL,RL: QPSK
Inter BS asynchronous synchronous

synchronization

Table 1.6.  Parameters for W-CDMA and ¢cdma2000.

* complex spreading

* acoherent uplink using a user dedicated pilot

« additional pilot channel in the downlink for beam forming
* seamless interfrequency handoff

» fast forward link power control

* optional multiuser detection

The major differences between the different system proposals center around
the chip rate that is used, and synchronous (cdma2000) vs. asynchronous
(W-CDMA) network operation.

Globa spectra co-ordination is essential for the IMT-2000 concept. The
spectral alocations of the regulatory agencies in mgor world markets are
shown in Fig. 1.5. In the United States, the 1885-2200 MHz band alocated
for IMT-2000 overlaps significantly with the 1850-1990 MHz band used to
support PCS services, as shown in Fig. 1.6. Blocks A and B correspond to
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Figure 1.6.  North American PCS frequency allocations.

major trading areas (MTAS) while blocks C through F correspond to basic
trading areas (BTAS). There are 51 MTAs and 492 BTAs in the United States.
In addition, 20 MHz of spectrum was reserved for unlicensed use according to
FCC Part 15 rules. Of this20 MHz, 10 MHz isfor packet switched applications
while 10 MHz is for circuit switched applications.

15 WIRELESSLANSAND AND PANS

A variety of wireless loca areanetwork (WLAN) and personal area network
(WPAN) systems have been developed to operate in unlicensed bands. Tab. 1.7
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Location Frequency Maximum Output
Range (GHz) Power (mW or dBm)
North America 2.400-2.4835 1000 mW
Europe 2.400-2.4835 100 mW EIRP
Japan 2.471-2.497 10 mW
United States 5.150-5.250 minimum of 50 mW or 4 dBm
(UNII lower band) + 10log,,B
United States 5.250-5.350 minimum of 250 mW or 11 dBm
(UNII middle band) + 10log, B
United States 5.725-5.825 minimum of 1600 mW or 17 dBm
(UNII upper band) + 10log,,B

Table 1.7. 2.4 and 5 GHz bands for license exempt use. B = -26 dB emission bandwidth in
MHz.

lists the unlicensed bands that are used in various parts of the world. Until a
few years ago, most of the WLAN systems that operated in unlicensed bands
were based upon proprietary air interfaces and MAC protocols, without an open
standard.

In 1997, the IEEE 802.11 standardization group established the first WLAN
standard based to provide 1 and 2 Mb/s aggregate rates. |EEE 802.11 uses
direct sequence spread spectrum modulation, an 11-bit Barker sequence for
spreading, and either BPSK (1 Mb/s) or QPSK (2 Mb/s). Barker sequences are
discussed in further detail in Chapter 8. In 1998, the IEEE 802.11b working
group defined an enhanced air interface to provide 5.5 and 11 Mb/s aggre-
gate data rates. The IEEE 802.11b air interface uses complementary code
keying (CCK), which is described in further detail in Chapter 8. In 1998,
|EEE 802.11a adopted orthogonal frequency division (OFDM) as the basis for
their new 5 GHz standard, targeting a range of data rates ranging from 6 to
54 Mb/s. The principles of OFDM are discussed in Chapters 4 and 5. Fol-
lowing IEEE 802.11a, High-Performance LAN (HiperLAN/2) (Europe) and
Multimedia Mobile Access Communication (MMAC) (Japan) adopted OFDM
in their physical layer specifications. The parameters of the IEEE 802 11a
OFDM standard are summarized in Tab. 1.8.

In 1999, the IEEEB02.15 Working Group was created to develop a Wireless
Personal Area Network (WPAN) standard. The Bluetooth specification has
been proposed as one such WPAN standard [153]. Bluetooth is an ad hoc
network that is based on Frequency Hop CDMA (FH-CDMA) and Gaussian
frequency shift keying (GFSK) with a modulation index of 0.3. Bluetooth uses
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Data Rate 6,9, 12, 18, 24, 36, 48, 54 Mb/s
Modulation BPSK, QPSK, 16-QAM, 64-QAM
Coding 172, 2/3, 3/4 CC

Number of subcarriers 52

Number of pilots 4

OFDM symbol duration 4 ps

Guard interval 800 ns

Subcarrier spacing 312.5kHz

3 dB bandwidth 16.56 MHz

Channel spacing 20 MHz

Table 1.8.  Key parameters of the IEEE 802.11a OFDM standard, from [333].

a set of 79 hop cariers with a spacing of 1 MHz and a hop dwell time of
625 ps. A single FH channel supports a data rate of 1 Mb/s. Bluetooth uses
either avery simplerate-1/3 3-bit repetition code or asimple rate-2/3 shortened
Hamming code.

2.  FREQUENCY REUSE AND THE CELLULAR
CONCEPT

A cellular telephone system has two basic functions; it must locate and track
both active and inactive mobile stations (MSs), and it must aways attempt to
connect the active M Ss to the best available base station(s) (BS(s)). The former
task is the subject of user location updating and paging. The latter task requires
the continuous evaluation of the radio link quality with the serving BS(s), and
the radio link quality with aternate BSs. This monitoring is performed by a
computer system that uses knowledge of the link quality evaluations, in addition
to the system topology and traffic flow, to decide upon the best BS(s) to serve
aparticular MS.

A cellular telephone system uses low power (less than 1 watt) radio commu-
nication between aMS and agrid of BSs [213]. Movement of the M S, however,
leads to highly erratic radio link quaity, and careful monitoring and control are
required to keep it acceptable. Evaluation of radio link quality is based upon
a large number of criteria, but at the core is a statistical measurement process
based on apriori knowledge of the expected radio channel characteristics. The
time required to measure the radio link quality and the accuracy of the mea-
surement depends on the local propagation characteristics. Time consuming
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link quality measurements will limit the ability of the cellular system to react
to degradations in link quality and compensate by changing the alocation of
power and bandwidth resources. Conversdly, if the link quality measurements
can be made quickly, then the time required for the cellular system to process
the link quality measurements, make decisions, and transmit desired changes
to the network entities, including the MSs, will limit the adaptability of the
cellular system. Limitations on the speed of measurement and control essen-
tially determine overall link quality and the size and distribution of cells in
modern cellular systems. The cell sizes, the ability radio links to withstand
interference, and the ability of the cellular system to react to variations in traffic
ae the main factors that determine the spectral efficiency of a cellular system.

In cellular systems, the available spectrum is partitioned among the BSs, and
agiven frequency is reused at the closest possible distance that the radio link
will alow. Smaller cells have a shorter distance between reused frequencies,
and this results in an increased spectral efficiency and traffic carrying capacity.
Dramatic improvement in spectral efficiency isthe main reason for the interest
in microcells. However, the microcellular propagation environment is highly
erratic. Distributed resource alocation agorithms must be used to maintain
high link quality.

The current trend istoward cellular systems that have high spectral efficiency
and offer ubiquitous service coverage. These systems will require i) effective
cellular architectures, ii) fast and accurate link quality measurements, iii) rapid
control in al types of environments, iv) installation of BSs to provide radio
coverage virtually everywhere, and v) power and bandwidth efficient air inter-
face schemes that can mitigate the harsh effects of the propagation environment
and tolerate high levels of noise and interference.

Cellular mobile radio systems that use TDMA and FDMA rely upon fre-
guency reuse, where users in geographicaly separated cells simultaneously
use the same carrier frequency. The cellular layout of a conventional macro-
cellular system is quite often described by a uniform grid of hexagonal cells
or radio coverage zones. In practice the cdls are not regular hexagons, but
instead are distorted and overlapping areas. The hexagon is an idea choice for
representing macrocdlular coverage aress, because it closdly approximates a
circle and offers a wide range of tesellating reuse cluster sizes. A tesdllating
reuse cluster of size N can be constructed if [258]

N=1: +ij + 42 (L.1)

wherei and | are non-negative integers, and s > 5. It follows that the alowable
cluster sSzesae N = 1, 3, 4, 7, 9, 12, ... Examples of 3-, 4-, and 7-cell
reuse clusters are shown in Fig. 1.7. The reuse clusters are tesdllated to form a
frequency plan. A simplified 7-cell frequency reuse plan is shown in Fig. 1.8,
where similarly marked cells use identical sets of carrier frequencies.
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Figure 1.7. Commonly used cellular reuse clusters.

Figure 1.8.  Macrocellular deployment using 7-cell reuse pattern.

The co-channe reuse factor D/R is defined asthe ratio of the co-channel
reuse distance D between cells using the same s&t of carrier frequencies and
the radius of the cells R". For hexagonal cells, the reuse cluster size N and the
co-channel reuse factor D/R are related by (see Problem 1.2)

D/R=V3N . (1.2)

For microcellular systems with lower BS antenna heights, regular hexagons
are no longer appropriate for approximating the radio coverage zones. Typica
microcell BSs use an antenna height of about 15 m, well below the skyline of
any buildings that might be present, and acceptable link quality can be obtained
anywhere within 200-500 m of the BS. For microcells, the choice of cell shape

! For hexagonal cdlls, R is the distance from the center to the corner of a cell.
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Figure 1.9.  Microcellular deployment along a highway with a 3-cell reuse pattern.
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Figure 1.10. Microcellular deployment in an urban canyon. Base stations are deployed at
every intersection in a dense urban area with a 2-cell reuse pattern.

depends greatly upon the particular deployment. For example, the linear cells
shown in Fig. 1.9 may provide a more accurate model of highway microcells
that are deployed along a highway with directiona antennas. In an area with
urban canyons, the buildings act as wave guides to channel the signd energy
along the dtreet corridors. Fig. 1.10 shows a typical Manhattan microcell
deployment that is often used to model microcells that are deployed in city
centers.

3.  MOBILE RADIO PROPAGATION ENVIRONMENT

Radio signals generally propagate according to three mechanisms; reflec-
tion, diffraction, and scattering. Reflections arise when the plane waves are
incident upon a surface with dimensions that are very large compared to the
waveength. Diffraction occurs according to Huygen's principle when there is
an obstruction between the transmitter and recelver antennas, and secondary
waves are generated behind the obstructing body. Scattering occurs when the
plane waves are incident upon an object whose dimensions are on the order of
awavelength or less, and causes the energy to be redirected in many directions.
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The relative importance of these three propagation mechanisms depends on the
particular propagation scenario.

As aresult of the above three mechanisms, macrocellular radio propagation
can be roughly characterized by three nearly independent phenomenon; path
loss variation with distance, dow log-normal shadowing, and fast multipath-
fading. Each of these phenomenon is caused by adifferent underlying physical
principle and each must be accounted for when designing and evaluating the
performance of a cellular system. Multipath-fading results in rapid variations
in the envelope of the received signal and is caused when plane waves arrive
from many different directions with random phases and combine vectoridly at
the receiver antenna. Typicaly, the received envelope can vary by as much as
30 to 40 dB over afraction of a wavelength due to constructive and destructive
addition. Multipath also causes time dispersion, because the multiple replicas
of the transmitted signal propagate over different transmission paths and reach
the receiver antenna with different time delays. Time dispersion may require
equalization in TDMA systems and RAKE reception in CDMA systems.

It is well known that the intensity of an electromagnetic wave in free space
decays with the square of the radio path length, d, such that the received power
at distanced is

e \2
Q,(d) = Quk < ~ d) (1.3)

where ), is the transmitted power, A, isthe wavelength, and k isaconstant of
proportionality. Although it may seem counter-intuitive, path loss is essential
in high capacity cellular systems, the reason being that arapid attenuation of
signal strength with distance permits a small co-channel reuse distance and,
therefore, a high spectral efficiency. The 800-900 MHz UHF band was chosen
for first generation cellular systems, partly because of its relatively short range
radio propagation characteristics. Of course if a large radio coverage area is
desired, asisthecasewith low capacity emergency and dispatch communication
systems (police, fire, etc..), then a small path loss is preferred. For this reason
the VHF band is preferred for these applications which results in a smaler
attenuation with distance.

Free space propagation does not apply in a mobile radio environment and
the propagation path loss depends not only on the distance and wavelength,
but also on the antenna heights of the MSs and the BSs, and the local terrain
characteristics such as buildings and hills (in macrocells). The site specific
nature of radio propagation makes the theoretical prediction of path loss difficult
and there are no easy solutions. The simplest path loss model assumes that the
received power is

Qp (4Bm)(d) = 1, (gpm (do) — 10810g o(d/do) + €(gp) (dBm)  (1.4)
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where po  ypm (do) = E[ (aBm)(do)] IS the average received signal power
(indBm) at a known reference distance that is in the far field of the transmitting
antenna. Typically, d, is 1 km for macrocells, 100 m for outdoor microcells,
and 1 m for indoor picocdls. The value of puq, (5. (o) Will depend on the
frequency, antenna heights and gains, and other factors. The parameter 3 is
caled the path loss exponent and is a key parameter that affects the spectra

efficiency of a celular system. This parameter is strongly dependent on the
cell sze and local terrain characterigtics. The path loss exponent ranges from

3 to 4 for atypical urban macrocellular environment, and from 2 to 8 for a
microcellular environment. Usually, the path loss exponents are determined by
empirica measurements.

The parameter e(gg) in (1.4) is a zero-mean Gaussian random variable (in
dB) that represents the error between the actual and estimated path loss. This
statistical variation in Q, (4pm)(d) is caused by shadowing. Shadows are gen-
erdly modeed as being log-normaly distributed, meaning that the probability
density function of Q(gpm)(d) is

L ( = 49, (4nm (4))?
PR, wom (@ (%) = T P {_ 20%3 ) (L5)
where
1O, (anm) (@) = B, (4pm)(do) — 1081l0gyo(d/do) (dBm) . (1.6)

The parameter o, isthe shadow standard deviation. A more accurate path
loss modedl results in a smdler oq. For macrocdls, oq typicaly ranges from
5to 12 dB, with o; = 8 dB being atypical value. Furthermore, o has been
observed to be nearly independent of the radio path length d. The received
signa power in the absence of shadowing as defined by (1.6) is caled the area
mean, while the received signd power in the presence of shadowing as defined
by (1.4) is caled the local mean. Fig. 111 illustrates the above concepts by
plotting the received signa strength as a function of the radio path length for
both free space and atypical urban macrocellular environment.

4.  CO-CHANNEL INTERFERENCE AND NOISE

Frequency reuse in FDMA/TDMA cellular systems introduces co-channe
interference, one of the major factors that limits the capacity of cellular sys-
tems. Co-channd interference arises when the same carrier frequency is used
in different cells. In this case, the power density spectra of the desired and
interfering signals completely overlap. Frequency reuse also introduces adja-
cent channd interference. This type of interference arises when neighboring
cdls use carrier frequencies that are spectraly adjacent to each other. In this
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Figure 1.11.  Path loss in free space and typical urban macrocellular environments; 3 = 4,
on = 8 dB. The received signal strength in dBm at a distance of 10 km is Gaussian distributed
with a mean of -70 dBm and a variance of o3 dB.

case the power density spectrum of the desired and interfering signals partially
overlap.

Wireless radio links quite often exhibit a threshold effect, where the link
quality is acceptable when both the carrier-to-noise ratio I' and the carrier-
to-interference ratio A exceed certain thresholds, denoted by Ty, and Ay,
respectively [115].2 Otherwise, the link quality is unacceptable and an outage
is said to occur. The thresholds Iy, and Ay, depend on many parameters of
the radio link, including the particular modulation and coding scheme that is
employed, the recelver structure, the measure of link quality, the propagation
environment, the MS velocity, and other factors. Once the air interface is
specified, the propagation environment determines whether or not an outage
occurs.  For fast moving MSs, path loss and shadowing determine the link
quality once I'yy, and A¢n have been specified. Conversdly, for dow moving
MSs, the link quality may aso become unacceptable when the received signal
envelope exhibits a deep fade due to multipath fading.

Here we introduce two types of outages. The first is the thermal noise
outage, defined as

On = P(I' < T) (1.7)

and the second is the co-channel interference outage, defined as

Or = P(A < Ag) . (1.8)

*For the time being, the effect of adjacent channel interference will be neglected.
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The overdl outage due to both thermal noise and co-channel interference is
O=P(<TyorA<Ayy) . (1.9)

For lightly loaded cellular systems, therma noise will dominate the perfor-
mance. However, for heavily loaded cellular systems, therma noise can be
neglected in difference to the typically dominant effect of the co-channel inter-
ference.

5. RECEIVER SENSTIVITY AND LINK BUDGET

Recelver sensitivity refers to the ability of the receiver to detect radio signals
in the presence of noise. This noise can arise from a variety of sources that are
external to the system, such as aimospheric noiselike lightning strikes, galactic
noise, man made noise like automobile ignition noise, and thermal noise that
isinternal to the system.

The ratio of the desired carrier power to therma noise power before detec-
tion is commonly caled the carrier-to-noise ratio, I'. The parameter T" isa
function of the communication link parameters, such as the transmitted power
(or effective isotropic radiated power (EIRP)), path loss, receiver antennagain,
and the effective input-noise temperature of the receiving system. The formula
that relates I to the link parameters is called the link budget. The link budget
can be expressed in terms of the following parameters:

Q; = transmitted carrier power

Gt = trahsmitter antenna gain

L, = pathloss

Gr = receiver antenna gain

), = receved sgna power

E. = receved energy per modulated symbol

T, = receving system noise temperature in degrees Kelvin
B,, = receiver noise bandwidth

N, = white noise power spectrd dengity
R, = modulated symbol rate
k = 138 x10"BWgK = Boltzmann's constant
F = noisefigure, typically 5to 6 dB
Lr, = receiver implementation losses
Ly = losses dueto system load (interference)
Mghaq = Shadow margin
Guo = handoff gain
Srx = recever sensitivity
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The effective received carrier power is

QtGTGR
Q= ——— . 1.10
P~ I, (1.10)
The total input noise power to the receiver is [116]
N = kT,B,F . (1.11)

The value of kT, a room temperature of 17 °C (290 °K) is kT, =
—174 dBm/Hz. The received carrier-to-noise ratio defines the link budget
Qp, 2,G1rGr

I'=-—+ = . .
N ~ kT,ByFLg,L, (1.12)

The carrier-to-noise ratio, I", and modulated symbol energy-to-noise ratio,
E./N,, ae rdaed as follows [116]

Ec Bw
— =I'x—. 1
N, X R, (1.13)

Hence, we can rewrite the link budget as
EC _ QtGTGR

N, KToR.FLpyL, (1.14)
Converting to decibel units gives
E¢/No@py = Q(aBm)+ Gt (aB) + GR (aB) (1.15)

—kTo(aBm)/Hz — Re aBHz) — F(aB) — LRy @B) — Lp (dB) -
Therecaeiver sengtivity is defined as
Sry = LRy kT,F(E./N,)R. (1.16)
or converting to decibel units

SRy (dBm) = Lry (aB) + kTo(aBm)/Hz + FlaB) + Ec/No(gp) + Re (aBH) -

(1.17)
In (1.17), al parameters are usually fixed except for E./N,. To determined
the receiver sensitivity we first find the minimum E/No4p, that will yield
an acceptable link quality, and then substitute this value into (1.17). Then
by substituting the resulting value for Sg, (apm) into (1.15) and solving for
L, (4B) We obtain the maximum allowable path [oss

Linax (aB) = 4 (aBm) + GT (aB) + GR (dB) — SRy (dBm) - (1.18)
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Because we are interested in the link budget for cellular radio systems, there
are three other very important link budget parameters; (i) the margin for system
loading or interferenceloading, (ii) the shadow margin, and (iii) the handoff

gain. The first two quantities will reduce the maximum allowable path loss,
while the third increases it. There may be other factors, but they will apply

equaly to the various systems under consideration, so they are irrelevant when

making relative comparisons between systems. However, they are important if
we want to determine the absol ute allowable path loss.

Interference Loading:.

System loading causes co-channel and adjacent channel interference. Hence,
the cell radii in any cellular system will shrink and expand as the traffic load
increases and decreases, respectively. This phenomenon is sometimes called
cell breathing. If we wish to compare the relative coverage of different cellular
systems as the subscriber load increases, then we must account for the increased
traffic load by including an interference degradation margin in the link budget;
otherwise, there will be very poor coverage near the planned cell boundaries.
If the co-channel and adjacent channel interference is treated as white noise to
afirst approximation, then the effect is to increase the tota input noise power
to the receiver by a multiplicative factor of L;. To account for the system
loading interference degradation, we reduce the maximum allowable path loss
in (1.18) by an amount equal to Ly (4s),the interference margin. The required
L 4By depends on the type of cellular system under consideration and the cell
loading. CDMA systems typically require a higher interference margin than
TDMA systems, because the signals of all users occupy the same bandwidth.

Shadow Margin and Handoff Gain:.

Suppose that a noise outage occurs whenever the received carrier-to-noise
ratioI' = @, (4By(q)/N < ' or, equivaently, 2, qgm)(d) < Qn (aBm)- The
edge noise outage probability isdefined asthe probability that €, (4pm)(R) <
Qih (aBm)-Where d = R for aMS located on the cell edge. The area noise
outage probability is defined as the probability that Q2 (qBm)(d) < Qn (aBm)
when averaged over the entire cell area. To ensure a given edge or area outage
probability we must introduce a shadow margin, Mghag, into the link budget.

The edge noise outage probability is

On(R) = P(2, (@aBm)(R) < Qn (aBm))

/ch(dBm) 1 (55 — HQ, (aBm) (R))2
= exp 4§ — 2 dm
—0 V2mogq 204
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Figure 1.12.  Edge noise outage probability against the shadow margin.

_ Q<Mshad> . (1.19)
oq
where -
= ——e V' 2y . 1.20
Q@) = [ ey (1.20)
and
Mshad = B, (apm) (R) = n (@Bm) - (1.21)

is the shadow margin. The edge noise outage probability, Ox(R) is plotted

against Mgpaq in Fig. 112 for various shadow standard deviations.

Example 1.1
Suppose that we wish to have On(R) = 0.1. To determine the required

shadow margin, we choose Mgh.a S0 that the shaded area under the Gaussian

density function in Fig. 113 is equal to 0.1. Hence, we solve

0.1=0Q (%‘lﬂ) . (1.22)
oQ
We have M
Tshad - 9-1(0.1) = 1.28 (1.23)
a0

For oq = 8 dB, the required shadow margin is
Mg = 1.28 x 8 =10.24 dB . (1.24)
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Figure 1.13.  Determining the required shadow margin.

To obtain arelationship between the edge and areanoise outage probabilities,
we need models for the propagation path loss and spatia distribution of MSs.
For macrocdlls it is reasonable to assume that the MSs are uniformly distributed
throughout the cell area. This assumption aong with the path loss modedl in
(1.6) yields an area noise outage probability [115]

1 R
Oy = m/o O(r)2nr dr

= Q(X)-exp{XY + Y2/2} Q(X +Y) (1.25)

where M 0
X = shad =270 1.26
oq Y B¢ (1.26)

where¢ = 10/ In 10. Thefirst term of this expression is equal to the edge noise
outage probability, On (R), while the second term is a correction factor.

The above argument applies to the case of asingle isolated cell. For cellular
systems where the geographical areais covered by multiple cdls, the situation
is more complex. As a MS moves from one cell to the next handoffs will
be executed to maintain cal continuity. Condder a MS that is located in
the boundary area between two cells. Although the link to the serving BS
may be shadowed and experience and outage, the link to an alternate BS may
provide acceptable quality. Hence, at the boundary area between two cells, we
obtain a diversity effect caled macrodiversity. Handoffs take advantage of
macrodiversity, and increase the maximum alowable path loss over the single
cdll case by an amount equal to the handoff gain, G go. There are avariety of
handoff algorithms that are used in cellular systems. CDMA cdllular systems
such as 1S95 use soft handoff, while TDMA cellular systems such as GSM
and DAMPS typically use hard handoff.

To illustrate the principle of handoff gain, consider a cluster of 7 cels;
the target cdll is in the center and surrounded by 6 other cels By using
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Monte Carlo simulation, we have calculated the area averaged noise outage
probability for the target cell, assuming that the mobile station is uniformly
distributed over the cell area. Our results assume correlated shadowing, where
each of the six BSs surrounding target BS have a shadow correlation of 0.5 with
the target BS, but the shadows are independent amongst the six surrounding
BSs. Let Q% (aBm), k = 0,...,6 denote the received signd strength for the
target BS (k = 0) andthesix surrounding BSs (k = 1,...,6). Three cases are
considered; a single cell, soft handoffs and hard handoffs. For the single cell

performance, no handoffs are used. With soft handoffs, the BS that provides
the best link is always selected as the serving BS. If any BS results in areceived
signal power that is above the receiver threshold, Q¢y, (4Bm), then link quality
is acceptable; otherwise an outage occurs.

With our hard handoff agorithm, the received signal power from the target
BS is first determined. If it exceeds the receiver threshold, Q. (apm). then the
link quality is acceptable. Otherwise, the six surrounding BSs are tested for
handoff candidacy. In order for a BS to be a handoff candidate, we must have
Qp,k (dBm) _Qp,O (dBm) > H(dB) where H(dB)) is the handoff hyStereSIS. If any
BS out of the handoff candidates results in areceived signa power that is above
the receiver threshold, €2, (aBm)- then link quality is acceptable; otherwise an
outage occurs.

The results are shown in Fig. 114, for Hiy4gy = 6 dB. Note that a 10% area
noise outage probability (90% coverage) requires a shadow margin of 5.6 dB.
With soft handoffs, the required shadow margin is 18 dB. The difference of
3.8 dB represents the soft handoff gain. The corresponding hard handoff gain
is about 2.8 dB. Note that the soft handoff will always be greater than the hard
handoff gain.

In summary, the maximum allowable path loss with the inclusion of the
margins for shadowing and interference loading is

Limax @B) = % (dBm) + GT @B) + GR (dB) — SRX (dBm)
—Mihaa @B) — L1 (4B) + GHO (4B) - (1.27)

6. COVERAGE

Coverage refers to the number of base stations or cell Sitesthat arerequired to
“cover” or provide service to agiven area with an acceptable grade of service.
This is an important consideration when a cellular system is first deployed.
Clearly the cellular system that requires the fewest number of cell sites to cover
agiven geographic area has an infrastructure cost advantage.

The number of cell sites that are required to cover agiven area is determined
by the maximum allowable path loss and the path loss characteristic. To
compare the coverage of different cellular systems, we first determine the
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Figure 1.14. Required shadow margin with hard and soft handoffs and 95% coverage; handoff
hysteresis H4py = 6 dB.

maximum allowable path loss for the different systems by using a common
quality criterion, i.e., the area averaged outage probability.
From (1.11), it is apparent that

Lmax (dB) = C+ 10ﬁlog10dmax (1.28)

where d,ax iSthe radio path length that corresponds to the maximum allowable
path loss and C is some constant. Thequantity dpyaxiSequal to the radius of the
cdl. To provide good coverage it is desirable that dp,a.x be as large as possible.

Once Lmax has been determined for the various systems under considera-
tion, the relative coverage advantages of different systems can be compared,
assuming that al other factors are equal. As an example of how this is done,
suppose that System 1 has L.y gy = L1and System 2has Liyay (aB) = L2,
with corresponding radio path lengths of d; and ds, respectively. The differ-
ence in the maximum alowable path loss is related to the cell radii through the
following relationship

Ly - Ly, = 108 (logyod1 — logoda)
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Looking at things another way

A _ oLi-La)/0p) (1.30)
dy
Since the area of acell is equal to A = md? (assuming acircular cell) the ratio
of the cell areasis ) )
A1 . d1 _ dl)
L& (dz (1.31)
and, hence,
A _ri-12)/008) (1.32)
Ay

Suppose that Ao is the total geographical area to be covered. Then the ratio
of the required number of cell sites for Systems 1 and 2 is

Ny Awi/A1 Ap — 10-2(L1-L2)/(108) (1.33)

Ny~ Awi/Ar A

As an example, suppose that 4 = 3.5 and Ly — L, = 2 dB. Then Ny/N; =
1.30. Hence, System 2 requires 30% more base stations to cover the same
geographical area. In conclusion, a seemingly small difference in link budget
trandates into a large difference in infrastructure cost.

7.  SPECTRAL EFFICIENCY AND CAPACITY

Spectral efficiency is of paramount concern to cellular system operators.
There are a variety of definitions for spectral efficiency, but an appropriate
definition measures spectral efficiency in terms of the spatia traffic density
per unit bandwidth. For a cellular system that consists of a deployment of
uniform cells, the spectral efficiency can be expressed in terms of the following
parameters.

G. = offered traffic per channel (Erlangs/channel)
N, = number of channels per cell
Weys = total system bandwidth (Hz)
A = aeapercel (m?) .

One Erlang is the traffic intensity in a channel that is continuously occupied,
9 that a channel occupied for x% of the time carriers x/100 Erlangs. The
spectra efficiency is defined as

Nc'Gc

= E 2MHz . 1.34
78 Wore - A rlangs/m“/Hz. (1.34)
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Suppose that the cellular deployment consists of N-cell reuse clusters. Then
the number of channels per cell with FDMA is

. Wsys

where W, is the bandwidth per channel. If TDMA is used, then W, is the
bandwidth per carrier divided by the number of channels per carier. The
spectral efficiency can be written as the product of three efficiencies, viz.,

o= owo oA Ge (1.36)
= "B - 7nc - 0T .
where
np = bandwidth efficiency
nc = spatia efficiency
nr = trunking efficiency

High bandwidth efficiency can be achieved by using low hit rate voice coding
and bandwidth efficient signaling techniques.

Spatial Efficiency:.

High spatid efficiency can be achieved by i) minimizing the area per cell,
and ii) minimizing the co-channel reuse distance. The first of these explains
the intense interest in microcelular systems, where cdl radii on the order of
200-500 m are used. The co-channel reuse distance D /R is minimized by i)
controlling the generation of co-channel interference within the cellular system
inthefirst place and, ii) minimizing the effect of the co-channel interference that
isgenerated. The generated levels of co-channel interference can be controlled
by using techniques such as cdl sectoring, smart antennas, power control,
discontinuous transmission, effective hand-off agorithms, macroscopic BS
diversity, and others. The impact of co-channd interference on the radio link
can be mitigated by using techniques such as interference cancellation, error
control coding, antenna diversity, and others.

Consider the situation shown in Fig. 1.15, depicting the forward channel co-
channel interferenceenvironment. TheMS isat distance dyp from the serving BS
and at digances di,k = 1,2,---, Ny from the first tier of Ny = 6 interfering
co-channel BSs. Ifweletd = (dp, d1,- -, dn,) denote the vector of distances
a aparticular MS location, then the downlink carrier-to-interference ratio as a
function of d is

Ny
Ay (d) = Qp (aBm)(do) — 10logy, {Z 10% ‘dB’“’(d")/m} . (L3
k=1
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Figure 1.15. Co-channel interference on the forward channel at a desired MS. There are six
interfering BSs.

At this point, we must account for the effect of handoffs. Consider, for example,
soft handoffs. Let Ax gB)(d), k = 0,..., M denote the carrier-to-interference
ratio for serving BS and M surrounding BSs. Note that the vector d is different
for each BS. With soft handoffs, the BS that provides the most robust link is
always used <0 that the resulting carrier-to-interference ratio is

Ay = max{Ag 4B)(d), Ay @B)(d), .- -, Apr (gB)(d)} (1.38)
The area averaged probability co-channel interference outage is
Or=P (A(dB) < Ath(dB)) . (1.39)

where the calculation is performed by averaging the probability of co-channel
interference outage over the random location of the MS within areference cell.

Finally, Fig. 1.16 depicts the co-channel interference on the reverse channel
at the serving BS. Note that the co-channel interference may not be exactly the
same on the forward and reverse channels, because the vector d is different in
each direction. This phenomenon is known as link imbalance.

Trunking Efficiency:.

High trunking efficiency can be achieved by using channel assignment
schemes that maximize channel utilization. There is usually a trade-off be-
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terfering mobiles

Figure 1.16. Co-channel interference on the reverse channel at a desired BS. There are six
interfering MSs.

tween trunking efficiency (or offered traffic per channel) and grade of service
in terms of new call and handoff blocking probabilities. Various fundamen-
tal formula were developed by Erlang, who laid the foundations of modern

teletraffic theory. One of his most famous results is the Erlang-B formula,

first derived in 1917, that gives the probability that a new call attempt will not
find an available channel in atrunk of channels and is lost. Sometimes this
policy is cdled the blocked calls deared queueing discipline and it is widdy

used to model wireline telephone traffic. The Erlang-B formula is not realy
applicable to cellular systems, because it does not account for handoff traffic.
Furthermore, the total offered traffic per cel is time-varying due to the spatial
movement of the subscribers, whereas the offered traffic in the Erlang-B for-

mulais assumed to be constant. Nevertheless, it provides useful insight. The
Erlang-B formulais

pm

Blpym) = ——— 1.40

(pym) .- (1.40)

where m is the total number of channels in the trunk and p = Ay is the total

offered traffic (A is the cal arriva rate and p is the mean cdl duration). The

Erlang-B formula is derived under the assumption of an infinite subscriber pop-

ulation, Poisson call arrivas with rate A calls/s, and exponentialy distributed
cal durations with amean cal duration p s/call.

Fig. 117 plots the blocking probability B(p,m) as afunction of the offered

traffic per channel G, = p/m. The benefit from trunking is obvious, since

the offered traffic per channel, G, increases as the number of trunked channels
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Figure 1.17.  Erlang-B blocking probability B(p, m) vs. offered traffic per channel G, = p/m.
Trunking is shown to improve the spectral efficiency.

increases, for any blocking probability. However, diminishing returns are
obtained as the number of trunked channels becomes larger.

Capacity.
The capacity of acellular system is often measured in terms of two quantities

1. the cdl capacity or sector capacity is equa to the number of available
voice channels per cell or cell sector.

2. the cdl Erlang capacity isequal to thetraffic carrying capacity of acdl (in
Erlangs) for a specified call blocking probability.

Note that difference between spectral efficiency and Erlang capacity is that
spectral efficiency accounts for the area per cell, A. If the area per cel is the
same in two different cellular systems, then their relative spectral efficiencies
and capacities will be the same.

Capacity comparisons between different cellular systems can be difficult,
because the systems are often compared in different stages of their evolution
and different deployment constraints. However, a fair comparison between
suitably optimized digital cellular systems with out deployment constraints
will probably show roughly equal capacities.
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The cdl capacity of FDMA (AMPS) and TDMA (PCS 1900, IS-54) cdllular
systems can be calculated in afairly straight forward fashion once the allowable
reuse cluster has been determined.

AMPS Capacity

Very often the capacity of 2nd and 3rd generation digital cellular systems
(1S54, 1595, PCS 1900) are compared with the capacity of the andog AMPS
system that is used in North America. Anadog AMPS uses frequency divison
duplexing (FDD) with 30 kHz channels. Inabandwidth of 1.25 MHz (uplink or
downlink only) there are 1250/30 = 42 channels. Analog AMPS systems are
typically deployed according to a 7/21 reuse pattern, i.e., there are 21 sectors
in areuse cluster. Hence, with analog AMPS there are 2 channels per sector.
The corresponding cell capacity is 6.0 channels/cell. Likewise, in abandwidth
of 15 MHz, the sector capacity is 24 channel/sector.

PCS1900 Capacity

GSM systems in Europe were originaly deployed without frequency hop-
ping. A 4/12 reuse pattern was very common. For PCS1900 with freguency
hopping, a 3/9 reuse pattern may be possble. PCS1900 has 8 channels that
are time division multiplexed onto each carrier, and the carrier spacings are
200 kHz. Therefore, the bandwidth per channel is 25 kHz. In abandwidth of
1.25 MHz (uplink or downlink only) thereare 1250/25 = 50 channels. Hence,
there are 50/9 = 5 channels per sector or 50/3 = 17channels/cell. Therefore,
the cell capacity of PCS 1900 with a 3/9 reuse pattern is 17/6 = 2.8times the
AMPS cdll capecity.

IS95 Capacity

The cell capacity of 1S95 has been the topic of debate for many years,
because it cannot be determined in a straight forward manner. The capacity
depends on a variety of complicated factors like (i) the propagation path loss
exponent, (i) the accuracy of the power control loop, and (iii) the geographical
distribution of mobiles within a céll. To illustrate the difficulty in evaluating
IS95 CDMA capacity, consider the following smple example. Suppose there
are N users in a cell; one desired user and N — 1 interfering users. Treating
the co-channel signas as white Gaussian noise, the carrier-to-noise ratio is

1

r= o1 (1.41)
and the modulated symbol energy-to-noise ratio is
EC Bw
=t - Dx=¥
N, * Re
_ G &
- N-1"N
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where G = B,,/R.. For arequired (E./No)req. the number of users that can
be accommodated is
G

Ny ————
(Ec/No)req

Thisfigureisjust the cell capacity. Now if (E¢/N,)req IS reduced by only 1 dB,
i.e,, afactor of 1.25 there is a 30% change in N, the cell capacity. Hence, the
capacity of CDMA cellular systemsis highly sensitiveto thereceiver sensitivity.

Problems
1.1. Show that the area noise outage probability is given by (1.25).

1.2. By using geometric arguments, show that the co-channel reuse factor for
cellular deployments based on hexagonal cellsis given by (1.2).

1.3. Consider a regular hexagonal cell deployment, where the MSs and BSs
use omnidirectional antennas. Suppose that we are interested in the forward
channel performance and consider only the first tier of co-channel interferers
as shown in Fig. 1.15. Ignore the effects of shadowing and multipath fading,
and assume that the propagation path loss is described by the inverse 3 law
in (1.6).

a) Determine the worst case carrier-to-interference ratio, A, asafunction
of the reuse cluster size N, for g = 3, 3.5, and 4.

b) What is the minimum cluster size that is needed if the radio receivers
have A¢n = 18 dB?

¢) Referring to Fig. 1.16, repeat &) and b) for the reverse channel.

1.4. Whenever a mobile station crosses a cell boundary a handoff occurs to the
target cell. However, a handoff will sometimes “fail” because there are no
channels available in the target cell. One method to decrease the probability
of handoff failure is to queue the handoff calls. A handoff call that does not
find an idle channel in the target cell is allowed to remain in a queue for ¢,
seconds and is dropped from the queue, i.e., experience a handoff failure,
if no channel becomes available in that time.

Suppose the queue is serviced using a “first come first served” discipline.
If m is the total number of channels in the trunk and p is the total offered
traffic, then the probability of queueing is given by the famous Erlang-C
formula

m

P
C(p,m) = P
P+ ml(1- £) 0 &



Introduction 37
The probability that a queued call will have to wait more than ¢4 seconds in

the queue is
(m — p)tq }
7’

where 4 is the mean call duration. Assuming that x4 = 120 sand ¢, =
5 s, plot the blocking probability against the normalized offered traffic per
channd G, = p/m, form = 5, 10, 15.

15. Consider the worst case forward channel co-channel interference situation
shownin Fig. 1.18 The path loss is described by thefollowing simple model

P(W > t;) =exp {—

-~ co-channel
base stations

seving ‘
base station >

Figure 1.18.  Worst case co-channel interference on the forward channel.

lq, = Qt(hbhm)2
P d4
where
Mo, = received power
Q; = transmitted power
hy = base dation antenna height
hm = mobile station antenna height

Q.
1

radio path length

@) Assuming that hy = 30 m, h,, = 1.5 m,and al BS transmit powers
are the same what is the worst case A for acluster size N = 4?
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b) Now suppose that the antenna height of the serving BS (in the center)
isincreased to 40 m while the other BS antenna heights remain at 30 m.
This has the effect of enlarging the center cell. Assuming that we wish
to maintain the same worst case A value obtained in part @), what is the
new radius of the center cell?

¢) Now suppose that the antenna height of one of the co-channel BSs is
increased to 40 m while the antenna heights of the other BSs antenna
heights, including the serving BS, remain a 30 m. This has the effect
of shrinking the center cell and making it a non-regular hexagon. As-
suming, again, that we wish to maintain the same worst case A value
obtained in part @), what are the new dimensions of the center cell?

1.6. A cdlular service provider uses a digital modulation scheme which can
tolerate a worst-case signal-to-interference ratio of 15 dB.

a) Find the optimd cluster sze N for the following cases,

(i) omni-directional antennas
(ii) 120° sectoring
(iii) 60° sectoring
Use path loss exponents of 3 = 3 and 8 = 4.

b) Assume that there are 200 traffic channels in the cellular system and
that a blocked calls cleared queueing discipline is used with a target
blocking probability of 1%. Further assume that each cell or sector has
approximately the same number of channels, and the cells have uniform
traffic loading. Ignore any handoff traffic. Determine the offered traffic
load (per cel) in units of Erlangs and calls per hour for each of the
casesin part (a).

1.7. Suppose that an urban area has three competing trunked mobile networks
(systems A, B, and C) to provide cellular service. System A has 400 cells
with 15 channels/cell, System B has 50 cells with 100 channels/cell, and
System C has 100 cells with 60 channelg/cell. Ignore handoff traffic and
assume uniform cell traffic loading.

a) Plot the (Erlang-B) blocking probability, B(p,m),for each system
Versus p.

b) Find the number of users that can be accommodated by each system for
a blocking probability of 2% if the traffic loading offered by each user
is0.1 Erlangs.



Chapter 2

PROPAGATION MODELING

The design of spectrally efficient wireless communication systems requires
adetailed understanding of the radio propagation environment. The character-
istics of the radio channel vary greatly with the operating frequency, and the
mode of propagation, eg., line-of-sight (LoS) radio links, diffraction/scatter,
and satdllite links. In this book the emphasis is on land mobile radio channels
that are typical of terrestrial cellular mobile radio systems, athough many of
the concepts will apply to other types of channels as well.

A typical cellular radio system consists of a collection of fixed base stations
(BSs) that define the radio coverage aress or cells’. The height and placement
of the BS antennas affects the proximity of loca scatterers at the BS. In a
macrocellular environment, the BS antennas are usually well elevated above
the local terrain and relatively free of local scatterers. Typically, anon-line-of-
sight (NLoS) radio propagation path will exist between a BS and mobile station
(MS), because of natural and man-made objects that are situated between the
BS and MS. As a consequence the radio waves must propagate via reflections,
diffraction and scattering. At the MS, plane waves arrive from many different
directions and with different delays, as shown in Fig. 2.1. This property is
caled multipath propagation. The multiple plane waves combine vectorially
at the receiver antennato produce a composite received signal.

The carrier wavelength used in UHF mobile radio applications typically
ranges from 15 to 60 cm. Therefore, smal changes in the differential propa-
gation delays due to MS mobility will cause large changes in the phases of the
individually arriving plane waves. Hence, the arriving plane waves arriving a
the MS and BS antennas will experience constructive and destructive addition

In military applications the BSs may be moving.
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Figure 2.1.  Typical macrocellular radio propagation environment.

depending on the location of the MS. If the MS is moving or there are changes
in the scattering environment, then the spatial variations in the amplitude and
phase of the composite recelved signal will manifest themselves as time vari-
ations, a phenomenon called envelope fading. As we will see later, the time
rate of envelope fading depends on the velocity of the MS.

Radio channels are reciproca in the sense that if a propagation path exists, it
carries energy equally well in both directions. However, the spatial distribution
of arriving plane waves may be significantly different in each direction. A MS
in atypical macrocellular environment isusually surrounded by local scatterers
90 that the plane waves will arrive from many directions without a direct LoS
component. Two-dimensional isotropic scattering where the arriving plane
waves arrive in from all directions with equal probability is a very commonly
used scattering model for the forward channel in a macrocellular system. For
thistype of scattering environment the recelved envelope is Rayleigh distributed
at any time, and is said to exhibit Rayleigh fading.

The BSs in macrocells are relatively free from local scatterers so that the
plane waves tend to arrive from one direction with afairly small angle of arrival
(A0A) spread as shown in Fig. 2.1. Wewill seelater that these differences in the
scattering environment for the forward and reverse channels cause differences
in the spatia correlation properties of their respective faded envelopes.

In amicrocellular environment, the BS antennas are often placed below the
skyline of buildings and are surrounded by local scatterers, such that the plane
waves will arrive at the BS with alarger AoA spread. Furthermore, aLoS path
will sometimes exist between the MS and BS, while at others times there is
no LoS path. Even in the absence of LoS propagation conditions, there often
exists adominant reflected or diffracted path between the MS and BS. The LoS
or dominant reflected or diffracted path produces the specular component and
the multitude of weaker secondary paths contribute to the scatter component
of the received envelope. In this type of propagation environment, the received
signal envelope still experiences fading. However, the presence of the specular
component changes the received envelope distribution, and very often a Ricean
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distributed envelope is assumed [148, 369, 359]. In this case the received
envelope is said to exhibit Ricean fading.

If the envelope or squared-envelope is measured and averaged over a spatial
distance of 20 to 30 wavelengths, the mean envelope or mean squared-envelope
can be obtained. Sometimes, this quantity is caled the local mean because it
corresponds to the mean value aparticular locality. Usually, the local mean will
also experience dow variations over distances of severd tens of wavelengths
due to the presence of large terrain features such as buildings and hills. This
phenomenon is known as shadow fading or shadowing. Experimental observa-
tions have confirmed that the shadow fades follow a log-normal distribution as
in (1.5). Thislog-normal distribution applies to both macrocellular [188, 173]
and microcellular environments [224, 226, 149].

If the local mean is averaged over sufficiently large spatial distances (to
average over the shadows), the area mean is obtained. The area mean is
the average signa strength that is received to/from a MS over a large area
that lies at (approximately) the same distance from the BS. The area mean
is directly related to the path loss, which predicts how the area mean varies
with the distance between the BS and MS. Early studies by Okumura [253]
and Hata [162] yielded empirical path loss models for urban, suburban, and
rural areas that are accurate to within 1 dB for distances ranging from 1 to
20 km. These studies concentrated on macrocellular systems. More recent
work has considered path loss prediction in microcells. The COST231 study
[69] resulted in the COST231-Hata and COST 231-Walfish-1kegami modelsfor
urban microcellular path loss prediction.

The remainder of this chapter presents the fundamentals of radio propaga-
tion modeling and characterization. Section 1 introduces the mechanism of
multipath-fading. Various properties of the faded envelope are then derived
in Sections 1.1 through 1.5. Section 2. treats the statistical characterization of
wide-band multipath-fading channels. Laboratory simulation of fading chan-
nels is covered in Section 3. Shadowing models and smulation techniques
are discussed in Section 4.. Finaly, Section 5. treats theoretical and empirical
models for path loss in macrocellular and microcellular systems.

1 FREQUENCY-NON-SELECTIVE (FLAT)
MULTIPATH-FADING

In terrestria cellular radio systems, the radio signals propagate in three
dimensions. The signals that are transmitted by the BSs usually have vertical
polarization. For vehicular applications, the MS antennas are aso verticaly
polarized, while for portable applications tilting of the transmitter (or handset)
antennaresults in non-vertical polarization. Although it isimportant to account
for polarization effects, we will assumethat thetransmitted signals are vertically
polarized. Furthermore, we assume that the distance between the BS and MS
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nth incoming wave
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Figure 2.2. A typical plane wave incident on a MS receiver.

is sufficiently large so that the radio propagation environment can be modeled
as two-dimensional.

Fig. 2.2 depicts a horizontal x — y plane, where aMS is moving aong the
x-axis with velocity v. Vertica polarization is assumed throughout so that the
eectric field vector is aligned with the z-axis. The nth plane wave arrives a
the MS antenna with an angle of incidence 6,,. The MS movement introduces
aDoppler shift, or frequency shift, into the incident plane wave. The Doppler
shift is given by

fpn = fmcosf, Hz 2.1

where f, = v/A. and A is the wavelength of the arriving plane wave, and
fm is the maximum Doppler frequency occurring when 6, = 0. Plane waves
arriving from the direction of motion will experience a positive Doppler shift,
while those arriving opposite the direction of motion will experience anegative
Doppler shift.

Consider the transmission of the band-pass signal

s(t) = Re [é(t)ejz’rf‘t] (2.2)

where 5(t) is the complex envelope of the transmitted signdl, f. is the carrier
frequency, and Re[z] denotes the red part of z. If the channel is comprised of
N propagation paths, then the noiseless recaived band-pass waveform is

N
r(t) = Re I:Z Che j27r[(fc+fD,n)(t—rn)]§(t - Tn)] (2.3)

n=1

where C,, and 1, are the amplitude and time delay, respectively, associated with
the nth propagation path. The magnitude C, depends on the cross sectiona
area of the nth reflecting surface or the length of the nth diffracting edge.
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Similar to (2.2), the received band-pass sgnd r(t) has theform
r(t) = Re [7(t)e?"!] 2.4)

where the received complex envelope is

N
=Y Cre 15t — 1) 2.5)
n=1
and
¢n(t) = 277{ (fc+fD n) - fp nt} (2.6)

is the phase associated with the nth path. From (2.5), the channel can be
modeled by a linear time-variant filter having the complex low-pass impulse

response
N
g(t,7) = Z Cne_j¢"(t)6(7 — Tn) 2.7

n=1
where g(7, t) isthe channel response at timet due to an impulse applied at time
t— 7, and 5( - ) isthe dirac deltafunction.

From (2.5) and (2.6), severd interesting observations can be made. Sincethe
carrier frequency f. isvery large, very small changes in the path delays =, will
cause alarge changes in the phases ¢y, (t), due to the term f.7,. For example,
a 900 MHz sinusoid has a wavelength of about 30 cm. Since, radio waves
propagate at about 30 cm per nanosecond (ns), apath delay change of just 1 ns
corresponds to one full wavelength (or 2« radians phase shift) in the 900 MHz
snusoid. Atany timet, therandom phases ¢,, (¢) may result in the constructive
or destructive addition of the N multipath components. Multipath fading is
primarily due to small variations in the path delays and, hence the received
phases, of the multipath components that occur over smal spatid distances.

If the differential path delays 7; — 7; are small compared to the duration of
amodulated symbol, then the 7, in (2.7) are al approximately equal to 7. In
this case, the channd impulse response has the form

g(t,7) = Z Cre 1O §(r — 7) = g(t)5(r — 7) . (2.8)

However, since the carrier frequency is very high, small differences in the path
delays will till correspond to large differences in the received phases ¢, (t).
Therefore, the recelved signa still experiences fading. The corresponding
channel transfer function is obtained by taking the Fourier transform of (2.8),
giving o

T(t, f) = g(t)e 32m/7 . (2.9)
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Since the amplitude responseis |T'(t, f)| = g(t), al frequency components in
the received signal are subject to the same complex gain g(t). In this case the
received signal is said to exhibit flat fading.

11 RECEIVED SIGNAL CORRELATION AND
SPECTRUM
A flat fading channel can be characterized by assuming the transmission of
an unmodulated carrier. Since 3(t) = 1in (2.5), the received band-pass signa
in (2.4) can be expressed in the quadrature form

r(t) = gr{t) cos2nf.t — gg(t)sin2nf.t (2.10)
where
N
gr(t) = Cp cos ¢p(t) (2.11)
n=1
N
.‘]Q(t) = Cr sin ¢y (1) (2.12)
n=1

are the inphase and quadrature components of the received band-pass signal.
For large N, the central limit theorem can be invoked and g;(t) and gg(t) can
be treated as Gaussian random processes. Assuming that the band-pass process
r(t) is wide sense stationary, the autocorrelation of r(t) is

érr(t) = E[r@)r(t+7)]
= E[gr(t)gr(t + 7)] cos 2m for — E[go(t)gr(t + 7)] sin 27 fer
= ¢grg,(T) COS 2T foT — ¢gQg,(T) sin 27 f. 7 (2.13)
where
Pgra:i(7) = d’gQgQ () (2.14)
¢91go (1) = ¢9Q91 (=7) . (2.15)

It is reasonable to assume that the phases ¢, (t) and ¢, (t) are independent
for n # m since their associated delays and Doppler shifts are independent.
Furthermore, the phases ¢, (t) can be assumed to be uniformly distributed over
[~m,x], dnce fomn > 1. By using these properties, it is straightforward to
obtain the autocorrelation ¢y, 4, () from (2.1), (2.11) and (2.6) as follows:

boo(t) = E; glar(Bgr(t+7)]

= %Egi [cos 27 fpnT]

= %Eg [cos(27 fr T cOS 6)] (2.16)
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where
T = (m,72,-.--,7N) 217
0 = (61,0q,...,0n) (2.18)
Q, = Elgj(t)]+Elgd ]—202 (2.19)

and €y, is the total received envelope power. Note thaI the power in the band-
pass waveform r(t) is E[r?(t)] = Q,/2.
Similarly, the crosscorrelation ¢y, 4o (7) is

P9199(7) = Er glar(t)gq(t +7)]

= %ﬁEg[Sin(%rfmT cos6)] . (2.20)

Evaluation of the expectations in (2.16) and (2.20) requires the distribution of
incident power on the receiver antenna, p(€), and the receiver antenna gain
G(#) as afunction of the AoA, 6. For macrocellular gpplications where the
radio path lengths are long compared to the antenna heights, one simple model
assumes that the plane waves propagate in a 2-D (X, y) plane and arrive at the
MS from all directions with equa probability, i.e, p(8) = 1/(2n),8 € [~=r, 7).
This modd was first suggested by Clarke [64], and is commonly referred to
as Clarke's 2-D isotropic scattering model. With 2-D isotropic scattering and
an isotropic receiver antenna with gain G(4) = 1, the expectation in (2.16)
becomes

Ggrg:(T) = % 7(cos(27rfmrcost9)p(0)G(0)d9

-

Q, 1 [*

= 55 cos (27 fr, 7 cos 0) df
-
K

= %%/ cos (27 fp, 7 sin8) d
0

= Bnenfan) 2.21)

where Jp(z) is the zero-order Bessd function of the first kind. The normal-
ized autocorrelation function ¢g,4,(7)/(2,/2) in (2.21) is plotted against the
normalized time delay f,7 inFig. 2.3.

Likewise, for 2-D isotropic scattering and an isotropic antenna, the cross-
correlation in (2.20) becomes

Q,1 (7
Pgr9o(T) = F— sin (27 7 cos 8) db (2.22)
2 27 J_,

= 0.
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Figure 2.3. Autocorrelation of the real and imaginary components of the received complex
envelope with isotropic scattering.

This meansthat g;(t) and g¢(t) are uncorrelated and, since they are Gaussian,
independent random processes. Thefact that g;(¢) and gg(t) are independent is
adirect result of the symmetry of the 2-D isotropic scattering environment and
the isotropic antenna gain pattern. Some scattering environments and antenna
gain patterns will lead to independent g;(t) and g () processes, while others
will not.

The power density spectrum (psd) of g;(#) and go(¢) isthe Fourier transform

Of @grq;(T) OF gqqq (7). For the autocorrelation in (2.21), the corresponding
psdis[147, 6.671.7]

Sglgl(f) = ‘7:[¢9191(T)]
{ e 1< fm

2 fm \f1~(f]fm)? . (223)
0 otherwise

The autocorrelation of the received complex envelope ¢(t) = g1(t) +7go(t)
IS
1 *
bgg(r) = EE[Q (t)g(t + 7)]
= ¢9191 (T) + j¢919Q (T) (224)
and its power spectra density is

Sgy(f) = Sg19:1 (f)+ ngng (f) - (2.25)
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Sometimes Sy4(f) is caled the Doppler power spectrum From (2.13) we
have

érr(7) = Re [qbgg(T)ej%ch] . (2.26)
By using the identity
Re[z] = ~ gz (2.27)

and the property ¢g,(m) = ¢;,(—7), it follows that the band-pass Doppler
power spectrum is

Srr(f) = %

With 2-D isotropic scattering and an isotropic antenna ¢4, (7) = 0 and
Sgg(f) = Sg14;(f) (Which is red and even), so that
0, 1

AT fm 1_(% 2

[Sgg(f — fe) + Sgo(—f — f)] - (2.28)

Srr(f)

v =Sl £ fm - (2.29)

The pd in (2.29) can be derived by using a different approach that is
sometimes more useful. As N — oo, the incident power on the receiver
antenna as a function of the angle of incidence 6 approaches a continuous
distribution, denoted by p(#). The fraction of the total incoming power that
arrives between 6 and 6 + d@ is p(68)d6. If the antenna has a gain of G(6)at
angle 8, then the corresponding received power is G(6)p(8)dé. Therefore, the
psd of the received signal can be expressed as

Q
Sre(H)ldf| = > {G(0)p(8) + G(-O)p(~6)}1db] . (2.30)
From Fig. 2.2, the frequency of the incident plane wave arriving a angle 8 is

f = fmcosf+ fc, (2.31)

where f,, = v/, is the maximum Doppler shift and, hence,

|df| = fm| —sin6d6| = \/ 3, — (f — f)?|db| . (2.32)

Therefore,
Sunlf) = 2l (G(0)p(6) + G(-0)p(-0)}  (233)
fm - (f - fc)
where
_ -1 f - fc
6 = cos ( - ) . (2.34)
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Figure 2.4. Psd of the received quadrature envelope components for a 2-D isotropic scattering
channel with an isotropic antenna.

Once again, with 2-D isotropic scattering and an isotropic antenna G(8)p(8) =
1/(27), o that

Y 1
7rpm 2 If_fC| S fm
Sn(f) =4 i (Gike) NED)

0 otherwise

The same result was obtained in (2.29).

The normalized psd Sy, 4, (f)/ (/27 fm) in (2.23) is plotted against the
normalized Dopplerfrequency f/ fm inFig. 2.4. Noticethat Sy, 4, (f) islimited
to therange offrequencies | f| < frm and Sy, 4, (f) = 00 @ f = £ fr. Inredity
the Doppler psd can never goto infinity, and the reason for this behavior is that
the plane waves were assumed to propagate in a 2-D plane, whereas in redity
the propagation is actually three dimensional. Aulin [16] modified Clarke's
2-D model to account for 3-D propagation. The psd that Aulin obtained is very
smilar to Fig. 2.4, except that it remains finite at f = £ f,,.

In some cases, it is appropriate to modd the propagation environment as
consisting of a strong specular component plus a scatter component. In this
case, the AoA distribution p(#) might havetheform

1 K
p(0) = mp(e) + Fﬁ‘“” — o) (2.36)
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where 5(8) is the continuous AoA distribution of the scatter component, 6 is
the AoA of the specular component, and K is the ratio of the received specular
to scattered power. Fig. 2.5 shows a polar plot of p(8)for such a scattering
environment, where (6) = 1/(2r),8 € [, n]. The correlation functions
bgrg;(T) AN ¢y, 4, () cOrresponding to (2.36) can be readily obtained from
(2.16) and (2.20) as

1 Q K Q,

bgr9:(T) = m-?p 027 fmT)+ ®1i2 P cos(2n f,, T cos By )(2.37)
K Q

bg190 (r) = mf sin(2mx f, 7 cos Bp) . (2.38)

The AoA distribution in (2.36) yields a complex envelope having a psd of
the form

1 K 4
where Sgg( f) is the discrete portion due to the specular component and Sg, (f)
is the continuous portion due to the scatter component. For the case when
p(0) = 1/(27),8 € [—m,n] with the resulting correlation functions in (2.37)
and (2.38), we have

1 Qp 1
K+ 2me V1=(f/fm)?
Seq(f) = + 5 R O(f — fm cos o) 0<|fI<fm . (240)
0 otherwise

The corresponding band-pass psd S, (f) has the same form as Fig. 2.4, except
for a discrete tone at frequency fc + fm cosfo.

For microcells that are deployed in dense urban aress, the plane waves may
be channeled by the buildings aong the streets and arrive at the receiver antenna
from just one direction, as shown in Fig. 2.6. Clearly, the scattering is non-
isotropic. In this case, a variety of models may be used for distribution of
arriving plane waves. One plausible distribution is

p(0)={ gl%nﬂcos (5:-08) »I<ial<3 o4

, elsewhere

The parameter 8,, determines the directivity of the incoming waves. Fig. 2.7
showsaplot of p(8) for 8,, = 30°, 60°,and 90°. Note that the pdf is symmetric
about 4 = 0.

The correlation functions ¢y, ¢, (7) and ¢y, 4, () can be readily obtained by
evaluating the expectations in (2.16) and (2.20), respectively, withthedensity in
(2.41). Again, the psd of the recelved band-pass signal Sy(f) can be obtained
by using (2.24), taking Fourier transforms, and substituting into (2.28).
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Figure 2.5. Polar plot of p(8) with 2-D isotropic scattering plus a LoS or specular component
arriving at angle 6o.
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Figure 2.6. An urban microcellular propagation environment is often characterized by non-
isotropic scattering.

12 RECEIVED ENVELOPE AND PHASE
DISTRIBUTION

121  RAYLEIGH FADING

When the composite received signal consists of a large number of plane
waves, the received complex envelope g(t) = gr(t) + jgg(t) can be treated
as a wide-sense stationary complex Gaussian random process. For some types
of scattering environments, e.g., 2-D isotropic scattering, gr(t)and go(t) are
independent identically distributed zero-mean Gaussian random variables at
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Figure 2.7. Probability density function of the arriving planes waves in 2.41. The pdf is
symmetrical about 8 = 0.

any time ¢,, with variance by. Under these conditions the magnitude of the

received complex envelope a(t) = |g(t)| has a Rayleigh distribution at any
time ¢1, as shown in (A.26) i.e,

2
Pa(z) = :—Oe)cp {_5%6} : (2.42)

The average envelope power is E[a?] = Q, = 2by 0 that
2z z?
= — _— >0 . .
Do) a, exp { a, } x>0 (2.43)

This type of fading is caled Rayleigh fading. The corresponding squared-
envelope o?(t) = |g(t)|?is exponentially distributed at any time ¢; withdensity
1 T

DPe2(z) = o exp {—Q—} . (2.44)
» P

The squared-envelope at time t is significant because it is proportional to the
instantaneously received signal power at timet.

122  RICEAN FADING

Some types of scattering environments have a specular or LoS component.
In this case, gr(t) and gq(t) are Gaussian random processes with non-zero
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means m;(t) and mq(t), respectively. If we again assume that these processes
are uncorrefated and the random variables g;(¢;) and gg(¢1) have the same
variance by, then the magnitude of the received complex envelope at time ¢;
has a Ricean distribution as shown in (A.32), i.e,

T z? + 82 s
= Zexpl- (2 >0, 2.45
Pa(z) ™ eXp{ 20 I (bo) z>0 (2.45)
where
s2 = mi(t) + my(t) (2.46)

is caled the non-centrality parameter. This type of fading is called Ricean
fading and is very often observed in microcellular and mobile satellite appli-
cations.

A very simple Ricean fading model assumesthat the means m (t) and mg(t)
are condants, i.e., m(t) = myand mg(t) = mg. Such an approach will
certainly yield aRicean distributed envelope, but will not redistically model the
higher order envelope statistics for aparticular scattering environment. A better
approach has been suggested by Aulin [16], where p(8)is defined in (2.36) and
shown in Fig. 2.5. In this case, the means m(t) and mg(t) corresponding to
the in phase and quadrature components of the LoS signal are given by

my(t) = s-cos(2mfp, cosbyt + ¢p) (2.47)
mo(t) = s-sin(27fp, sinbyt + ¢o) (2.48)

where f,,, cos 6, and ¢ are the Doppler shift and random phase off set associated
with the LoS or specular component, respectively.

The Rice factor, K, is defined as the ratio of the specular power s? to
scattered power 2bg, i.e, K = s2/2by. When K = 0 the channel exhibits
Rayleigh fading, andwhen K = oo the channel does not exhibit any fading at
al. The envelope distribution can be rewritten in terms of the Rice factor and
the average envelope power E[a?] = Q, = s? + 2b, by first noting that

KQ Q

2 __ yu _ P
=g 2o = 27 - (2.49)

[t then follows
2
pa(e)=2E A+ ol g EADe | JEEFD) sy
Qp Qp QP

(2.50)

Fig. 2.8 shows the Rice pdf for several values of K. The curve for K = 0is
the Rayleigh pdf.
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Figure 2.8, The Rice pdf for several values of K with , = 1.

The squared-envelope has the following non-central chi-square distribution
with two degrees of freedom

_(K+1) _(K+ Dz K(K +1)z
Po2(Z)= a, exp {—K ———Qp }Io (2 _—Qp , >0
(2.5D)

123 NAKAGAMI FADING

The Nakagami distribution was introduced by Nakagami in the early 1940's
to characterize rapid fading in long distance HF channels [243]. The Nakagami
distribution was selected to fit empirical data, and is known to provide a closer
match to some experimental data than either the Rayleigh, Ricean, or log-
normal distributions [47].

The Nakagami distribution describes the magnitude of the received envelope
by the distribution

2mMmg2m-l mx? 1
O i — e > = 2.5
Pa(z) T(m) g eXP{ a, } m2 g (2.52)

where Q, = E[a?]. Fig. 2.9 showsthe Nakagami distribution for severa values
of m. Beyond itsempirical justification, the Nakagami distribution is often used
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Figure 2.9.  The Nakagami pdf for several values of m with Q, = 1.

for the following reasons. First, the Nakagami distribution can model fading
conditions that are either more or less severe than Rayleigh fading. When
m = 1, the Nakagami distribution becomes the Rayleigh distribution, when
m = 1/2 it becomes a one-sided Gaussian distribution, and when m — oo
the distribution becomes an impulse (no fading). Second, the Rice distribution
can be closely approximated by using the following relation between the Rice
factor K and the Nakagami shape factor m [243];

K = K——% m>1 (2.53)
(K +1)?
m o= GRED (2.54)

Since the Rice distribution contains a Bessel function while the Nakagami
distribution does not, the Nakagami distribution often leadsto convenient closed
form analytical expressions that are otherwise unattainable.

The squared-envelope has the Gamma density

m\" gm1 mz
pa2(fE) = <§;> F(—m)- exp {-5;} . (255)

By using the relationship between the K factor and the shape factor m in
(2.53), the cumulative distribution function (cdf), F,2(z) = P(a? < z) of the
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Figure 2.10. Comparison of the cdfs for the squared-envelope with Ricean and Nakagami
fading.

squared-envelope with Nakagami and Ricean fading is plotted in Fig. 2.10. It
is gpparent from Fig. 2.10 that a Gamma distribution can gpproximate a non-
central chi-sgquare distribution to a reasonable degree. However, the reader is
cautioned that the tails of the pdf are often the most important. Fig. 2.10 does
not show how well tails of a Ricean pdf are approximated by a Nakagami pdf.

124 ENVELOPE PHASE
The phase of the received complex envelope g(t) = gr(t) + 7gg(t) is

¢(t) = Tan~! (%‘19((:—))) : (2.56)

For Rayleigh fading, gr(t) and gg(t) are independent identically distributed
zero-mean Gaussian random variables a any time ¢;. It follows (see Ap-
pendix A.3.2) that the phase a time ¢; isuniformly distributed over the interval
[—m, 7], e,

1
Py(ny(z) = 5. ~—mSesm. (2.57)

For Ricean fading channels, the phase is not uniformly distributed and takes on
amore complicated form.
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1.3 ENVELOPE CORRELATION AND SPECTRA

The autocorrelation of the envelope a(t) = |r(t)| of a complex Gaussian
random process can be expressad in terms of the hypergeometric function
F[, -] as[78]

daa(t) = Ela(t) a(t + 7))
= Tlbo(OIF |~ ~5; '%"(T)" (2.58)

" [pgq(0)1?
where
|Beg(T)1> = @56, (7) + 85,50 (7) - (2.59)

Note that |¢44(0)|% = 701 (0)s since ¢4, (0) = 0.

The above expression 1s anaytically cumbersome but fortunately a useful
approximation can be obtained by expanding the hypergeometric function into
the following infinite series:

1 1 1 1
F [—E,—E, ] 1+4.’L‘+6—4'.’E + - (260)
Neglecting the terms beyond second order yields the approximation
1 l¢99 |2
¢aa( ) |¢99(0)' \:1 + - 4 |¢ (0)|2 . (261)

At T = 0, the approximation gives ¢qq(0) = 572, /16, whereas thetrue value
IS ¢aa(0) = Q. Hence, the relative error in the signal power is only 1.86%,
leading us to believe that the approximation is probably very good.

The psd of the received envelope can be obtained by taking the Fourier
transform of ¢aq (7). The psd will include a discrete spectra component at
f = 0, due to the dc component of the received envelope. Since we are
primarily interested in the continuous portion of the psd, the autocovariance
function paq(7) is of interest, where

poa(r) = Ela(t)a(t + 7)] - Ela(t)|Ele(t + 7))

1 2
= DwOn[1s Z'ljggﬁgil'z] - 3Has0)
= 2 2.6
T 0 ) 262

With 2-D isotropic scattering |¢ge(7)|2 = ¢91g1( 7) and, therefore,

faa(T) = "fé” J227 frmT) (2.63)



Propagation Modeling 57

Envelope Autocovariance, um(r)/(m/l 6)
o o o
'S > %o

o
¥

0.0

0.0 0.5 1.0 1.5 2.0
Time Delay, f,,T

Figure2.11. Envelope autocovariance against the time delay f., 7 for a 2-D isotropic scattering
channel.

Fig. 2.11 plots the normdized envelope auto-covariance traa(7)/ (72, /16)
against the normalized timedelay f,, for the case of 2-D isotropic scattering.

The Fourier transform of paq(7) can be calculated by using the identities
[bgg(T)|? = dgqg(T) B3, (7) N g (T) = ¢, (—T7) to Write

Soalf) = msgﬂf) * S50(f)

= 8|T@7;-(_0_)| /_o:o Sgg(x)Sgq(z — f) dz

™ fm—I5|
- m/—f Sgg(z)Sgg(z + |fl)dz 0L |f| < 2fm .
(2.64)

Note that Saq(f) is aways red, postive, and even. It is centered about

= 0 with a spectra width of 4f,,, where fn, is the maximum Doppler
frequency. To proceed further, we need to specify Sgq(f). With 2-D isotropic
SCAtENing ¢gq (1) = ¢g,q, (1) SO thal Seq(f) = Sg;,(f), Where Sg,q,(f) is
given by (2.23). The result from evaluating (2.64) is (see Problem 2.4)

_ F\?
Saa(f)—l—(s;EK( 1'(%)) 0<|fl<2fm (265)
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Figure 2.12. Continuous portion of the envelope psd against the normalized frequency f/ fim
for a 2-D isotropic scattering channel.

where K'( - ) is the complete elliptic integral of the first kind, defined by

1 dzr
K(7)=/O ViR (2.66)

The normalized psd Saa(f)/(Qp/167 fr) is plotted againgt the frequency
f/fm in Fig. 212. The pd of the complex envelope for a non-isotropic
scattering channel can be obtained with some minor modifications to the above
development. For example, consider the particular scattering environment
shown in Fig. 2.5. In this case, the psd of g(t) can be obtained from (2.24),

(2.37), and (2.38) as (see Problem 2.5)

1 Q, 1 K
Sgg(f)—K+127rfm TNTITRE M ESE

If] < fm (2.67)

d(f — fimcosbh)
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Figure 2.13. Continuous portion of the envelope psd against the normalized frequency f/ fm
for the scattering environment shown in Fig. 2.5; K = 10 and 8y = 7/3.

where K isthe Ricefactor. Note that the psd of the received complex envelope
g(t) is asymmetrical. To obtain the psd of the received envelope af(t), we
substitute (2.67) into (2.64) to obtain (see Problem 2.5)

Saalf) = (Kil)zlﬁz’}m {K( 1~(2—J{;)2> 2.68)

+ Kn
\ﬁ-(f/fercoseoV
K 9 9
T W—(f/fm—coseﬁﬁmf’”é(f)} '

Fig. 213 plots the continuous part of the normalized envelope psd
Saalf)/(Qp/(K + 1)*167 fr) against the normalized frequency f/ fm.
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131 SQUARED-ENVELOPE CORRELATION AND SPECTRA
The autocorrelation of the squared-envelope is

boza2 (1) = E[2(t)®(t +7)] . (2.69)
Since o®(t) = g7(t) + g4(t), it followsthat
$a202(1) = Elgi(t)g7(t +7)] + Elgd ()95 (t + 7)]

+E[g7(1)g5(t + 7)) + Elgo(t)gi(t +7)] . (270)

First consider the case where the propagation environment is such that g;(¢)
and gg(t) have zero mean. Then the squared-envelope autocorrelation is (see
Problem 2.6)

Paza2(T) = 4¢§191( )+ 4¢9191( )+ 4¢3190 ()
= 4¢2,,,(0) + 4]dge(7)|? (2.71)
Finally, the squared-envelope autocovariance is

Ha2a? (T) = Pa2a2 (T) - E? [a2 (t)]

= 4ggg(r))* - 2.72)
With isotropic scattering the above expression reduces to
Hoza2 (T) = QEJF (2T fmT) . (2.73)

By comparing (2.62) and (2.72), we observe that the approximate autocorrela:

tion of the envelope and the exact autocorrelation of the squared-envelope are
identical, except for amultiplicative constant. If the propagation environment is
characterized by a specular or LoS component (e.g., Ricean fading), then g;(t)
and g (t) have non-zero means and the autocovariance of the squared-envelope
assumes a more complicated form. Let

gr(t) = §gr(t) +mi(t) (2.74)
90(t) = 9qft) + moft) (2.75)

where m;(t) and mg(t) are the means of gr(t) and go(t), respectively. From
Problem 2.7,

ba2a2(T) = 403,5,(0) + 4655, (7) + 4%, 5 (7) (2.76)
+4 (m% + mQ) (q&g,g, (0) + dg,4, (T)) + (m} +mb)?
where
m? = mpt)mr(t+7) (2.77)
m2Q = mg(t)ymg(t+ 1) (2.78)
The squared-envelope autocovariance is
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Bozaz (T) = 41egq(r)|> + 4 (m% + sz) G174 (T) (2.79)

Consider the scattering environment shown in Fig. 2.5. The corresponding
correlation functions ¢y, 4, (7) and g, 4, (7) are given by (2.37) and (2.38),
respectively, and the means m(t) and mq(t) are defined in (2.47) and (2.48).
It can be shown that
1 Q

$00r (1) = 5 Jo(2mfmT) (2.80)

b150(T) = 0 (2.81)
and
2

cos(27 fry cos Op7) = é{_{:”l cos(2m fr, cos Bg7)  (2.82)

where K is the Rice factor and 6y is the angle that the specular component
makes with the MS direction of motion. Using these results in (2.79) gives

2
Ho2q2(T) = (Kﬂ—i 1) Jo(27 finT) ( Jo(27 fr7) + 2K cos(27 f,, 7 cos 00))

(2.83)

m§+m2Q=s

The corresponding normalized squared-envel ope autocovariance

2
K+1 1
( a, ) o Hatar(7) (2.84)

is plotted in Fg. 2.14 as a function of the normdized time deay fm7, for
various values of K and 6.

14 LEVEL CROSSING RATESAND FADE
DURATIONS

Two important second order statistics associated with envelope fading are
the level crossing rate (how often the envelope crosses a specified level) and
the average fade duration (how long the envelope remains below a specified
level). These quantities are second order Statistics, because they are not only
affected by the scattering environment but also by the velocity of the MS.
For the case of Ricean (and Rayleigh) fading, closed form expressions can be
derived for these parameters.

141 ENVELOPE LEVEL CROSSING RATE

The envelope level crossing rate at a specified level R, L, is defined asthe
rate at which the envelope crosses level R in the positive (or negative) going
direction. Obtaining the level crossing rate requires the joint pdf, p(e, &), of
the envelopeleve o = |r| and theenvelope dope & = |r|. In terms of thejoint
pdf p(a, &), the expected amount of time spent in theinterval (R, R + da) for
agiven envelope dope & and timeduration dt is
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Figure 2.14.  Squared-envelope auto-covariance against the normalized time delay f,,, 7 for the
scattering environment shown in Fig. 2.5.

p(R, &)dadddt . (2.85)
The time required to cross the level a once for a given envelope slope &, in the
interval (R, R + dao) is

dajé . (2.86)

The ratio of these two quantities is the expected number of crossings of the
envelope o withintheinterval (R, R + de) for a given envelope sope & and
time duration dt, i.e,

ap(R, a)dadt . (2.87)
The expected number of crossings of the envelope level R for a given envelope
dope & in atime interval of duration T is

T
/ ap(R, &)dadt = ép(R, &)daT . 2.88)
0

The expected number of crossings of the envelope level R with a positive dope
is

Ng=T / ~ ap(R, &)dér . (2.89)
\]

Finaly, the expected number of crossings of the envelope level R per second,
or the level crossing rate, is

Lp= /0 ~ ap(R, &)dér . (2.90)

Thisis agenerd result that gpplies to any random process.
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Rice has derived the joint pdf p(e, &) for a sine wave plus narrow-band
Gaussian noise. For this case [282]

o a(2r)=3/2 g7

p(a, &) = B ),

X exp {—Z;bo [B (o ~ 205050 + 52) + (box + brssin )] }

dg (2.91)

where s is the non-centrality parameter in the Rice distribution, and B =
boby — b?, Where by, by, and by are constants that are derived from the psd of
the narrow-band noise. For the scattering environment described by (2.36) and
Fig. 2.5, the sine wave corresponds to the specular component arriving a angle
6y, while the narrow-band noise is due to the scatter component with AoA
distribution p(6) = 1/(2x). Note that Rice's result in (2.91) is general enough
to apply to scattering environments with other p(6) as well.

Suppose that the frequency of the specular or LoS component is fs = f.+ fq,
where 0 < |fq| < fm. Inthiscase [173]

Im
bn = (2m)" Sgqa (I — fo)"df (2.92)
—fm

27
— (2m)", /0 (0) (fmcos8 — f,)" db (2.93)

where p(0) is the continuous AoA distribution of the scatter component and
S5q(f) is the corresponding continuous portion of the psd of the received
complex envelope. Equivalence between (2.92) and (2.93) can be established
by using (2.28) and (2.33). Note that Sg,(f) is given by the Fourier transform
of

Bgo(T) = 84,6, (7) + .40 (T) (2.94)
where
L 6)p(6)db 2.95
bosos(r) = 2 [ cos@nfur cos)p(6) 2.99)
Qp 27 . .
bgr90(T) = 7/0 sin(2m f,, 7 cos 8)p(6)d6 (2.96)

In some cases, the psd Sg, (f) is symmetrical about the sine wave frequency
fs. Thiscondition occurs, for example, when f, = f. andthereis 2-D isotropic
scattering. Inthis case, b, = 0for al odd values of n (and in particular b, = 0)
S0 that (2.91) reduces to the convenient product form

(@, &) = 1o @] a (@ +5?) I (9‘ﬁ>
PO = A 2y TP T2y [ 5 OF 200 °\ %

= p(&) pla) . (2.97)
Since p(a, &) = p(&) - p(e) in (2.97), it followsthat « and & are independent.
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When f; = f. and p(6) = 1/(2m), aclosedform expression can be obtained
for the envelope level crossing rate. Substituting (2.35) into (2.92) gives

24.6 --- n

2.9
0 n odd (2.98)

b ={ bo (2 frp) 30 (1) even

Therefore, by = 0 and by = bo(27 fn)% /2, Where 2by is the power in the scetter
component of the received band-pass signal given by (2.49). Substituting the
joint density in (2.97) into (2.90) gives the envelope levd crossing rate

Lg =/27(K + 1)fmpe—K—(K+1)p"’[0 (Qp\/K(K + 1)) (2.99)

where

R R
P \/Qp Rims

(2.100)

and Ryms 2 v/ is the rms envelope level. For Rayleigh fading (K = 0) and
isotropic scattering, the above expresson smplifies to

Lr=\2rfmpe™ . (2.101)

The normalized envelope level crossing rate Lr/ fr, isplotted in Fig. 2.15 asa
function of pand K. The maximum LCR can be found by taking the derivative
of (2.99) with respect to p and solving

Io (2p,/K(K + 1)) (1 —2(K + 1)p2)
+2p\/K(K + 1)[y (2p,/K(K + 1)) =0 (2.102)

for p as afunction of K. Fig. 2.16 plots the maximum envelope level crossing
rate as a function of K. Finally, we note that the envelope level crossing rate
around p = 0 dB is nearly independent of K. This attractive property will
be exploited in Chapter 10 when we use the envelope level crossing rate to
estimate the MS velocity. The simulation results in Fig. 2.15 were obtained
with afading simulator that will be described in Section 3.
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Figure 2.15. Envelope level crossing rate for the scattering environment shown in Fig. 2.5.
Lines denote theoretical results, while points denote simulation results.
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Figure 2.16. Maximum normalized envelope level crossing rate Lgr/f., for the scattering
environment shown in Fig. 2.5.
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142  ZERO CROSSING RATE

Recall that received complex envelope g(t) = gr(t) + gg(t) is a complex
Gaussian random process. If the channel is characterized by a specular com-
ponent then g;(t) and go(t) have mean values m(t) and mq(t), respectively.
Here we are interested in the zero crossng rate of the zero-mean Gaussian
random processes gr(t) — my(t) and gg(t) — mqg(t). Rice [282] has derived
this zero crossing rate as

1 b2 2 )
==/ = =2fm / P(8) cos? 0do . (2.103)
s b() 0

When the scatter component isdueto 2-D isotropic scattering, the zero crossing
rateis

Lz =V2fm . (2.104)

143 AVERAGE ENVELOPE FADE DURATION

Another quantity of interest is the average duration that the envelope level
remains below a specified level R Although the pdf of the envelope fade
duration is unknown, the average fade duration can be calculated. Consider a
very long time interval of length T and let ¢; be the duration of the ith fade
below the level R. The probability of the received envelope level being less
than R is

P(a < R) Ztl : (2.105)

The average envelope fade duration is equal to
-1 _P(a<R)
b= T ;tl =1,
If the envelope has the Rice distribution in (2.45), then

P(a < R) = /ORp(a)da =1-Q (x/z? V2K + 1)p2> (2.107)

where Q(a, b) is the Marcum Q function. Therefore,

. 1-Q (V2K V2K +1)7)

(2.106)

= . (2.108)
VIR(K + 1) fmpeK~(K+06 Iy (20 /K(K +1))
If the envelope is Rayleigh distributed, then
R
P(a <R) = / pla)da = 1— e (2.109)
0
and, therefore,

- e”’ — 1

t = . (2.110)
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Figure 2.17. Average envelope fade duration for the scattering environment shown in Fig. 2.5.

The normalized average envelope fade duration #f,, is plotted in Fig. 2.17
as afunction of p.

Note that the level crossing rate, zero crossing rate, and the average fade
duration al depend on the velocity of the MS (f, = v/A.). Very deep
fades tend to occur infrequently and do not last very long. For example, at
60 mi/hr and 900 MHz, the maximum Doppler frequency is f,, = 88 Hz.
Therefore, with isotropic scattering and Rayleigh fading (K = 0) there ae
Lr = 81 fades/s a p = 0 dB with an average fade duration of 7.8 ms.
However, a p = —20 dB there are only 2.2 fades/s with an average fade
duration of 45 ps. Observe from Fig. 2.15 that the fades are shalower when
the Rice factor, K, is larger. Furthermore, we see from Fig. 2.17 that the
average fade duration tends to be larger with larger Rice factors.

15  SPATIAL CORRELATIONS

Many mobile radio systems employ antenna diversity, where spatidly sep-
arated antennas are used to provide multiple faded replicas of the same in-
formation bearing signal. A fundamental question that arises is the antenna
separation needed to provide uncorrelated antenna diversity branches. This
question can be answered by using our previously derived results along with
the distance-time transformation ¢ = vr, where v is the MS velocity. This
transformation resultsin f,,7 = £/X.. For the case of isotropic scattering
(2.21) and (2.63) become, respectively
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Figure 2.18. The scattering model for propagation in macrocells. The MS is moving parallel
to the z-axis with velocity —wv, is located a distance d from the BS, and is surrounded by a
scattering ring of radius r, [173, 130].

12 01-1/2
p(QBS) — Ky [(rd) - (¢BS - OBS) ] ya < OBS. <B (2.116)
0 , otherwise

where

dmMs = Ta'n—l("'s/d)
1

Ka = 25in— (s (d/7s))
o = ¢Bs— PMs
B = ¢Bs+ ¢Bs

¢ms isthe maximum AoA at the BS for agiven distance d and scattering radius
rs. Notethat for d > r,, asmdl angle approximation can be invoked, with the
result that ¢ms =~ rs/d and K4 = 1/7.

To proceed further, we artificially assume that the MS is stationary and the
BS ismoving dong the x-axisin Fg 2.18 with velocity ». To obtain the enve-
lope and squared-envelope spatia crosscovariance at the BS, we first compute
Bgrg: (T) AN g4, (7) in (2.16) and (2.20), respectively. Then compute ¢,,(7)
from (259) and, findly, use (2.62) and (2.72) to obtain the envelope autoco-
variance, paq(7)and squared-envelopeautocovariance, pq2q2(7), respectively.
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Figure 2.19. Envelope crosscovariance at the base station for a = 60 m and various arrival
angles, ¢ps; d = 3000 m.

This can be accomplished by using numerical integration. Now dispense with
the artificid assumption of a moving BS and fixed MS, and assume that the
BS is fixed while the MS moves parallel to the x-axis with velocity —w?. Fi-
naly, by using the time-distance transformation f,,m = ¢/X., we can obtain
the spatial crosscovariancefunctions piaq (£) and pqzq2 (£). Fig. 2.19 plots the
envelope spatial crosscovariance for e = 60 m and variousarrival anglesc ¢gs.
Likewise, Fig. 2.20 plots the envelope spatial crosscovariance for ¢gg = /3
and various scattering radii. In genera, we observe that a much greater spatia
separation is required to achieve agiven degree of envelope decorrelation at the
BS as compared to the MS. Also, the correlation increases as the arrival angle
and scattering radius decrease.

2. FREQUENCY-SELECTIVE MULTIPATH-FADING

To this point we have considered channel models that are appropriate for
narrow-band transmission, where the inverse signal bandwidth is much greater
than the time spread of the propagation path delays. For digital communication
systems this means that the duration of a modulated symbol is much greater
than the time spread of the propagation path delays. Under this condition al
frequencies in the transmitted signal will experience the same random

“Note that the relative velocities of the MS and BS are opposite in sign.
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Figure 2.20. Envelope crosscovariance at the base station for ¢ps and various scattering radii,
a;d = 3000 m.

attenuation and phase shift due to multipath-fading. Such a channel introduces
very little or no distortion into the received signal and is said to exhibit flat
fading. If the range in the propagation path delays is large compared to the
inverse signal bandwidth, then the frequency components in the transmitted
signal will experience different phase shifts aong the different paths. As the
differential path delays become large, even closely separated frequencies in the
transmitted signa can experience significantly different phase shifts. Under
this condition the channel introduces amplitude and phase distortion into the
message waveform. Such a channel is sad to exhibit frequency-sdective
fading. The path geometry for amultipath-fading channel is showninFig. 2.21.
Congdering only single reflections, al scatterers that are associated with a
particular path length are located on an dlipse with the transmitter and receiver

located at the foci. Different delays correspond to different confoca ellipses.

Fat fading channels have their scatterers located on dlipses corresponding
to differential delays that are smal compared to the duration of a modulated

symbol. Freguency selective channels have strong scatterers that are located

on severd dlipses that correspond to differential delays that are significant
compared to asymbol duration. In urban and suburban macrocelular systems,

these strong scatterers usually correspond to high-rise buildings or perhaps
large distant terrain features such as mountains.

Multipath-fading channels can be modeled as time-variant linear filters,
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Figure 2.21. Path geometry for multipath-fading channels. Signals will arrive at the receiver
antenna at the same time if they reflect off scatterers that are located on the same ellipse.

whose inputs and outputs can be described in both the time and frequency
domains. This leads to four possble transmisson functions [30]; the input
delay-spread function g(r, t), the output Doppler-spread function H(f,v), the
time-variant transfer function T(f,t), and the delay Doppler-spread function
S(r,v). The complex low-pass impulse response relates the complex low-
pass input and output time waveforms, 5(t) and 7(t), respectively, through the
convolution

F(t) = /0 Y5t = )glt, T)dr . 2.117)

Bello caled the low-pass impulse response g(t, 7) the input delay-spread
function [30]. In physica terms, g(t,7) can be interpreted as the channel
response at time t due to an impulse applied at time ¢t — 7. Since a physica
channel cannot have an output before an input is applied g(t,7) =0for 7 <0
and therefore the lower limit of integration in (2.117) is zero. If the convolution
in (2.117) is written as adiscrete sum, then
n
7(t) = Z 5(t — mAT)g(t,mAT)AT . (2.118)
m=0

Thisrepresentation allows us to visualize the channel as atransversal filter with
tap spacing A7 and time-varying tap gains g(¢, mAr) as shown in Fig. 2.22.

The second transmission function relates the input and output spectra, S(f)
and R(f), respectively, through the integral equation

R(f) = /°° S(f — VH(f — v,v)dv . 2.119)
Bellocaledthefunction H(f,v) the output Doppler-spread function [30].
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Figure 2.22. Discrete-time tapped delay line model for a multipath-fading channel, from [257].
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Figure 2.23. Frequency conversion model for a multipath-fading channel, from [257].

This function explicitly shows the effect of Doppler shift or spectral broadening
on the output spectrum. In physical terms, the frequency-shift variable » can be
interpreted as the Doppler shift that is introduced by the channel. Once again,

the integral in (2.119) can be approximated by the discrete sum

=Y 8(f - mAV)H(f — mAv,mAv)Av . (2.120)
m=0

This alows the channel to be represented by abank of filters with transfer func-
tions H(f, mAv)Av followed by afrequency conversion chain that produces
the Doppler shifts.

The third transmission function relates the output time waveform to the input
spectrum through the integral equation

/ S(H)T(f,t)e??"ftaf (2.121)

Zadeh cdled the function T(f, t) the time-variant transfer function [377].
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Figure 2.24.  Fourier transform relations between the transmission functions, from [257].

The final description relates the input and output time waveforms through
the double integral

/ / 5(t — 7)8(r,v)e I T dudr (2.122)

Thefunction S(r,v) is caled the delay Doppler-spread function [30], and
provides a measure of the scattering amplitude of the channel in terms of the
time delay 7 and Doppler frequency v. The four transmission functions are
related to each other through Fourier transform pairs as shown in Fig. 2.24.
In each transform pair there is always a fixed variable, so that the transform
involves the other two variables.

21 STATISTICAL CHANNEL CORRELATION
FUNCTIONS

Recall the channel impulse response g(t,7) = gr(t,7) + jgo(t, 7) can
be modeled as a complex Gaussian random process, where the quadrature
components gr(¢,7) and gg(t, 7) are correlated Gaussian random processes.
Hence, al of the transmission functions defined in the last section are random
processes. A thorough characterization of a channel requires knowledge of the
joint pdf of al the transmission functions. Since this is rather formidable, a
more reasonable approach is to obtain statistical correlation functions for the
individua transmission functions. If the underlying process is Gaussian, then
acomplete statistical description is provided by the means and autocorrelation
functions. In thefollowing discussion, we assume zero-mean Gaussian random
processes S0 that only the autocorrelation functions are of interest. Since there
are four transmission functions, four autocorrelation functions can be defined
as follows [257, 270):
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These autocorrelation functions are related to each other through double
Fourier transform pairs. For example,

o0 o0 .
s(r,mv ) = / | patsimmeremdids @12
o0 J =00

00 oo )
dg(t,s;7,m) = / / 455(7',77;V,p)e_ﬂ’r(”t_“s)dud,u (2.128)
—00 v —00

The complete set of such relationships is summarized in Fig. 2.25.

22 CLASSIFICATION OF CHANNELS

Wide sense gationary (WSS) channels have fading statistics that remain
constant over short periods of time. This implies that the channel correlation
functions depend on the time variables t and s only through the time difference
At = s —t. It can be demonstrated (see Problem 2.13) that WSS channels
give rise to scattering with uncorrelated Doppler shifts. This behavior suggests
that the attenuations and phase shifts associated with signal components hav-
ing different Doppler shifts are uncorrelated. Hence for WSS channels, the
correlation functions become
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dg(t, t + At;T,7) ¢q(At;T,m) (2.129)
or(fym;t,t+ At) = ¢r(f,m; At) (2.130)
ou(f,miv,p) = Yu(f,mv)é(v — pu) (2.131)
¢s(r,mv,p) = Ys(r,mv)d(v — p) (2.132)

where
pu(f,m;v) = /Oo o1 (f, m; At)e I2™ALIAL (2.133)

bs(rmy) = / 7 be(At; 7, )e T2 BLIAY (2.134)

are Fourier transform pairs.

Uncorreated scattering (US) channels are characterized by an uncorrelated
attenuation and phase shift with paths of different delays. Bello showed that
US channels are wide sense dationary in the frequency variable so that the
correlation functions depend on the frequency variables f and m only through
thefrequency difference Af = m — f [30]. Analogous to (2.131) and (2.132),
the channel correlation functions can be shown (see Problem 2.14) to be singular
in the time-delay variable. For US channels, the channel correlation functions
become

bg(ty857,m) = y(t,s;7)d(n —7) (2.135)
¢r(f, f+Afts) = ¢r(Afit,s) (2.136)
ou(f, f+Afiv,p) = du(Afiv,p) (2.137)
¢S(T,77§V,N) = 1/)5(7 Vau‘) ( _T) (2138)
where
bolt,s;7) = / R IN SRR SLPIN (2.139)
Ws(riv,p) = /_ T bn(Afim WAL | (2140)

Wide sense gtationary uncorreated scattering (WSSUS) channels are avery
specid type of multipath-fading channel. These channel display uncorrelated
scattering in both the time-delay and Doppler shift. Fortunately, many radio
channels can be accurately modeled as WSSUS channels. For WSSUS chan-
nels, the correlation functions have singular behavior in both the time delay
and Doppler shift variables, and reduce to the following simple forms:
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Figure 2.26. Fourier transform relations between the channel correlation functions for WSSUS
channels, from [257)].

Bg(t,t + At;7,m) = Yg(At;T)8(n —7) (2.141)
¢r(f, f +Af;t,t+ At) = or(Af;AL) (2.142)
oua(f, f+Afiv,p) = Ya(Afiv)é(v —p) (2.143)

¢s(r,mv,p) = Ys(r,v)8(n —7)8(v — p) . (2.144)
These correlation functions are related through the Fourier transform pairs
shown in Fig. 2.26.

The function ¢4(0;7) = ¢4(7) is cdled the multipath intensity profile
or power delay profile and gives the average power a the channel output as
a function of the time delay 7. It can be viewed as the scattering function
averaged over al Doppler shifts. A typical power delay profile is shown in
Fig. 2.27. One quantity of interest is the average delay, defined as

Jo© Tég(T)dr
, =420 eV 2.145
M T bl @199
Note that thenormalization f;° ¢,(7)d is applied because ¢, () isnot apdf.
Another quantity of interest is the rms delay spread, defined as

oy = \/fooo(T —r)*$y(r)dr (2.146)

fooo Pg(7)dT
There are other quantities that can aso be used to describe the power delay
profile. Oneisthewidth, W, of the middle portion of the power delay profile
that contains x% of the total power in the profile. Referring to Fig. 2.27

We=13—7 (2.147)
where 71 and T3 are chosen so that

/OT1 pg(r)dr = / :o pg(T)dr (2.148)
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Figure 2.27. A typical power delay profile.

and
/T ITS g(7)dr =z /0 " go(r)ar . (2.149)

Another quantity is the difference in delays where the delay profile rises to
avaue P dB below its maximum value and where the delay profile drops
to a value P dB below its maximum value for the last time. This quantity
is denoted by Wp and is d<o illustrated in Fig. 2.27, where Wp = 7, — 1.
Power delay profiles play akey role in determining whether or not an adaptive
equalizer is required at the receiver. If the excess delay spread exceeds 10%
to 20% of the symbol duration, then an adaptive equalizer may be required. In
general, the average delay and delay spread of the channel will diminish with
decreasing cell size, the reason being that the radio path lengths are shorter.
While the delay spread in a typical macrocellular application may be on the
order of 1 to 10 us, the delay spreads in atypical microcellular applications
are much less. Delay spreads within buildings range can anywhere from 30 to
60 ns in buildings with interior walls and little metal, to 300 ns in buildings
with open plans and a significant amount of metal. The function ¢r(At; Af)
is called the spaced-frequency spaced-time correlation function. The function
¢1(0; Af) = ¢r(Af) measures the frequency correlation of the channel. The
coherence bandwidth, B, of the channel is defined as the smallest value of
A f forwhich ¢ (A f) equas some suitable correlation coefficient such as 0.5.
As aresult of the Fourier transform relation between ¢4(7) and ¢r(Af), the
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reciprocal of either the average delay or the delay spread is a measure of the
coherence bandwidth of the channdl. i.e,

B, x —1— o B.x —1— . (2.150)
Hr or

The function ¢g(v;0) = ¢ég(v) is cdled the Doppler psd and gives the
average power a the channel output as a function of the Doppler frequency
v. The range of values over which ¢y (v) is significant is caled the Doppler
spread and is denoted by By. Since ¢ g (v) and ¢ (At) are aFourier transform
pair, it follows that the inverse of the Doppler spread gives a measure of the

coherence time, T, of the channd, i.e,

1

T. ~ B, (2.151)
The coherence time of the channel is important for evaluating the performance
of coding and interleaving techniques that try to exploit the inherent time
diversity of thechannel. Notethat the Doppler spread and, hence, the coherence
time depend directly on the velocity of a moving MS. Therefore, any scheme
that exploits the time diversity of the channel must be evaluated over the
complete range of expected MS velocities. Thefunction (7, v) is called the
scattering function and gives the average power output of the channel as a
function of the time delay = and the Doppler shift v. The scattering function is
widely used as a compact characterization of multipath-fading channels.

23 CHANNEL OUTPUT AUTOCORRELATION

The autocorrelation of the channel output can be expressed in terms of the
transmission functions. For example, from (2.117) we have

dets) = [ [ st=1)5"(s - m)yElolt,n)g" (s ldran

= [ [ st =5t~ miy(t,simym)dran
(2.152)
For WSSUS channels, the above expression reduces to
et t + A) = / / 5(t — 1) (¢ + At — 1)y (AL 7)E(n — 7)d7dn
- / 5(t — T)& (¢ + At — 1)y (At T)dT | (2.153)

The channel output autocorrelation can aso be expressed in terms of the
scattering function by substituting the double inverse Fourier transform in
(2.128) into (2.151). For WSSUS channels, we can use (2.144) to write
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Figure 2.28.  Fading simulator that uses low-pass filtered white Gaussian noise.

L

g(1) =g,( t>+ng( )

Bis(t,t + At) = / / 5(t — T)F(t + At — ) (r; 1) 2™ Aldrdy |
(2.154)

3. LABORATORY SMULATION OF
MULTIPATH-FADING CHANNELS

31 FILTERED GAUSS AN NOISE

A straightforward method of constructing a fading simulator is to filter two
independent white Gaussian noise sources with low-pass filters, as shown in
Fig. 2.28. The psd of gr(t) and gg(t) are determined by the squared amplitude
response of the low-pass filters. If the noise sources have power spectra
dengties of 2,/2 wattsHz and the low-pass filters have transfer function
H(f), then

Q
ngy;(f) = qugq (f) = ‘2—p|H(f)|2
Sorgq(f) = 0 (2.155)

The two different noise sources must have the same psd to produce a Rayleigh
faded envelope. The main limitation with this approach is that only rational
forms of the Doppler spectrum can be produced, whereas the Doppler spectrum
istypicaly non-rationa as shown in Fig. 24. To gpproximate the non-rational
Doppler spectrumin Fig. 2.4, ahigh-order pole-zero filter isrequired. Unfortu-
nately, ahigh-order filter has along impulse response, and this will significantly
increase the run times for software smulation.

For discrete-time smulation the low-pass filter h(t) is implemented as a
digital filter. The smplest solution uses a first-order low-pass digita filter,
which basicaly models the fading process as a Markov process. To describe
this approach further, let grx = 97(kT) and ggix = g9o(kT) represent the
real and imaginary parts of the complex envelope at epoch k, where T is the
smulation step sze. Then g7 x and gq « are Gaussian random variables with
the state equation
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(91,k+1,9Q.k+1) = C(gr ks 9Q k) + (1 — O) (w1 k, wok) (2.156)
where wy , and wq ; are independent zero-mean Gaussian random variables,
each with time corrlation Efw; yw; o) = 028k ,i = 1,2. Since gx = grx +
jgq x has zero-mean, the envelope oy = |gx|? is Rayleigh distributed and the
phase ¢, = Tan™" (g x/9g1 &) is uniformly distributed on the interval [—r, ).
It can be shown that the discrete correlation functions of grx and ggx are

¢yogo (n) = P11 (n) = E[gl,kgl,k+n]
_ 1-C 2n|
= 1+ CU ¢ (2.157)
¢g19Q (n) = ¢gQg1 (n)=0 (2.158)

With 2-D isotropic scattering the desired autocorrelation is, from (2.21),

Q
101 (n) = 5" Jo (27 fmnT) . (2.159)

Clearly the above gpproach gives a different Doppler spectrum. Completion
of model requires that o2 and ¢ be specified. Taking the discrete-time Fourier
transform of (2.157) gives the psd

_ (1 -¢)%°
Sorer (f) = 1+(2~2(cos2nfT

Onepossibility isto arbitrarily set the 3 dB point of Sy, 4, (f) to fm/4. Solving
the resulting quadratic for ¢ gives

(2.160)

(=2~ cos(2nfuT) — /(2 ~ cos2nfmT)? — 1 . (2.161)
To normalized the mean square envelope to 2, thevalue of o is chosen as
2 1+¢ Q
o = =2 (2.162)
(1-¢) 2

Fig. 2.29 plots an example of the received envelope.  The dow roll-off of
the first-order low-pass filter leaves some high frequency components in the
Doppler spectrum, which are apparent in the faded envelope. Some improve-
ment can be obtained by usng ahigher order filter, but as explained earlier, this
will increase the complexity of the smulator. One advantage of using low-pass
filtered white Gaussian noise is the ease by which multiple uncorrelated fading
waveforms can be generated. Wejust need to use uncorrel ated noise sources.

32 SUM OF SSINUSOIDSMETHOD

Another very effective channd simulator has been suggested by Jakes that
is based on the sums of sinusoids. The description of this method begins with
(2.8) and (2.6) and assumes equa strength multipath components (C,, = 1).
The received complex envelope has the form
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Figure 2.29. Faded envelope generated by filtering white Gaussian noise with a first-order
low-pass filter; fn T = 0.1.

N .
glt) = Z eI (2m fmtcos butdn) (2.163)
n=1
where N is the number of sinusoids and ¢ is arandom phase given by
n = —27(fe+ Fm)Tn - (2.164)

Jakes approximates a 2-D isotropic scattering environment by choosing the
N componentsto be uniformly distributed inangle, i.e,,

9n=%7",n=1,2,...,1v. (2.165)
By choosing N/2 to be an odd integer, the sum in (2.163) can be rearranged
into the form

N/2-1 X R
g(t) — Z [e-j(27rfmtcosf)n+¢_n)_+_ej(27rfmtc059n+d>n)]

eI fmtrdon) | I fmt+dn) (2.166)

where we have relabeled the phase indices. Note that the Doppler shifts
progress from —2m f, cos(2m/N) to +2x f,, cos(2w/N)as n progresses from
1 to N/2 — 1 in the first sum, while in the second sum they progress from
+27 fr cos(2m/N) 10 —27 fr cos(27/N). Therefore, the frequencies in these
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terms overlap. To simplify further Jakes uses nonoverlapping frequencies to
writeg(t) as

M g -
g(t) = \/-2- Z [e_j(¢—n+27rfmtcosen) + ej(¢n+27rfmtc030n)]
n=1
Le I B-n+2mfmt) | Qi (GN+27fmt) (2.167)
where
1 /N
M=g{5-1 2.168
2 (2 ) ( )

and thefactor v/2 isincluded so that the total power remains unchanged. Note
that (2.166) and (2.167) are not equa. In (2.166) al phases are independent.
However, (2.167) impliesthat —¢; = ¢n/2-1-; and, therefore, correlation is
introduced into the phases. This corrdation leads to non-stationary behavior
as described by Pop and Beaulieu [263]. If we further impose the constraint
that ¢, = —¢_p, In (2.167), then (2.167) can be rewritten in the form

g(t) = gr(t) +3gq(t)

M
= V2 { [2 Z €08 (B, cos 2w fpt + V2 cos acos 27rfmt} (2.169)

n=1

M
+5 [2 Y sin f, cos 2 fut + V2sin a cos anmt] }

n=1

where
a = ¢nv=—¢_n (2.170)
Bn = ¢n=—¢-n @2.171)

From the above development, the fading smulator shown in Fig. 2.30 can
be condructed. There are M low-frequency oscillators with frequencies f, =
fmeos(2mn/N),n=1,2, ,..., M,where M = 1 (% - 1), and with one
oscillator with frequency f,, The amplitudes of the oscillators are al unity
except for the oscillator at frequency f,, which has amplitude 1/+/2. Note that
the structure in Fig. 2.30 implements (2.169), except for a scaling factor of /2.

It is desirable that the phase of g(t) = gr(t) + jgg(t) be uniformly dis-
tributed. This can be accomplished by choosing the phases o and 3, 0 that
< g3 (t) >=< gj(t) > and < gr(t)ge(t) >= 0, where < - > isatime
average operator. From Fig. 2.30
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Figure 2.30. Jakes’ fading simulator that generates a faded envelope by summing a number of
low frequency oscillators. Choosing the phases a = 0 and 8, = wn/M will yield < g(t) >=
M, < g}(t) >= M +1,and < gs(t)go(t) >= 0.

wm
<git)> = 2 cos? By + cos
n=1
M
= M+cos’a+ ) cos2B, (2.172)

n=1

M
< gé(t) > = 2 Z sin? B, + sin®
n=1

M
= M+sinfa— ) cos2f, (2.173)
n=1

M
< gr(t)gg(t) >=2 Z sin 3, cos B, + sinacos a . (2.174)

n=1
Choosing a = 0 and 3, = wn/M, gives < gj(t) >= M, < gj(t) >=
M + 1, and < gr(t)gq(t) >= 0. The mean square values < g#(¢) > and
< g4(t) > can be scded to any desired value. A typical Rayleigh faded
envelope, obtained by using N = 34 or (M = 8) is shown in Fig. 231 The

normalized autocorrelation function

boal7) = Efg*(t)g(t + )]

Eflg(¢)?]

(2.175)
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Figure 2.31.  Faded envelope generated by using Jakes’ fading simulator with M = 8 oscilla-
tors; fmT = 0.1.

is plotted against the normalized time delay fy,7 in Fig. 2.32. Observe that
the autocorrelation tends to deviate from the desired values at large lags. This
can be improved upon by increasing the number of oscillators that are used in
the simulator. For example, Fig. 2.33 shows the normalized autocorrelation
function when the number of oscillators is doubled from 8 to 16. One of the
advantages of using Jakes method is that the autocorrelation and, hence, the
psd of the inphase and quadrature components of the received signal can be
generated S0 as to closely approximate a 2-D isotropic scattering environment.

33 MULTIPLE FADED ENVELOPES

In many casesit is desirable to generate multiple envelopes with uncorrelated
fading. Jakes extended his method to generate up to M fading envelopes by
using the same M low frequency oscillators. This is accomplished by giving
the nth oscillator the additional phase shift 6, = Yk + Bn, 1 < k < M,
yielding the kth faded envelope

M
gr(t) = Z [cos(Bn) + j sin(Bs)] cos(27 frt + Onk) (2.176)

n=1

The appropriate values of v, and 3, are determined by imposing the additional



1.0 . r

——— Simulation
---- Ideal

0.5

Autocorrelation, ¢, (1)
=]
o

-1.0 L—

0.0 2.0 4.0 6.0 8.0 10.0
Time Delay, f_t

Figure 2.32.  Autocorrelation of inphase and quadrature components obtained by using Jakes’
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Figure 2.33. Autocorrelation of inphase and quadrature components obtained by using Jakes’
fading simulator with 16 oscillators.
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Figure 2.34.  Jakes’ method for obtaining multiple Rayleigh fading envelopes.

condtraint that the multiple faded envel opes be uncorrelated (or as nearly un-
correlated as possible). By using two quadrature low- frequency oscillators per
offset, rather than a single oscillator, the use of phase shifters can be eiminated.
This leads to the fading generator shown in Fig. 2.34.

Consider the following choice for 8, and -y,, with the objective yielding
uncorrelated waveforms

™
= = o, M 2.177
ﬂn M+1 n 1, 2a ? ( )
2n(k — 1)n
= — =1, 2, ... . 2.17
Tnk M+ 1 n 1, ) 9 M ( 8)

By using these values, the crosscorrelations between the different faded en-
velopes can be computed. Fig. 2.35 plots the typical normalized crosscorrda
tion

V/Ellg: () P1E(lg; () 2]
against thenormalizedtimedelay fm 7. Althoughitispossibleto make ¢q; 4, (1)
a 7 = 0, we observe that the envelope crosscorrelations can be quite large for
T # U. This property isnot desirable.

Dent et. al. [81] suggested a modification to Jakes approach that uses
orthogonal Walsh-Hadamard codewords to decorrelate the faded envelopes.
The Walsh-Hadamard codewords are obtained from a Hadamard matrix Hay.
The matrix Hpy is generated by using the recursion

Huye  Hpyypo
H., = 2.180
M [ Huyo —Hpyo ¢ )
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Figure 2.35. Crosscorrelation between the faded envelopes that are obtained by using Jakes’
fading simulator with 8 oscillators.

where H; = [1].Let the kth row of H s be the codeword Ak (n). To generate
the kth faded envelope, the outputs of the M low frequency oscillators are
weighted by the co-ordinates of the codeword A (n) and combined to yield

Ak(n) [cos(Bn) + 7sin(By)] cos(27 frt + Onk) (2.181)

HME

where M = 2* for some integer k, 8k = Yuk + B, With 8, and v, defined
in (2.177) and (2.178), respectively. This method decreases the envelope
crosscorrelations, due to the orthogonality of the Walsh-Hadamard codewords.

It can be shown that the autocorrelations of the faded envelopes are the same as
those shown in Figs. 2.32 and 2.33. The envelope crosscorrelations are shown
inFigs. 2.36 and 2.37. The crosscorrelations are zero at zero lag. At non-zero
time lags the crosscorrelations are not exactly zero, but are small enough to be
effectively zero. By increasing the number of oscillators, the crosscorreations
remain close to zero over alarger range of time lags.

Sometimes it is desirable to generate multiple faded envelopes with a speci-
fied crosscorrelation to study, for example, the effects of branch correlation in
recaivers that employ antenna diversity. One straight forward approach uses
a linear combination of uncorrelated faded envelopes. Suppose that the two
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Figure 2.36. Crosscorrelation between the faded envelopes that are obtained by using the
modified Jakes’ fading simulator with M = 8 oscillators.
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Figure 2.37. Crosscorrelation between the faded envelopes that are obtained by using the
modified Jakes’ fading simulator with M = 16 oscillators.



0

complex envelopes g;(t) and g;(t) are uncorrelated, and athird complex enve-
lope gx(t) = agi(t) + (1 — a)gg(t) isformed by taking alinear combination
of the first two. Then the normalized crosscorrelation of gx(¢) and g;(t) is

—a 2 . 2 -1/2
¢yi9k(T) =1+ 4 azE)z[lEg)El(gtJ)g])l ] ) ¢9i9i(T) . (2.182)

Notice that ¢g,, (7) variesfrom 0 to ¢, (t) asavaiesfromOto 1

34 SIMULATION OF WIDE-BAND
MULTIPATH-FADING CHANNELS

r-spaced model:. The 7-spaced model, models the channel by a tapped
delay line with number of taps at different delays. Each tap is the result of a
large number of multipath components and, therefore, the taps will experience
multipath fading. Letting §(t) be the complex envelope of the transmitted
signal, the complex envelope of the received signd is

th(t (t — ) (2.183)

where £ is the number of taps, and the g;(t) and ; are the complex gains and
path delays associated with the tgps.  Although the ; are random, they are
usualy fixed in the modd. It follows that the 7-spaced channel has impulse

response

£
)= git)é(r — ) (2.184)
and can be described by the tap gain vector
g(t) = (g1(t), 92(2), ..., 9e(t)) (2.185)
and the tap delay vector
T =(T1,7T2y -+-,T2) . (2.186)

Sometimes it is convenient if the tap delays are multiples of some small
number , leading to the 7-spaced tgpped delay line channd modd shown
in Fig. 2.38. Many of the tap coefficients in the tapped delay line are zero,
reflecting the fact that no energy is received at these delays. The time varying
channel tap coefficients {gx(t)} can be generated by using the approaches
described in Section 3.

If we assume a WSSUS channel and we assume that each tap experiences
isotropic scattering, then each tap should experience uncorrelated fading with
the autocorrelation
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Figure 2.38. Wide-band multipath-fading channel model with discrete muitipath components.

Q
boar(7) = 5 Jo(2nfm7), 1<k < (2.187)

where € is the envelope power or associated with the kth tap and Jo( - ) isthe
zero-order Besd function of the first kind, and f,, is the maximum Daoppler
frequency. Since the taps are uncorrelated, the total envelope power is

¢
Q=1 U . (2.188)
k=1
It follows that the tap gain vector g has the covariance matrix [173, 167]
1 1
@g(7) = SE[g" ()8t + 7)] = 5Jo(27fmT) Y (2.189)

where 1 denotes Hermitian transposition and
Q £ diag[Q, O1,..., 0 (2.190)

COST207 models..  The COST207 models were developed and standardized
forthe GSM system. Four different Doppler spectra, Sqq(f) havebeen specified
in the COST207 models [67]. First define

_ £\2

G(f) = Aexp {—(i—g-l)—} (2.191)
2f3

The following types are defined;

d CLASSistheclassical Doppler spectrum, used for path delays not in excess
of 500 ns(r; < 500 ns);
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A

Il < fm (2.192)

b) GAUSL is the sum of two Gaussian functions, used for path delays from
500 nsto 2 us; (500 ns< 7; < 2us)

(2.193)

where 4, is 10 dB below A.

¢) GAUS2isthesum of two Gaussianfunctions, usedfor path delaysexceeding
2 ps; (t; > 500 ns)

(GAUS2) Sgg(f) = G(B,0.7fm,0.1fn) + G(B1,—0.4fp,0.15fp,)
(2.194)
where B; is 15 dB below B.

d) RICE is acombination of the classical Doppler spectrum and one specular
path that is sometimes used for the shortest path;

0.41

T 2= )

(RICE)  Sgq(f) + 0.916(f — 0.7fm)

fl<fm 2195

A number of specific models have been defined in the COST207 study [67].
Typical urban (TU) (non-hilly) and bad urban (BU) (hilly) power delay profiles
are shown in Table 2.1 and Fig. 2.39. Sometimes it is desirable to reduce
the number of paths to reduce the computational requirements of computer
simulations. Table 2.2 and Fig. 2.40 show the 6-ray reduced typical urban and
reduced bad urban channel, as defined by COST207 [67]. Also provided are
models for rural (non-hilly) areas (RA) in Table 2.3, typical hilly terrain (HT)
in Table 2.4, and reduced hilly terrain (HT) in Table 2.5.

T-spaced modd:. A typical digital communication system consists of the
combination of atransmitter filter, modulator, waveform channel, demodulator,

and receiver filter. Data symbols are fed into the transmit filter every T seconds,

while T-spaced samples are taken at the output of the receiver filter, where T

is the baud duration. The overal system from the input to the transmitter filter
to the output of the sampler can be modeled by an equivalent overal T-spaced

finite impulse response (FIR) channel.
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Typical Urban (TU) Bad Urban (BU)

delay Fractional Doppler delay Fractional Doppler
us Power Category s Power Category
0.0 0.092 CLASS 0.0 0.033 CLASS
0.1 0.115 CLASS 0.1 0.089 CLASS
0.3 0.231 CLASS 0.3 0.141 CLASS
0.5 0.127 CLASS 0.7 0.194 GAUSI
0.8 0.115 GAUS1 1.6 0.114 GAUS1
1.1 0.074 GAUS1 22 0.052 GAUS2
1.3 0.046 GAUS1 3.1 0.035 GAUS2
1.7 0.074 GAUS!1 5.0 0.140 GAUS2
23 0.051 GAUS2 6.0 0.136 GAUS2
3.1 0.032 GAUS2 7.2 0.041 GAUS2
3.2 0.018 GAUS2 8.1 0.019 GAUS2
5.0 0.025 GAUS2 10.0 0.006 GAUS2

Table 2.1. Typical urban (TU) (6 = 1.0 us) and bad urban (BU) (¢, = 2.5 us) power delay
profiles, from [67].

Typical Urban Bad Urban
Fraction of Power Fraction of Power
04 J— 04T
03+ 03 T
02+ 02+
0.1 0.1 +
0.0 0.0 4
0.0 2.0 4.0 6.0 0.0 2.0 4.0 6.0 8.0
Time Delay, 1t (us) Time Delay, 1t (us)

Figure 2.39. Typical urban (TU) and bad urban (BU) power delay profiles, from [67).

The T-gpaced channd model is similar tothe 7-spaced channel model, except
that the channel taps are T-spaced. Usudly, the taps in the T-spaced model
are dl non-zero and correlated. The tap correlations often lead to difficulties
when analyzing the performance of digital communication systems that are
operating on these channels. These analytica difficulties are often overcome
by assuming that the T-spaced taps are uncorrelated [79,99,137,201,321,187].
For computer simulations, however, such simplifications are not necessary and
in fact undesirable. However, to reduce run times in discrete-time simulations,



Typical Urban (TU) Bad Urban (BU)

delay Fractional Doppler delay Fractional Doppler
us Power Category LS Power Category
0.0 0.189 CLASS 0.0 0.164 CLASS
02 0.379 CLASS 0.3 0.293 CLASS
0.5 0.239 CLASS 1.0 0.147 GAUSI
1.6 0.095 GAUS1 1.6 0.094 GAUSI
23 0.061 GAUS2 5.0 0.185 GAUS2
5.0 0.037 GAUS2 6.6 0.117 GAUS2

Table 2.2. Reduced typical urban (TU) (6 = 1.0 us) and bad urban (BU) (o = 2.5 us)
power delay profiles, from [67].

Typical Urban Bad Urban
Fraction of Power Fraction of Power

04 T 04T
0.3 03 1+
0.2 H 0.2 1+
o] o
0.0 L I 1 I + 0.0 - 1 Ly

0.0 2.0 4.0 6.0 0.0 2.0 4.0 6.0 8.0

Time Delay, 1 (us) Time Delay, 1t (us)

Figure 2.40. Reduced typical urban (TU) and bad urban (BU) power delay profiles, from [67].

it is sometimes desirable to set the simulation step size to the baud duration

T. We now describe a method for generating the T-spaced tap coefficients
with the proper crosscorrelations when a linear modulation scheme is used

and the underlying channel model is 7-spaced. Consider the arrangement
shown in Fig 2.41. Asdiscussed in Chapter 4, atypical digital communication

system consists of atransmit filter h,(t), channe g(¢, 7), and receiver matched
filter h%(—t). The overdl pulse isp(t) = hq(t) x h%(—t), and is chosen,
for example, to be araised cosine pulse. To obtain the T-space channel tap
co-efficient, we pass the pulse p(t) through the 7-spaced channel and extract
T-spaced samples. The T-spaced samples are alinear combination of the taps
inthe 7-spaced model. Suppose that a vector of M, T-spaced, tap coefficients

IS generated in this manner
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delay Fractional Doppler
us Power Category
0.0 0.602 RICE
0.1 0.241 CLASS
0.2 0.096 CLASS
0.3 0.036 CLASS
04 0.018 CLASS
0.5 0.006 CLASS

Table 2.3.  Typical rural (non-hilly) area (RA) (6 = 0.1 us), from [67].

delay Fractional Doppler
us Power Category
0.0 0.026 CLASS
0.1 0.042 CLASS
0.2 0.066 CLASS
0.3 0.105 CLASS
04 0.263 GAUS1
0.5 0.263 GAUSI
0.0 0.105 GAUSI
0.1 0.042 GAUS2
0.2 0.034 GAUS2
03 0.026 GAUS2
04 0.016 GAUS2
0.5 0.011 GAUS2

Table 2.4.  Typical hilly terrain (HT) (- = 5.0 us), from [67].

gr(t) = (q1r(t), gor(t), .-, gmr(t) (2.196)

Then gk (t) = AgT (t), where g(t) is defined in (2.185), and A isan M x £
real matrix. The parameter M is a design parameter equal to the number of

T-spaced taps that we wish to process in the receiver. As described in the
example below, the entries of the matrix A are determined by the overal pulse
response of the transmitter and receiver filters, the relative power and delays of
theraysinthe r-spaced model, and the T-spaced sampler timing phase. Note
that the matrix A only needs to be generated once each time the relative delays
of the rays in the 7-spaced channel and/or the sampler timing phase change.

The covariance matrix of the T-spaced tap gain vector gris



delay Fractional Doppler
U Power Category
0.0 0.413 CLASS
0.1 0.293 CLASS
0.3 0.145 CLASS
0.5 0.074 CLASS
15.0 0.066 GAUS2
17.2 0.008 GAUS2

Table 2.5.  Reduced hilly terrain (HT) (o, = 5.0 us), from [67].

p(t)=hy(t)xh¢t )

pulse T -spaced matched
generator channel ﬁlter |
ha(t) g(t7) hatt ) T-spaced
samples
pulse T -spaced
generator channel L
t t,
p(t) g(tt) T-spaced
samples

Figure 2.4]. Method for generating correlated tap coefficients in a T-spaced channel model.

(I)gT (T)

oF [l (¢ + 7)gr (1)

%E [AgH(t + T)g(t)AT]

Ad (T)AT .

For a WSSUS channel with 2-D isotropic scattering

Pgr (7)

%AQATJO(% fmT) . (2.197)

Example 2.1 Suppose that the combination of the transmitter and receiver
filter is a raised cosine pulse having a roll-off factor of 0.35°

% See Chapter 4 for a discussion of raised cosine pulse shaping.
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Y g (1)p(- T2 +T/2)

8,(t)p (T2 - T/2)

8(t)p(-Y2-T/2) 8,(1)p(T/2 +T/2)

T
T T T > T T T
T T T T
2 "2 2 772

Figure 2.42.  Generation T-spaced taps from a 7-spaced model.

cos(npt/T)
1—43%t2/T*?
where 8 = 0.35. The 7-spaced waveform channel is characterized by two
equal strength taps (Qo = 1) with adifferential delay of 7 = |71 () — 70(2)|
In this example, we wish to generate the two main taps in the T-spaced channel
model, gor(t) and g1 (¢), under the condition that 7 = T'/4. Let

g(t) = (g90(t),q1(8))
gr(t) = (gor(t),q17(t))

p(t) = Sa(nt/T) - (2.198)

and
gr(t) = g(t)AT .

The entries of matrix A depend on the timing phase of the T-spaced samples
taken at the output of the pulse generator. In a practical system, the sampler
timing phase is determined by the synchronization process in the receiver.
Suppose that the sampler timing phase is chosen so that the T-spaced taps
gor(t) and g17(t) have equal variance. Consider Fig. 2.42. Since Q¢ = ; for

the 7-spaced channel in this example, the entries of matrix A can be obtained
by writing

gor(t) = go(t)p(7/2—T/2) + q1(t)p(—7/2 —T/2)
air(t) = go(t)p(r/2+T/2) + g1(t)p(—tau/2 + T/2)

Hence,
A |PT/2=T/2) p(=7/2-T/2)
p(t/2+T[2) p(—7/2+T/2)
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Forr=T/4and 3 = 0.35

A [ p(—3T/8) p(—5T/8) } _ [ 0.7717 0.4498
p(5T/8)  p(3T/8) 0.4498 0.7717

4.  SHADOWING

Let ©, = E[a(t)] denote the mean envelope level, where the expectation
is taken over the pdf of the received envelope, eg., the Rayleigh and Rice
distributionin(2.43) and (2.50), respectively. Sometimes(,, is caled thelocal
mean because it represents the mean envelope level where the averaging is
performed over a distance of afew wavelengths that represents a locdity. The
loca mean Q,itsef is a random varigble due to shadow variations that are
caused by large terrain features between the BS and MS, such as buildings
and hillsin macrocdls and smaller objects such as vehiclesin microcdls. The
same argument applies to the mean squared envelope level 2, = E[a?(t)].
Empiricd studies have shownthat Q,and €2, have the log-normal distributions

2
2 (1010810-’52 — K, (dBm))
= T - 2.199
pa.(®) = e P { 202 (2.199)
2
1 (1010g10m — ko, (dam))
= e - 2.200
P, () ToafV2m exp 20%, ( )
where
B, (aBm) 30 + 10E[log;( 7] (2.201)
#Qp (dBm) = 30 + ]‘OE[IOgIOQp] (2.202)

and ¢ = In10/10. The mean values pq, upm @0 Lo, g d€ SOMEtimes

called the area mean because the averaging is performed over an area that is
large enough to average over the shadows. The area mean is determined by the
propagation path loss between the BS and MS. By using a transformation of

random variables, 2, (@pm) = 30+10log;,2; and Q, (4m) = 30+10log;o 2y
can be shown to have the Gaussian densities

1 ((L' - ,UQU { m))2
R i e
1 (.’L‘ — HQ m))2

Note that the logarithm of the log-normal random variable in yields a normal
random variable.
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Some confusion may arise in the description of log-normal shadow distri-
bution, because some authors [235, 122, 123] treat the mean envelope 2, as
being log-normally distributed with standard deviation oq, while other authors
[203, 225, 268, 310] treat the mean square-envelope €2, as being log-normally
distributed with the same value of oq. Clearly, these two quantities are not the
same. Itis shown in Appendix 2A that the tandard deviation oq is the same
in each case. However, with Ricean fading the means differ by

B, am) = MO, apm) T 1010g10C(K) (2.205)

where

4e*K (K +1)
m1F{(3/2,1; K)
and 1 F1(-,-;-) denotes the confluent hypergeometric function. The shadow
gandard deviation o rangesfrom5to 12 dB with 8 dB being atypica valuefor
macrocellular applications. The shadow standard deviation increases slightly
with frequency (0.8 dB higher a 1800 MHz than a 900 MHz), but has been
observed to be nearly independent radio path length, even for distances that
are very close to the transmitter [225]. The shadow standard deviation that is
observed in microcells varies between 4 and 13dB [278, 33, 216, 142, 144, 226].
Mogensen [226] has reported oq = 6.5 to 8.2 dB a 900 MHz in urban aress,
while Mockford et. al. [225] report a value of 4.5 dB for urban aress. Berg
[33] and Goldsmith and Greenstein [144] report that o is around 4 dB for a
spatial averaging window of 20 wavelengths and BS antenna heights of about
10 (m). Severd studies suggest that o, decreases with an increase in the degree
of urbanization or density of scatters. For example, the results presented by
Mockford et. al. [225] suggest that oq is 1.3 to 18 dB higher in a suburban
environment than in an urban environmen.

41 LABORATORY SMULATION OF SHADOWING

One of the challenges when constructing a shadow simulator is to account
for the spatia correlation of the shadows. Severd studies have investigated the
gpetia correlation of shadows [162, 151, 216, 172, 152]. One Smple modd
has been suggested by Gudmundson [152], where log-norma shadowing is
modeled as a Gaussian white noise process that is filtered by a first-order
low-pass filter. With this model

Q41 (aBm) = (% (aBm) + (1 — Q) (2.207)

where € aBm) IS the mean envelope or mean squared-envelope, expressed
in decibdls, that is experienced at location k, ¢ is a parameter that controls
the spatial correlation of the shadows, and vy, is azero-mean Gaussan random
variablewith ¢, (n) = 525(n). From equation (2.157), it immediately follows
that the spatial autocorrelation function of Qy (4m) is

C(K) =

(2.206)
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1-¢.9
P 4pm) Qanm (M) = 1+¢° gt (2.208)
Since the variance of log-normal shadowing is
1-¢.
o = 300 asm (0) = T (2:209)
we can express the autocorrelation of € as

B ammyanm (1) = 0RC™ (2.210)

This approach generates shadows that decorrelate exponentially with distance.
It is interesting to note that Mandayam et. al. [214] have shown through an ex-
treme value analysis that log-normal shadows cannot decorrelate exponentially
with distance. Nevertheless, in the absence of abetter solution, Gudmundson’s
model in (2.207) is still useful and effective. To use the simulator in (2.207) we
must relate the decorrelation parameter ¢ to the smulation index k. Suppose
that we wish to model the shadows that are experienced by a MS that is trav-
eling with velocity v. The envelope (or squared envelope) is sampled every T
seconds. In KT seconds the MS moves a distance v&T'. Let ¢p be the shadow
correlation between two points separated by a spatial distance of D m. Then
the time autocorrelation of the shadowing is

¢Q(dgm)ﬂ(dgm)(k) = ¢Q(dBm)Q(dBm)(kT) = U%(gT/D)lkl ) k > 0.

(2.211)
Comparing (2.210) and (2.211) we seethat ¢ = CS’T/ D) For typical suburban
propagation at 900 MHz, it has been experimentally verified by Gudmundson
[150] that oo = 7.5dB with a spatia correlation of approximately 0.82 at
a distance of 100 m. For typical microcellular propagation a 1700 MHz,
Gudmundson has aso reported oq = 4.3 dB with a spatial correlaion of 0.3
at adistance of 10 m.

42 COMPOSTE SHADOWING-FADING
DISTRIBUTIONS

Sometimes it is desirable to know the composite distribution due to shad-
owing and multipath fading. This may be particularly true for the case of
dow moving or stationary MSs, where the receiver is unable to average over
the effects of fading and a composite distribution is necessary for evaluating
link performance and other quantities. Two different approaches have been
suggested in the literature for obtaining the composite distribution. The first
approach isto express the envelope (or squared-envelope) as aconditional den-
Sity on €2, (or ), and then integrate over the density of €2, (or ©2,) to obtain
the composite distribution. Assuming that we are interested in the composite
envelope
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pac(@) = [ poja, (lwlpo, (w)dw . @212)
For the case of Rayleigh fading
Q, = E[a(t)] = ﬁo (2.213)
and, hence,
Pa| q, (#lw) = %j—zexp {—g}—z} : (2.214)

The composite envelope distribution with Rayleigh fading and log-normal
shadowing is

© 7z Tz?
- = 2.215

2

9 (1010g10w2 — HQ, (dBm))
X — eX -
WOk o P 20%

where € = (In10)/10. Sometimes this distribution is called a Susuki distribu-
tion, after the origina work by Susuki [311]. The second approach, originally
suggested by Leeand Yen [194], is to express the composite recelved signal as
the product of the short term multipath fading and the long term shadow fading.
Hence, a any time t, the envelope of the composite signal has the form

dw .

do(t) = aft) - Qu(t) (2.216)
and the squared-envelope of the composite signa has the form
G2(t) = o*(t) - Qp(2) . (2.217)

Under the assumption that the fading and shadowing are independent random
processes, we now demonstrate that both approaches lead to identical results.
The density function of envelope in (2.216) can be obtained by using abivariate
transformation and then integrating to obtain the marginal density. This leads

to the density
1
Pa.(T) = —Pa (3) pa, (w)dw . (2.218)
0 w w

Again, consder the case of log-normal shadowing and Rayleigh fading. Using
(243) and (2.199) gives

oo T .’132
pa.(x) = /0 Wexp{—m} (2.219)

9 2
9 2 (1010g10w — Hq, (dBm)) d
—————exp{ — w .
woabV2n P 2”&%
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Observe that (2.215) and (2.219) are related by

Pa.(T) = \/gapac (\/gaz) (2.220)

It follows that the random variables &, and o, are simply related through the

linear transformation
/21
. =4/ ——G - (2.221)
mTa

Note, however, that /7/20 is just the mean of the Rayleigh distribution.
Therefore, if we normalize a(t) to have unit mean, then a.and &chave the
exact same distribution. Voila

421 COMPOSITE GAMMA-LOG-NORMAL DISTRIBUTION

It is sometimes very useful to mode the radio propagation environment as
a shadowed Nakagami fading channel, because the Nakagami distribution is
mathematically convenient and can closdly approximate a Ricean distribution
which in turn is often used to model a specular multipath fading channel. The
composite distribution of the squared-envelope due to Nakagami fading and
log-normal shadowing has the Gamma-log-normal density function

o = ) sy )

X ! exp{ — (10log pw — pq, (dﬂm))2
V2réoqw P 203
where ¢ = (In10)/10. Asshown in Appendix 2B, the composite Gamma-log-

normal distribution in (2.222) can be approximated by alog-normal distribution
with mean and standard deviation

} du(2.222)

#aBm) = & '[(m) —In(m)] + pe, wpm
o2 = £7%(2,m)+d3 (2.223)

where (-) is the Euler ps function and ¢(-,-) is Riemann's zeta function
as defined in Appendix 2B. When m = 1 the approximation is valid for
oq > 6 dB, and for m > 2 the approximation is valid for al ranges of oq
of interest [165]. The effect of Nakagami fading in (2.222) is to decrease the
mean and increase the variance. However, this affect decreases as the shape
factor m increases (corresponding to less severe fading). For example, with
m = 1 (Rayleigh fading) we have unew) = p0, (4pm) —2-50675 and ‘7(2new) =
o? + 31.0215, while with m = 8 we have pnew) = B, upmy — 0-277 and

Oaew) = 0° + 2.50972. We conclude that the effects of Nakagami fading
become more pronounced when the shape factor m and the shadow standard
deviation care small.
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5. PATH LOSSMODELS

It is well known that the received signal power decays with the square of the
path length in free space. That is, the received envelope power is [257]

A 2
n, = GrGr (1) (2.224)

where Q; is the transmitted power, Grand G ae the transmitter and receiver
antenna gains, and d is the radio path length. The signas in land mobile
radio applications, however, do not experience free space propagation. A more
appropriate theoretical model assumes propagation over aflat reflecting surface
(the earth) as shown in Fig. 2.43. In this case, the recelved envelope power is

[257]

Ae \2 5 27rhbhm>
= _— 2.225
un, =40 (25) GrGrsint (754 (2.225)

where hy and h,, are the heights of the BS and MS antennas, respectively.
Under the condition that d >> hphp,, (2.225) reduces to

b \ 2
o, = uGrGr (225"

where we have invoked the approximation sin z ~ x for small z. Observe that
whend >> hyhyy,, the propagation over a flat reflecting surface differs from free
Space propagation in two ways. Firdt, the path loss is not frequency dependent
and, second, the envelope power decays with the fourth power rather than the
square of the distance. Fig. 2.44 plots the path loss

4GGrG
Lp4s) = 10108‘10{ : R}
P

2
= —101ogw{4 ( 4’7\:d> sin? (2—’%@)} dB (2.227)

againg the distance d. Notice that the path loss and, hence, the received
envelope power has alternate minima and maxima when the path length is
small. This property has been noted in experiments by Milstein et. al. [223].
The last loca maxima in the path loss occurs when

2hphm n

Acd 2

(2.226)

51 PATH LOSSIN MACROCELLS

Severd highly useful empirical models for macrocellular systems have been
obtained by curve fitting experimental data. Two of the more useful models
for 900 MHz cdlular systems are Hata's model [253] based on Okumura's
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Figure 2.43.  Radio propagation over a flat reflecting surface.
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Figure 2.44. Propagation path loss with distance over a flat reflecting surface; hy = 7.5 m,
hm = 1.5 m, f. = 1800 MHz.

prediction method [162], and Lee's model [190].

511 OKUMURA-HATA AND CCIR MODELS

Hata's empirical model [162] is probably the simplest to use, and can dis-
tinguish between man-made structures. The empirical datafor this mode was
collected by Okumura [253] in the city of Tokyo. Be cautioned, however,
that the path losses for Japanese suburban areas do not match North American
suburban areas very well. The later are more like the quasi-open aress in
Japan. Okumura and Hata's mode is expressed in terms of the carrier fre-
quency 150 < f. < 1000 (MHz), BS antenna height 30 < hy < 200 (m),the
MS antenna height 1 < A, <10 (m), and the distance 1 < d < 20 (km)
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between the BS and MS. The model is known to be accurate to within 1 dB for
distances ranging from 1 to 20 km. With Okumura and Hata's model, the path
loss between two isotropic BS and MS antennas is

A + Blog,(d) for urban area
Ly @)= A+ Blogj(d)-C for suburban area  (2.228)
A+ Blogo(d) — D for open area
where
A = 69.55+ 26.16log,o(f.) — 13.82log o (ko) — a(hm) (2.229)
B = 44.9—6.55log;o(hs)
C = 5.4+ 2[log(f./28)]
D 40.94 + 4.78 [logy (f)]* — 18.33 log o (fe)
and
( (L.1logyo(fc) ~ 0.7) hm — (1.56 log,,(fc) — 0.8)
for medium or small city
a(hm) = <
8.28 [logyo(1.54h.,)]° — 1.1 for f, < 200 MHz
3.2[log o (11.75hm)]> — 4.97  for f, > 400 MHz
\ for large city
(2.230)
An empirica model was published by the CCIR that gives the path loss as
Lp (dB) = A + Blogm(d) - F (2231)

where A and B are defined in (2.229) with a(h,,)being the medium or small
city valuein (2.230). The parameter E accounts for the degree of urbanization
and is given by

E = 30 — 25log,4(% of area covered by buildings) (2.232)

where £ = (0 when the area is covered by approximately 16% buildings.
Typical vaues from the Okumura-Hata “large city” model are plotted in
Fig. 245, for a BS height of 70 m, a MS antenna height of 1.5 m, and a
carrier frequency of 900 MHz. Severd studies have shown that, due to alesser
degree of urbanization, the North American urban areas have path losses similar
to the Japanese suburban aress.

512 LEE'SAREA-TO-AREA MODEL

Lee's arearto-area model [190] is used to predict a path loss over flat terrain.
If the actual terrain is not flat, eg., hilly, there will be large prediction errors.
Two parameters arerequired for Lee' s area-to-area model; thepower at a1 mile
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Figure 2.45. Path loss obtained by using Okumura and Hata's method; hy = 70 m, A =
1.5m, f. = 900 Mhz.

(1.6 km) point of interception, pa,(d,), and the path-loss exponent, 8. The
received signa power can be expressed as

pe, = ke, (do) (%)ﬂ (%)n ag (2.233)

where disin kilometersand d, = 1.6 km. The parameter oy IS a correction
factor used to account for different BS and MS antenna heights, transmit powers,
and antenna gains. The following set of nominal conditions are assumed in
Lee's area-to-area moddl:

= frequency f. = 900 MHz

s BSantennaheight =3048 m

s BS transmit power = 10 watts

= BSantennagain = 6 dB above dipole gain
= MSantennaheight =3 m

s MS antennagain = 0 dB above dipole gain

If the actual conditions are different from those listed above, then we compute
the following parameters:.



Propagation Modeling 107

Terrain pa,(do) (dBm) B

Free Space -45 2

Open Area -49 4.35
North American Suburban -61.7 3.84
North American Urban (Philadelphia) -70 3.68
North American Urban (Newark) -64 4.31
Japanese Urban (Tokyo) -84 3.05

Table 2.6. Parameters for Lee’s area-to-area model in various propagation environments, from
[190].

( new BS antenna height (m)) 2

a= 30.48 m
(new MS antenna height (m)) K
Qg =
3m
(new transmitter power) 2
o =
3 10 watts
new BS antenna gain with respect to A./2 dipole
o4 =

4
as = different antenna-gain correction factor at the MS  (2.234)

From these parameters, the correction factor ey is
Qp = (] O - (3 * (¥4 * Q5 . (2.235)

The parameters 8 and uq, (d,) have been found from empirical measure-
ments, and are listed in Table 2.6.

Experimental data suggest that n in (2.233) ranges between 2 and 3 with the
exact value depending upon the carrier frequency and the geographic area. For
fe < 450 MHz in asuburban or open area, n = 2 isrecommended. In an urban
aeawith f, > 450MHz, n = 3 is recommended. The value of xin (2.234)
can also be determined from empirical data

= { 2 for anew MS antenna height > 10 m (2.236)

3 for anew MS antenna height < 3m

The path loss L, (4p) isthedifference between the transmitted and received
fid strengths, L, ) = #9, upm (@o) — £, upm- 10 COMpare with the
Okumura-Hata model we must assume an isotropic BS antennawith 0 dB gain,
%0 that as = —6 dB. Then by using the nominal BS transmitter power of
40 dBm (10 watts) dong with the parameters in Tab. 2.6 for pq, 4p.m (do) and
3, the following path losses can be obtained
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Figure 2.46. Path loss obtained by using Lee’s method; hy = 70 m, h,, = 1.5 m, f. =
900 Mhz.

[ 96.92 + 20.01og,o d + 10nlogo(f/900) —ag  Free Space
86.12 + 43.5log o d + 10nlogo(f/900) —ap  Open Area
I _} 99.86 + 38.41og o d + 10n log;o(f/900) — g Suburban
P(@B) =\ 108.49 + 36.810g,od + 10nlog,o(f/900) — ap  Philadelphia
101.20 + 43.1log o d + 10nlog;o(f/900) —ay  Newark
123.77 + 30.5log o d + 10nlog;o(f/900) — g  Tokyo
(2.237)
These typical values from Le€'s area-to-area model are plotted in Fig. 2.46,
for the same parameters used with Okumura-Hata model in Fig. 2.45.

52 PATH LOSSIN OUTDOOR MICROCELLS

Most of the future PCS microcellular systems are expected to operate in
1800-2000 MHz frequency bands. Some studies have suggested that the path
losses experienced at 1845 MHz are about 10 dB larger than those experienced
at 955 MHz when all other parameters are kept constant [68]. The COST231
study [69] has resulted in two models for urban microcellular propagation, the
COST231-Hata model and the COST 231-Walfish-lkegami model.

\

521  COST231-HATA MODEL
The COST231-Hata model is based on the proposal by Mogensen [226]
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et. al. to extend Okumura and Hata's mode for use in the 1500-2000 MHz
frequency range, where it is known that Okumura and Hata's model under
estimates the path loss. The COST231-Hata mode is expressed in terms of the
carrier frequency 1500 < f. < 2000 (MHz), BS antenna height 30 < hy <
200 (m), MS antenna height 1 < h,,, < 10 (m), and distance 1 < d < 20 (km).
In particular, the path loss with the COST231-Hata modd is

LP (dB) = A + B].Oglo(d) + C (2.238)
where

A = 46.3 + 33910g10(fc) - 138210g10(hb) - a(h,m)
{ 0  medium city and suburban areas

C = with moderate tree density

3 for metropolitan centers

Although both the Okumura and Hata and the COST231-Hata models are
limited to BS antenna heights greater than 30 m, they can be used for lower BS
antenna heights provided that the surrounding buildings are well below the BS
antennas. They should not be used to predict path loss in urban canyons. The
COST231-Hata mode! is good down to a path length of 1 km. It should not be
used for smaller ranges, where path loss becomes highly dependent upon the
local topography.

522  COST231-WALFISH-IKEGAM| MODEL

The COST231 -Walfish-Ikegami model distinguishes between LoS and NLoS
propagation. The mode is accurate for carrier frequencies in the range
800 < f. < 2000 (MHz), and path distances in the range 0.02 < d < 5 (km).

LoS propagation:.  For LoS propagation in a street canyon, the path loss is
Ly (aB) = 42.6 + 26log,(d) + 20l0g,o(fe), d>20m (2.239)

where the first constant is chosen sothat L, is equal to the free-space path loss
at adistance of 20 m. The model parameters are the distance d (km) and carrier
frequency f. (MHz).

NLOS propagation:.  As defined in Fig. 247, the path loss for non line-of-
sight (NLoS) propagation is expressed in terms of the following parameters:
hy = BS antennaheight, 4 < hp < 50 (m)
hn = MS antenna height, 1 < A, < 3 (m)
hroof = roof heights of buildings (m)
Ahy, = hy — hroot = height of BS relative to rooftops (m)
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Figure 2.47. Definition of parameters used in the COST231-Walfish-lkegami model.

Ah,;, = hreof — hm = height of MS relative to rooftops (m)

= width of streets (m)

building separation (m)

road orientation with respect to the direct radio path, degrees

S o E
i

If no data on the structure of the buildings and roads are available, thefollowing
default values are recommended, b = 20...50 (m), w = b/2, ¢ = 90°, and
hroot = 3 x number of floors + roof (m), where roof = 3 (m) pitched and
0 (m) flat.
The NLoS path loss is composed of three terms, viz.,
L — Lo + Lrts + Lmsd for Lrts + Lmsd 2 0
» (dB) Lo for Lyts + Linsa < 0

where

(2.240)

L, = free-space loss= 32.4 + 20log;q(d) + 20logo(fc)
Lis = roof-to-street diffraction and scatter loss
Lnsa = multi-screen diffraction loss

The roof-top-to-street diffraction and scatter loss is
Lys = —16.9 — 10logo(w) + 10logq(fc) + 20loggAhm + Lori  (2.241)
where

—10 + 0.354(¢) , 0<¢< 35
Lo = { 2.5+0.075(¢ — 35°), 35°< ¢ <55 . (2.242)
4.0 —0.114(¢ — 55°), 55° < ¢ < 90°

is an orientation loss.
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The multi-screen diffraction loss is
Linsd = Lygh + ko + kglogo(d) + kflogw(fc) — 9logo(b) (2.243)

where
~18log,(1 + Ahp)  hs > hRoot

LbSh - { 0 hb < hRoof
is the shadowing gain (negative loss) for cases when the BS antenna is above
the rooftops. The parameters k, and k4 depend on the path length, d, and base
station elevation with respect to the rooftops Ah,. The term k, accounts for
the increase in path loss when the BS antennas are situated below the roof tops
of adjacent buildings, and is given by

(2.244)

54 ; hb > h'Roof
kg = 54 — 0.8Ahy , d > 0.5 km and hy < hgoot (2.245)
54 — 0.8Ahpd/0.5, d < 0.5kmand hy < hRroof

The terms k4 and k¢ control the dependency of the multi-screen diffraction loss
on the distance and frequency, respectively, and are given by

_ 18, hy > hroot
ka = { 18 — 16Ahy/Aroor s Py < hepoot (2.246)

44 0.7(f/925 — 1), medium city and suburban
1.5(f./925 — 1), metropolitan area

The COST231-Walfish-Ikegami modd works best for Ay > hreor. Large
prediction errors can be expected for hy = hreot- The mode is poor for
hy < hroof because thetermsin (2.245) do not consider wave guiding in street
canyons and diffraction at street corners.

kg (22247)

523  STREET MICROCELLS

For ranges less than 500 m and antenna heights less than 20 m, some
empirica measurements have shown that the received signal strength for LoS
propagation along city streets can be described by the two-slope modd [161,
149, 175, 360, 268, 345]

_ kQy

H% = a1 + djg)P
where €, is the transmitted power, k is a constant and d (m) is the distance.
Close into the BS, free space propagation will prevall so that a = 2. The
parameter g is cdled the break point and ranges from 150 to 300 m [161,
149, 175, 360]. At larger distances, an inverse-fourth to -eighth power law is
experienced o that b ranges from 2 to 6. Thisis probably caused by increased
shadowing at the greater distances [161]. The model parameters that were
obtained by Harley [161] are listed in Table 2.7. Xia [366] has demonstrated
that the break-point occurs where the Fresnel zone between the two antennas

(2.248)
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Base Antenna Height (m) a b Break point g (m)
5 2.30 -0.28 148.6
9 148 0.54 151.8
15 0.40 2.10 143.9
19 -0.96 4.72 158.3

Table 2.7.  Two-slope path loss parameters obtained by Harley, from (161].

base
station
250m | Building
S L/
4 i mobile . o base

station
L«——— 250 m —4 atl

Figure 2.48.  The comer effect in a street microcell environment.

just touches the ground assuming a flat surface. This distance is

__1_ — A2)2 _ 2 <ﬁ)2 (ﬁy
g-->\c\/(22 A2) 2(Z2 + A?) 5 + 5 (2.249)

where X = hy + hm and A = hy — h,,. For high frequencies this distance can
beapproximated asg = 4hyhn, / Ac. Notice that the break-point is dependent on
frequency, with the break-point a 1.9 GHz being about twice that for 900 MHz.

Street microcells may aso exhibit NLoS propagation when a MS rounds a
street corner as shown in Fig. 2.48. In this case, the average received signd
strength can drop by 25-30 dB over distances as smdl as 10 mfor low antenna
heights in an area with multi-story buildings [51, 324, 207, 238, 286], and by
25-30 dB over distances of 45-50 m for low antenna heights in a region with
only one- or two-story buildings [286]. This phenomenon is caled the corner
effect.

Grimlund and Gudmundson [149] have proposed an empirical Street corner
path loss model. Their model assumes LoS propagation until the MS reaches a
street corner. The NLoS propagation after rounding a street corner is modeled
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Figure 2.49. Average and instantaneous received signal strength for the street microcell en-
vironment in Fig. 2.48. For the instantaneous received signal strength, on = 6 dB and
P9, (4Bm) % (aBmy (@) = 0.10% atd = 30 m.

by assuming LoS propagation from an imaginary transmitter that is located at
the street corner having a transmit power equal to the received power a the
Street corner from the serving BS. That is, the received signal strength (in dBm)
is given by

a_’ﬂ:__g d<d
pa, = { gler ) i (2.250)
d2(1+d:/g)b  (d—dc)e(1+(d—dc)/9)® ¢

where d. (m) is the distance between the serving BS and the corner. For the
scenario depicted in Fig. 2.48, the received signa strength with this model is
shown inFig. 249. The heavy curves show the average received signa strength
from the two BSs as the MS traverses the dashed path shown in Fig. 2.48. These
curves were obtained by using a = 2, b = 2, ¢ = 150 m,and d. = 250 m
in (2.250), and assuming that un, = 1 dBm a d = 1 m. The dotted curves
superimposed on the heavy lines in Fig. 2.49 show the received signa strength
with the combined effects of path loss, log-normal shadowing, and multipath-
fading. The latter two were obtained by using the smulators described in
Sections (4.1) and (3.2).
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Building Frequency (MHz) Jol oq (dB)
Retail stores 914 22 8.7
Grocery stores 914 1.8 52
Office, hard partition 1500 3.0 7.0
Office, soft partition 900 2.4 9.6
Office, soft partition 1900 2.6 14.1

Table 2.8. Path loss exponents and shadow standard deviations for several different types of
buildings, from [11].

5.3 PATH LOSS IN INDOOR MICROCELLS

Indoor microcellular systems are becoming very important for providing
wireless voice and data communications within the home and work-place. The
characterization of in-building radio propagation is necessary for the effective
deployment of these systems. In generd, the path loss and shadowing charac-
teristics vary greatly from one building to the next. Typical path loss exponents
and shadow standard deviations are provided in Table 2.8 for severd different
types of buildings.

For multistory buildings, the RF attenuation between floors is important for
frequency reuse on different floors of the same building. Measurements have
indicated that the greatest floor loss occurs when the transmitter and receiver
are separated by a single floor. Typicaly, the floor loss is 15 to 20 dB for
one floor and an additional 6 to 10 dB per floor up to a separation of 4 floors.
For 5 or more floors of separation, the overal floor loss will increase only
afew dB for each additional floor. This effect is thought to be caused by
signals diffracting up the sides of the building and signals scattering off the
neighboring buildings. Also important for the deployment of indoor wireless
systems is the building penetration loss. This loss depends on the frequency
and height of the building. Turkmani et. al. [323] have shown that the building
penetration losses decrease with increasing frequency, in particular they are
16.4,11.6, and 7.6 dB at 441 MHz, 896.5 MHz, and 1400 MHz, respectively.
In genera the building penetration loss for signals propagating into a building
tends to decrease with height, the reason being that a LoS path is more likely
to exist at increased height. The building penetration loss decreases by about
2 dB per floor from ground level up to about 9 to 15 floors and then increases
again [346]. Windows also have a significant effect on penetration loss. Plate
glass provides an attenuation of about 6 dB, while lead lined glass provides an
attenuation anywhere from 3 to 30 dB.
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APPENDIX 2.A: Derivation of Equation (2.205)

This Appendix derives an expression for the second moment of a Ricean
random variable in terms of its first moment. A Ricean random variable X has
probability density function

z z? + s? s
px(z) = ;exp{—w Iy (;5> x>0 (2-2.A.1)

and moments [270]

n s n+2 s
E[Xn]:(202)2 eXp{—ﬁ F<(2+n)/2) 1F1 —2-—,1;@
(2-2.A.2)

where I'( - ) isthe gammafunction, and 1 F; (a, b; x) istheconfluent hyperge-
ometric function. The first moment of X is

E[X]=Q, = (20—2)'%6—"%-7_r F1(3/2,1;K) (2-2.A.3)

where K = 52 /202 isthe Rice factor. The second moment of X is

EX=Q, = 2% ¥ F(2,1;K)
= 20%(K +1) . (2-2.A.4)

Substituting 202 from (2-2.A.3) into (2-2.A.4) gives

462 (1( + 1) 2 2

Notethat C(0) = 4/, C(o0) = 1,and 4/7 < C(K) < 1 for 0 < K < oo.

APPENDIX 2.B: Derivation of Equation (2.222)
From (2.222), the composite distribution for the squared envelope o2 is

i = [ () 2]

9 1 exp{ — (10log qw — Ha, (dB))2 dw
V2néoqw 203 '

(2-2.B.1)
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where £ = (In10)/10. The mean of the approximate log-normal distribution
is

K(dBm) = E[IOIOgm(af)]

= /Ooo /Ooo 10log;o(z) (g)m %%n——;exp{—%}

1 (1010810“’ - ,U:Qp (dB))2
X ——=————exXp{ — 5
Vanéoqw 204

10m™ _ (10logigw — pq, up))®
— / exp P (
V2réoal'(m wm+1 20,

x/ logyo(z) 2™ te™ W dzdw . (2-2B.2)
0

} dwdz

Assuming that mis an integer, the inner integral becomes [147, 4.352.2]
/ logyg(z)z™ e~ % dz = L(m)w™ [(m) - In(m/w)] . (2-2.B.3)
0

m™In10
Then by using the change of variables z = 10log;(w) we obtain
f(dBm) = £ ap(m) — In(m)] + B9, (ap) (2-2.B.4)
where¢( - ) isthe Euler psi function, and
m—1 1
P(m) = —C + Z P (2-2.B.5)

and C ~ 0.5772 is Euler's constant. lee\lee, the second moment of the
approximate log-normal distribution is

E[(10log;0(c}))?) 1
= /Ooo /(;oo[lﬂlogm(:n)]2 (%) r(n ) exp {_1nw_x} ——\/2_”;0011)

10log,qw —
X exp {—( 810 MQ”(dB)) } dwdz

20%
mm ®© 1 (10logio w — pa, (dB))2
= Tmae b we {_ 2% }
X /OOO[IOIng(m)]zmm_le_%d:cdw . (2-2.B.6)
Assuming again that mis an integer, the inner integra is [147, 4.358.2)
/O °°[101og10(m)]2xm*1e-%dz (—% (2-2.B.7)

X ([w(m) — In(m/w)]? + §(2,m))
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leading to
E[(10log1o(e?))2] = ¢ ([p(m) — n(m)[d ) +C(2m))
+ 2([p(m) - ln(m)]ﬂﬂp @ T o’ + #?Zp (dB)
(2-2.B.8)
where o
¢(2,m) = kz::O - Jlr 7 (2-2.B.9)

isReimann’ szetafunction. Findly, the variance of the approximate log-normal
distribution is
a? = E[(10log;p(a?))’] - E*[10logo(a?)]
£7%¢(2,m) + 03 . (2-2.B.10)

Problems
2.1. Suppose that r(t) is a stationary band-pass random process
r(t) = gr(t) cos 2m ft — go(t) sin 2w f ¢
Show that the autocorrelation of r(t) is
Elr(t)r(t +7)] = ¢g;9,(7)cos2nfcr
~Pgog: (1) sin 2w f.7
2.2. Suppose that a vertical monopole antenna is used and the pdf of arriving

plane waves, p(8) is given by (2.41). Find the band-pass Doppler power
spectrum Srr(f).

2.3. Determine and plot the (normalized) power spectral densities Sy.(f) for
thefollowing cases. Assume 2-D isotropic scattering;

a) A verticd loop antennain the plane perpendicular to vehicle motion,
G(9) = 3 sin® 4.
b) A vertical loop antennaintheplaneof vehiclemotion, G(8) = 3 cos? 6.
¢) A directiona antennaof beamwidth 3 directed perpendicular to vehicle
motion with (see Fig 2.B.1(a))
_[ Go, |5-01<p/2
G(o) = { 0, otherwise
d) A directiona antenna of beamwidth g directed aong vehicle motion
with (see Fg. 2.B.I(b))
G(o) = { 0, otherwise
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(b)

W |

Figure 2.B.].  Scenario for Problem 2.3 parts (c¢) and (d).

24. Consider a 2-D isotropic scattering channel. Show that the psd of the
received envelope a(t) = |g(t)| isgiven by (2.65).
2.5. Consider the non-isotropic scattering environment shown in Fig. 2.5.
a) Show that the psd of g(t) is given by (2.67).
b) Show that the psd of the recelved envelope «(t) = |g(¢)|is given by
(2.68).

2.6. Consider a wide-sense stationary zero-mean complex Gaussian random
process g(t) having the autocorrelation function ¢ge(7) = ¢g,9,(7) +
JPg19o (7). Show that the autocorrelation and autocovariance functions

of the squared-envelope a?(t) = |g(t)|® are given by (2.71) and (2.72),
respectively.
2.7. Consider a wide-sense stationary non zero-mean complex Gaussian ran-

dom process g(t) = g;(t) + jggo(t), where

gr(t) = gr(t) +my(t)

9Q(t) = gq(t) + mq(t)
and my(t) and mq(t) ae the means of g;(t) and gg(t), respectively.
Show that the autocorrelation and autocovariance functions of the squared-
envelope a?(t) = |g(t)|? are given by (2.76) and (2.79), respectively.

2.8 Establish the equivalence between (2.92) and (2.93).
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beam of antenna

mobile

Figure 2.B.2.  Mobile with directional antenna for Problem 2.10.

2.9. Condder a situation where the received envelope is Rayleigh faded (K =
0), but the Doppler power spectrum S¢,(f) isnot symmetrical about f = 0,
i.e., aform of non-isotropic scattering. Show that the envelope level crossing
rateis given by

where
R R

TV T Va
and the b; are defined in (2.92) with f, = 0.

2.10. Condder the situation in the Fig. 2.B.2, where the MS employs a direc-
tional antenna with abeam width of ¢°. Assume a 2-D isotropic scattering
environment.

a) Inreceiving aradio transmission at 850 MHz, a Doppler frequency of
20 to 60 Hz is observed. What is the beam width of the MS antenna,
and how fast is the MS traveling?

b) Suppose that the MS antenna has a beam width of 13°. What is the
level-crossing rate with respect to the rms envelope level, assuming that
the MS is traveling at a speed of 30 km/h?

2.11. A vehicle experiences 2-D isotropic scattering and receives a Rayleigh
faded 900 MHz signad while traveling at a constant velocity for 10 s. The
average duration of fades 10 dB below the rmsenvelope level is 1 ms. How
far does the vehicle travel during the 10 s interval? How many fades is
the envelope expected to undergo that are 10 dB below the rms envelope
level during the 10 sinterva? Assume that the local mean remains constant
during travel.

2.12. A vehiclereceives aRicean faded sgnd where the specular component is
at thefrequency f. and scatter component is due to 2-D isotropic scattering.
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a) Compute the average duration of fades that 10 dB below the rms en-
velope leve for K = 0,7,20, and a maximum Doppler frequency of
fm = 20 Hz.

b) Suppose that data is transmitted using binary modulation at a rate of
1 Mbps, and an envelope level that is 10 dB below the rms envelope
level represents athreshold between “error-free” and “error-prone” con-
ditions. During error-prone conditions, bits are in error haf the time.
Assuming that the data is transmitted in 10,000 bit packets, how many
bits errors (on the average) will each transmitted packet contain?

2.13. Show that for wide sense stationary (WSS) channels

¢H(f7m;1/7#') = '(/)H(f7m; V)é('/—ﬂ)
¢S(Tvn; V’/J') = "/)S(Tan; V)é(l’ —'u’) .
That is the channel correlation functions ¢y (f, m;v, u)and ¢g(7,n;v, 1)

have a singular behavior with respect to the Doppler shift variable. What is
the physical interpretation of this property?

2.14. Show that for uncorrelated scattering (US) channels

d)g(ta S; Ta 77) = wg(ta S; 7)6(77 - T)
ps(t,mv,p) = s(miv,u)d(n —7) .
That is the channel correlation functions ¢,(t,s;7,1) and .¢s(7,n; v, 1)

have a singular behavior with respect to the time delay variable. What is
the physical interpretation of this property?

215, Consider the COST-207 typical urban (TU) and bad urban (BU) power
delay profiles shown in Fig. 2.39 of the text with delays and fractiona
powers given in Tab. 2.1.

a) Calculate the average delay, .
b) Caculate the rmsdelay spread, o.
¢) Calculate the approximate values of Wspand Wy

d) If the channel isto be used with a modulation that requires an equalizer
whenever the symbol duration 77 < 100, determine the maximum
symbol rate that can be supported without requiring an equdizer.

216. The scattering function s (, v) for a multipath fading channel is non-
zero for the range of values 0 < 7 < 1 usand —40 < A < 40Hz
Furthermore, 1 s(, v} isuniform in thetwo variables 7 and v.

a) Find numerical values for the following parameters;

1 theaveragedeay, i, and rmsdeay spread, o~
2. the Doppler spread, By
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3. the approximate coherence time, 7,
4. the approximate coherence bandwidth, B,
b) Given the answers in part @), what does it mean when the channel is
1 frequency-nonselective
2. dowly fading
3. frequency-selective

2.17. Suppose that the fading gain is modeled as a Markov process with state
equation given by (2.156).
a) What are the probability density functions of the envelope magnitude
ak = |gk|
and envelope phase
o = Tan~! 9.k

at any epoch k.
b) Derivethe discrete autocorrelation function
bgr91 (1) = Elgr 191 k+n] = E[9Q,£9Q k+n]
and discrete crosscorrelation function

¢919Q (n) = E[QI,k.‘]Q,k+n]
2.18. Consder Jakes fading simulator shown in Fig. 2.30.
a) With the choice that & = 0 and 3, = 7n/(M + 1)show that

<gr(t)get) > = 0
<gh()> = M+1

<gity> = M

b) Rederive the time averages in part @) for the choice o = 0 and g8, =
m™m/M.

2.19. (computer exercise) You are to write a software fading simulator that
uses Jakes method and plot typica sample functions of the faded enve-
lope. By scaling gr(t) and gq(t) appropriately, generate a Rayleigh faded
envelope having the mean-squared envelope €2, = 1. Plot a sample func-
tion of your faded envelope assuming a maximum Doppler frequency of
fmT = 0.1, where T is the smulation step size.

2.20. (computer exercise) In this problem you are to generate Ricean faded
by making appropriate modifications to Jakes Rayleigh fading simulator in
Figure 2.30. Assume that the means m;(t) and mg(¢) of gr(¢)and go(t),
respectively, are generated according to Aulin’'s model in (2.47) and (2.48).
For fmT =0.1,2, =1and K =0,4,7, and 16, plot the following
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a) Theenvelope a(t) = \/g?(t) + g5 ().

b) The wrapped phase ¢(t) = Tan™! (go(t)/g:(t)), mod 2.

2.21. (computer exercise) This problem uses the fading simulator you devel-
oped in Problem 2.20. We now want to compute an estimate of the mean-
squared envelope €, = E[a?(t)] from samples of g;(kT) and go(kT),
where T is the sample spacing in seconds. The estimate is computed by
forming theempirical average

N
% = 3 3 (G6T) + 37
i=1

where NT isthe window averaging length in seconds. Assuming aconstant
velocity, the distance the MS moves (in units of wavelengths) in atime of
NT seconds is 4

—=Nf,T .
}\C fm

a) For K =0,4,7, and 16, generate 1000 estimates of the of 2, by using
non-overlapping averaging windows of Sze
N = 50,100, 150, 200, 250, 300 .
Construct a graph that plots, for each K, the sample variance of the £2,,
estimate on the ordinate and the window size on the abscissa
b) Can you draw any qualitative conclusions from part a)?

Note: Samples of the locd mean 2, are often used in handoff algorithms,

222. Consider ascattering environment where it is known that no plane waves
arrive from ether directly ahead or directly behind the direction of motion.
Weareinterested in constructing afading simulator similar to Jakes' method
to account for this fact.

a) How might you modify Jakes' method to account for the above situation,
assuming that you only need to generate one faded signd?

b) Assume that the received complex envelope has the form

N R
g(t) — Z ej(21rfmtcos()n)+d>n

n=1

where f,, isthe maximum Dopplerfrequency, ¢, is the random phase
of the nth component, and 6, = 27(n — .5)/N,n = 1,..., N isthe
angle of arrival for the nth component. Following the method used for
deriving Jakes' fading simulator and assuming that TV/4 is even, show
that g(¢) can be written in the form
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M
git) =K Z [cos(Bn) + 7 sin(Bn)] cos(2m fint cos Opt + vp)
n=1

where M = N/4.

1 What are the values of 3, and- y, in terms of the phases <Z>n?
2. Determine K o that E[|g(t)[?] = 1.
3. Assuming that 8, = nn/M, what is the crosscorrelation between

thered and imaginary partsof g(t)? Isthisadesrableresult for
the simulator?

2.23. As shown in Fig. 2.34, Jakes approach can be used to generate M faded
envelopes gx(t), k =1,..., M, according to

M
ge(t) = K Z [cos(Br) + 7 sin(Bn)] cos(2m fut + Onk)
n=1
where K is a normalization constant, f, = fmcosf,, 6, = 27an/N.
B =mn/(M + 1) and O, = B, + 2n(k — D)n/(M + 1).

a) What are some of the problems with this technique?

b) It is clamed that this method can generate faded envelopes g¢;(¢) and
g« (t) that are dmost uncorrelated for arbitrary j and k provided that

an—gnkziﬁ-f-ﬂ’/Q

for some integer i; otherwise, the correlaion between certain pairs of
faded envelopes may be significant. Justify whether this claim true or
fase.

2.24. (computer exercise) It is claimed that the modified Jakes's method in
(2.181) can yidd uncorrelated faded envelopes, because the rows of the
Hadamard matrix are orthogonal.

a) By using analytical methods determine whether or not this method can
yield faded envelopes having a crosscorrelation of zero at alag of zero,
i.e,sE[gr(t)g;(t)] =0, for k # ;.

b) Write a software fading smulator to implement the modified Jekes
method with M = 8 oscillators.
1 Plot the normaized autocorrelation of g;(t), defined in (2.175).
2. Choosing two of thefaded envelopes at random, plot the normalized

crosscorrelation between g, (¢) and g;(t), defined in (2.179).

2.25. (computer exercise) In this problem we want to generate variations in
the local mean €2, due to shadowing. The shadows are generated according
to the state equation in (2.207).
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a) Suppose that the smulation step szeis T' = 0.1 sand the MS velocity
is v = 30 km/h. We want a shadow decorrelation of 0.1 at adistance

b) Usingthevaueadf & obtained in part 8 and ashadow standard deviation
of oo = 8 dB, plot a graph of 2, 4) against the distance traveled.
Scde your plot o the distance traveled goes from 0 to 100 m.

2.26. The measured path loss at a distance of 10 km in the city of Tokyo is
160 dB. The test parameters used in the experiment were the following:
* BS antennaheighthy = 30 m
* MS antenna heighth,, = 3 m
» carier frequency f. = 1,000 MHz
* sotropic BS and MS antennas.
Compare the measured path loss with the predicted path loss from Okumura
and Hata smodd and Leg's modd.
Note: If any model parameters are undefined, then use the default vaues.

227. Consider Fig. 2.B.3 and the following data

* The symbol transmission rate is 24300 symbols/s with 2 bits/symbol
* The channe bandwidth is 30 kHz

* The propagation environment is characterized by an rms delay spread
of o =1ns

A MS is moving from base station A (BSA) to base sation B (BSB). Base
gation C (BSC) is a co-channel base station with BSA.

Explain how you would construct a computer simulator to model the re-
ceived sgnd power a the MS from (BSA) and (BSC), as the MS moves
from BSA to BSB. Clearly state your assumptions and explain the relation-
ship between the propagation characteristics in your model.
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Figure 2.B.3.

BSA BSB BSC
[ ] ® ®
\ Streets
Buildings

Base station and street layout for Problem 2.27.
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Chapter 3

CO-CHANNEL INTERFERENCE

For cellular radio systems the radio link performance is usually limited by
interference rather than noise and, therefore, the probability of ourage due to co-
channel interference outage, Oy, is of primary concern. Sincethis chapter deals
with co-channed interference there is no need to distinguish between thermal
noise and co-channel interference outages. For the remainder of the chapter, the
probability of outage refers to the probability of co-channd interference outage.
Thedefinition of the outage probability depends on the assumptions made about
the radio receiver and propagation environment. At higher velocities, the radio
receiver can usually average over the fast envelope variations by using coding
and interleaving techniques. In this case, the transmisson quality will be
acceptable provided that the average recelved carrier-to-interference ratio, A,
exceeds areceiver threshold Aty. The receiver threshold Ay, is determined by
the performance of the radio link in the presence of envelope fading. Once A¢,
has been determined, the variaions in A due to path loss and shadowing will
determine the outage probability. Atlower velocities, the radio receiver cannot
average over the fast envelope variations due to the delay constraints imposed by
voicetraffic. In this case, the transmission quality will be acceptable provided
that the instantaneous received carrier-to-interference ratio, A, exceeds another
receiver threshold Ay, '. Once Ay, hasbeen specified, variationsin A dueto path
loss, shadowing, and envelopefading, will determine the outage probability.

The effect of co-channel interference on the radio link performance depends
on the ability of theradio receiver to reject co-channel interference. Someof the
more advanced receivers incorporate sophisticated signal processing methods
for the regjection or cancellation of co-channel interference, e.g., equalization

INote that A, and )y, are not the same.
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and interference cancellation techniques. Inthis case, theradio receiver ismore
tolerant to co-channel interference and the recelver thresholds A¢, and A¢n ae
reduced. This will reduce the outage probability.

Evaluating the outage probability for the log-normally shadowed signals that
aretypically found in cellular frequency reuse systems requires the probability
distribution of the interference power that is accumulated from the sum sev-
era log-normal signals. Although there is no known exact expression for the
probability distribution for the sum of log-normally random variables, severa
approximations have been derived by various authors. All of their approaches
approximate the sum of log-normal random variables by another log-normal
random variable. A method that matches the first two moments of the approxi-
mation has been developed by Fenton [118]. Sometimes Wilkinson is credited
with this method, as in [295]. Here we called it the Fenton-Wilkinson method.
Schwartz and Yeh developed another log-normal approximation that uses the
exact first two moments for the sum of two log-norma random variables [295].
The Schwartz-and-Y eh method generally provides a more accurate approxima-
tion than the Fenton-Wilkinson method but it is more difficult to use. Prasad
has corrected some errors in Schwartz and Yeh's paper in [264]. Another
log-normal approximation is the cumulants matching approach suggested by
Schleher [293]. With this approach, different log-normal approximations are
applied over different ranges of the composite distribution. A good comparison
of the methods of Fenton-Wilkinson, Schwartz-and-Y eh, Parley, and Schieher
has been undertaken by Beaulieu, Abu-Dayya, and McLane [28].

The above log-normal approximations have been extensively applied to the
calculation of the probability of outage in cellular systems. For example,
Fenton’s approach has been applied by Nagata and Akaiwa [240], Cox [74],
Muammar and Gupta [235], and Daikoku and Ohdate [75]. Likewise, the
Schwartz-and-Y eh approach has been applied by Yeh and Schwartz [372],
Prasad and Arnbak [264], and Prasad, Kegel, and Arnbak [266].

Current literature also provides a thorough treatment of the probability of
outage when the signals are affected by fading only, including the work of Yao
and Sheikh [369], Muammar [234], and Prasad and Kegd [265]. Section 3.
shows that the probability of outage is sensitive to the Rice factor of the desired
signal, but it is insensitive to the number of interferers provided that the total
interfering power remains constant. Calculations of the probability of outage
for signals with composite log-normal shadowing and fading have considered
the cases of Rayleigh fading by Linnartz [203], Nakagami fading by Ho and
Stiiber [165], and Ricean fading by Austin and Stiiber [24]. Sections 4. and 5.
show that shadowing has a more significant effect on the probability of outage
than fading. Furthermore, the probability of outage is dominated by fading
of the desired signal rather than fading of the interfering signals, eg., with
Ricean fading, the probability of outage is sensitive to the Rice factor of the
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desired signal but isinsensitive to the Rice factor of interfering signals. Findly,
al of the above references assume a channel characterized by frequency non-
sdective (flat) fading. If the channel exhibits frequency selective fading, then
the same general methodology can be used but the instantaneous carrier-to-
interference ratio, A, must be appropriately defined. The proper definition
depends on the type of recelver that is employed, e.g., a maximum likelihood
sequence estimation (ML SE) receiver for TDMA systems.

Most of the literature dealing with the probability of outage assumes that the
interfering co-channel signals add noncoherently. The probability of outage
has a so been eva uated by Prasad and Kegdl [267,265] for the case of coherent
addition of Rayleigh faded co-channel interferers and a Ricean faded desired
signa. The coherent co-channel interferers are assumed to arrive a the receiver
antennawith the samecarrier phase. However, asdiscussed by Prasad and Kegel
[267] and Linnartz [203], it is more realistic to assume noncoherent addition
of co-channel interferers in mobile radio systems because of the scattering
environment. Coherently addition of co-channel interferers generally leads to
pessmistic predictions of the probability of outage.

The remainder of this chapter begins in Section 1. where approximations are
derived for the sum of multiple log-normally shadowed interferers. The various
approximations are compared in terms of their accuracy. Section 2. derives the
probability of outage with multiple log-normal interferers. Section 3. considers
the outage probability for multiple Rayleigh or Ricean faded interferers without
shadowing. Sections4. and 5. do the same for multiple log-normally shadowed
Nakagami faded interferers, and for multiple log-normally shadowed Ricean
faded interferers, respectively.

1 MULTIPLE LOG-NORMAL INTERFERERS
Consider the sum of N log-normal random variables

N; N;
1= Q=Y 10%usm/10 (3.1)
k=1 k=1

where the £ (4pm) are Gaussian random variables with means o, 4p.,) ad

variances o, andthe @y, = 10%%(em)/ 10 gre thelog-normal random variables.
Unfortunately, there is no known closed form expression for the probability
density function (pdf) of the sum of multiple (N; > 2)log-normal random
variables. However, there is a generd consensus that the sum of indepen-
dent log-normal random variables can be approximated by another log-normal
random variable with appropriately chosen parameters. That is,

Ny
I=35"10%wem/10  10%@sm/10 = | (32)
k=1
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where Z gy isaGaussian random variable with mean 1z (4gm) and variance
o2 Theproblem isto determine x1z (dBm) @nd 0% interms of the g, (Bmy AN

od,»k =1,...,Ny. Severd methods have been suggested in the literature to
solve this problem including those by Fenton [118], Schwartz and Yen [295)],
and Farley [295]. Each of these methods provides varying degrees of accuracy
over specified ranges of the shadow standard deviation ¢q, the sum I, and the
number of interferes N;.

1.1 FENTON-WILKINSON METHOD

With the Fenton-Wilkinson method, the mean iz (4pm) and variance o% of
Z(aBm) are obtained by matching the first two moments of the sum | with the

first two moments of theapproximation I. To derive the appropriate moments,
it isconvenient to use natural logarithms. We write

Q. = 10% @Bm)/10 — (€0 (@Bm) = S (3.3)

Where ¢ = (1n10)/10 = 0.23026 and O = £Q (qpm). Note that pg
E10 (gpmy AND 0% = €203, . The nth moment of the log-normal random vari-

able Q can be obtal ned from the moment generating function of the Gaussian
random variable ), as

R 2,2
enpnk +(1/2)n%o

E[QF] = E[e"%] = (3.4)

To find the appropriate moments for the log-normal approximation we can use
(3.4) and equate the first two moments on both sides of the equation

Ny | .
I=Y e mel =1 (3.5)

where Z = €Z4pm). For example, suppose that Qk,k = 1,..., Ny have
means pg ,k = 1,..., Ny and identical variances o%. Identica variances
are often assumed because the standard deviation of Iog normal shadowing is
largely independent of the radio path length [188, 190]. Equating the means
on both sides of (3.5)

pr =Bl =Y E[e™] = Ele?] = E[f] = ; 3.6)

gives the result

(Zeﬂn’“) (1/2)0 +(1/2)5} 3.7
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Likewise, we can equate the variances on both sides of (3.5) under the assump-
tion that the 2,k = 1,... Ny are independent

ot = B[I*] - u} = E[I?] = o? (3.8)

giving theresult

Ny
(Z 62"‘“) Fheh - =i o1) . 69)
k=1

By squaring each Sde of (3.7) and dividing each Sde of resulting equation by
the respective sides of (3.9) we can solve for 022 in terms of the known values
of g, .k =1,...,Nrand an Afterwards, 1, can be obtained from (3.7).
This procedure ylelds the following solution:

o2 — g2 Ni
py = E |y e (3.10)
k=1
2
0} = In (J?aq)-zi_L—zH , (3.11)
(Ek 1‘3““’“)

Finaly, pz (@Bm) = € 'py and o = £7%0%

The accuracy of this log-normal approximation can be measured in terms of
how accurately the first two moments of 7 4gy = 10log;,/ are estimated, and
how well the cumulative distribution function (cdf) of I 4g) is described by a
Gaussian cdf. It has been reported in [295] that the Fenton-Wilkinson method
breaks down for o > 4 dB. Unfortunately, for cellular radio applications the
standard deviation of log-normal shadowing typically ranges from 6 to 12 dB.
However, as pointed out in [28], the Fenton-Wilkinson method only breaks
down if one considers the application of the Fenton-Wilkinson method for the
prediction of the first two moments of I(4gy. Moreover, in problems relating
to the co-channel interference outage in cellular radio systems, we are usually
interested in the tails of both the complementary distribution function (cdfc)
Ff(z) =P(I > z) and the cdf Fy(z) =1 — Ff(z) = P( < z). Inthis casg,
we are interested in the accuracy of the approximation

Fi(z) ~P(e£ >2)=Q (m—_“z> (3.12)
9z
for large and small values of x. It will be shown later that the Fenton-Wilkinson
method can approximate the tails of the cdf and cdfc functions with good
accuracy.
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12 SCHWARTZ-AND YEH-METHOD

The Schwartz-and-Yeh method [295] uses exact expressions for the first
two moments of the sum of two log-norma random variables. Nesting and
recursion techniques are then used to find exact values for the first two moments
for the sum of Ny log-norma random variables. For example, suppose that
I = Qy + Qg + Q3. Theexact first two moments of In (2; +£2) ae computed.
We then define Z; = In(; + Q2) as a new Gaussan random variable, let
I = e%2 + Q3, and again compute the exact first two moments of Inl. Since
the procedure is recursive we only need to detail the Schwartz-and-Y eh method
for the casewhen Ny = 2, i.e.,

I=eM e = ] (3.13)

or X ) \
Z = 1n (M + ) (3.14)
where the Gaussian random variables §; and 22 have means pg,and pg,,and

) 5 9 .
variances o and TG, respectively.

Define the Gaussian random variable ; 2 €y — Q; o that

,U,Qd = 'u'ﬂ'z - ﬂle (3.15)
2 _ 2 2
%, = % + o4, - 3.16)

Taking the expectation of both sides of (3.14) and assuming that the approxi-
mation holds with equality gives

py = E[ln(eﬁ2+eﬁ1)]

= E[ln (e (1+¢%%))]
= B[] +E[In(1+%)] . (3.17)
The second term in (3.17) is
E[ln(1+ef’d)] = /_oo In (1 + €%)) pg, (z)dz . (3.18)
We now use the power sries expansion
o0 (_1)k+1
In(l+z)= Z crz, cr = . (3.19)
k=1

where |z| < 1. To ensure convergence of the power series and the resulting
series of integrals, the integration in (3.18) is broken into ranges as follows:
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00 0
/ [In(1 +¢%)|pg, (2)de = / [In (1 + ¢%)] pg, (2)do

+ /0 [In (1 + €7%) + ] g, (2)dat3.20)
The second integral is obtained by using the identity

In(1+€®) = In[(e™ + 1)e”]
= In(l +e™%) + In(e®)
= In(l+e %) +zx . (3.21)

After avery long derivation that is detailed in [295)],

By = kg, + G, (3.22)
where
Ha Oy #1203
G, = O —4 |+ =Le W0
X 242 ) —pg, — kol
+) ce “ay/? | oy g | L0 Q4 +T1| (3.23)
k=1 aﬂd
with \
ks by, — ko
T = FHagp [Z2 " 0a ) (3.24)
Uﬁd

The variance can be computed in asimilar fashion, resulting in the expression

[295]

2
92

'ufld 2 2
1-& (—;—)l (,J'f)d + O'Qd)

= agl -G?- 2o—§hG3 + G, (3.25)

where

o0
G, = Zkaz +

k=1 Q4
A, O¢ —u? o2
+i%¢5—%e “a,/7a,) (3.26)
X (kg +Hk+10d 2 B, — 0k (B+1)
+) bre i 8" [ ———d
k=1 Jfld

o0 N “
_2che—uﬁdk+k2ﬂ?,d/2 hg, @ _Ha, ) g, e—uék/(ngd)
k=1 * O.Qd V2T
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e k2% /2 ad
Gy =Y (-1)ke” 2T + 3 (1)1 (3.27)
with
. —pgy — (k+1)o?
T, = Hag (DD /2 1o, ) 5, (328
O'Qd
and
2(_1)k+1 k 1
by = — 2 _
k T ;J (3.29)
By, = —hg, tkoh (3.30)

It has been reported in [295] that approximately 40 terms are required in
the infinite summations to achieve four significant digits of accuracy in the
moments. On the next step of the recursion it isimportant that we let agh =02

Z
and pg = pz; otherwise, the procedure fails to converge.

13 FARLEY'SMETHOD

Consider N; normal random variables €, each with mean pg and variance
od,. Farley approximated the cdfc of the sum

N] .
I=3 =¢* (3.31)
k=1
as Ny
P(I>z)~1— [1—Q(m—“ﬂ>] . (3.32)
o4

As shown in [28], Farley’s approximation is actually a strict lower bound on
the cdfc. To obtain this result let

Fiz)=P(Q1+ Qo+ +Qn, > 1) (3.33)
and define the two events

A = {aleastone; > z}
B = A°, the complement of event A . (3.34)

Events A and B are mutually exclusive and partition the sample space. There-
fore,

PI>z) = PU>z, A)+P(I >z, B)
= P(A)+PU >z B) . (3.35)
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The second term in (3.35) is positive for continuous pdfs such as the log-
normal paf. For example, the event

C={z/Nr<Q <z, Vi} (3.36)

is a subset of the event B. Under the assumption that the €; are independent
and identically distributed, the probability of event C is

N;
P(C) = [Q (%/_1\;;)—_%) -Q (m—a;g@)} >0. (337

Therefore, P(I > z) > P(A). Sincethe Q; are independent and identically
distributed

Ny
P(4) = 1-][[P( <)
=1
Inz — pug N1
= 1- [1 —Q (——“—9)} . (3.38)
)
Findly, we have the lower bound on the cdfc
Inz — pe M
P(I>z)>1~ [1—Q<—ﬁ>] (3.39)
90
or, equivalently, the upper bound on the cdf
Inz — pg N1
P(I < z)> 1—Q(——“ﬂ>} . (3.40)
)

14 NUMERICAL COMPARISONS

Fig. 3.1 compares the cdf for Ny = 2and Ny = 6 log-norma random
variables with the various log-normal approximations. Likewise, Figs. 3.2 -
3.4 provide comparisons of the various log-normal approximations for the cdfc.
Exact results are aso shown that have been obtained by computer simulation.
Observe that the cdfc is approximated quite well for al the methods, but the
best approximation depends on the number of interferers, shadow standard
deviation, and range of distribution. The cdf is approximated less accurately,
especidly for Ny = 6 log-normal random variables.

2. PROBABILITY OF OUTAGE

Congder the situation shown in Fig. 1.15, where a mobile station (MS) is
at distance dp from the desired base station (BS) and at distances dg, k =
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Figure 3.1. Comparison of the cdf for the sum of two and six log-normal random variables
with various approximations; pq, 45, =0, 00 = 6 dB. .
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Figure 3.2. Comparison of the cdfc for the sum of two log-normal random variables with
various approximations; pq, 45y = 0, a0 =6 dB.
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Figure 3.3. Comparison of the cdfc for the sum of six log-normal random variables with

various approximations; fo = 0,00 =6dB.
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Figure 3.4. Comparison of
various approximations; pq,

3
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the cdfc for the sum of six log-normal random variables with

am) = 0,00 =12dB.
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1,2,---, Ny from the first tier of N; co-channel BSs. For convenience, define
the vector d = (dp, d1,---, du,) asthe set of distances for aparticular MS
location. The average received carrier-to-interference ratio as afunction of the
vector d is

Ny
Aany(d) = Qpm)(do) — 101ogyo Y 10%a@mm (de)/10- (3.41)

k=1
For the case of a single interferer (N; = 1) the sum on the right side of (3.41)
only has one term. Therefore, Agpy(d) is Gaussian with mean pq o ag) —
B gpm (d1) and variance 2¢3. For the case of multiple interferers, the second
term IS approximated as a Gaussian random variable. We first obtain the
mean 1, and the variance 022 for the log-norma approximation using the

techniques discussed in Section 1. The mean and variance of Z(4pm) = Z/E
are, respectively,

Bz (@dBm) = & uy (3.42)
oy = ¢%0% . (3.43)

Then
Awpy(d) = Q4Bm)(do) = Z(aBm)(d1, d2, ..., dn;) (3.44)

where we have again shown the dependency of the co-channel interference on
the set of distances. Notethat A4g)(d)has mean and variance

HA@py(d) = HQgpmy(do) ~ HZ (dBm) (3.45)
o) = ohtoy . (3.46)

If there were only one possible choice of serving BS, then the probability of
outage at a particular location is

(347

B apm (do) — BZ (dBm) — Atn(dB
O[(d)=Q< (dBm)(do) {(dBm) ( ))

,/0?2—{—0%

When handoffs are allowed the analysis is more complicated. In this case,
the probability of outage will depend on the handoff algorithm that is employed.
In the smplest case, we can consider soft handoffs where the BS that provides
the most robust link is always used. In this case, an outage occurs only when
no BS can provide alink having a carrier-to-interference ratio that exceeds A.
In this case, the probability of outage at a particular location is

M — —A
0 = H ) HQy apmy{do) — HZ; (dBm) th(dB)) . (3.48)
k=0 o+ (02,)?




Co-channel Interference 139

where M is the number of handoff candidates. The outage can then be calcu-
lated by averaging the probability of outage over the random location of aMS
within areference cell.

3. MULTIPLE RICEAN/RAYLEIGH INTERFERERS

In microcellular environments, the received signal often consists of a direct
line of sight (LOS) component, or perhaps a specular component, accompanied
by a diffuse component. In this case, the envelope of the received signa
experiences Ricean fading. In the same environment, the co-channel signals
are often assumed to be Rayleigh faded, because a direct LOS between the
co-channel cdlsisnot likely to exist and the propagation path lengths are much
longer. In this section, we calculate the probability of outage for the case of
fading only. The combined effect of shadowing and fading is deferred until
the next section. Let the instantaneous power in the desired signal and the N;
interfering signals be denoted by sq and sg, & = 1, ---, Ny, respectively.
Note that s; = o2, where o? is the squared-envelope. For a specified receiver
threshold Ay, the probability of outage is

Ny
Or=P ()\ < )‘th) =P (30 < Ath Z Sk) (3.49)
k=1

where A = s¢/ ZkNél six- The instantaneous received signa power, sg, has
the non-central chi-square (Ricean fading) distribution in (2.44), while the
instantaneous power of each interferer, s, has the exponential distribution
(Rayleigh fading) in (2.39).

For the case of a single interferer, the probability of outage reduces to the
smple closed form [369]

Ath { KA, }
Oy =——¢ —_ 3.50
7 N + A P Ath + Ag (3:50)

where K is the Rice factor of the desired signal, 4; = Qo/(K + 1), and
Q. = E[sg]. If the desired signd is Rayleigh faded, then the probability of
outage can be obtained by setting K = 0in (3.50). For the case of multiple
interferers, each with mean power €2, the probability of outage has the closed
form [369]

Ny N
Ath { KA, }J I A
O;=1- [1————e _— J 3.51
f kX::l Ath + Ak P At + Ag ]];Il Aj — Ayg ( )

1#k

where A = Qo/(K + 1)Q4. This expression is only vaid if ; # €; when
i # J, ie., the different interferers have different mean power. If some of
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the interferers have the same mean power, then an appropriate expression for
the probability of outage can be derived in straight forward manner. If all
the interferers have the same mean power, then the total interference power
sy = YN, s has the Gamma pdf

N1 T 3.5
s = — ¢ —_— . .
Poae () QY (N —1)! XP{ Ql} N

The probability of outage can be derived as [369)]

0, = M {__KA_l}
L= X+ A P a + 4,

Nr-1 k k m
Ay ) k L ( Ky )
% ICX:‘:) <()\th + Ay mZ:O <m) m! \ Ay + A1 -3:33)
Again, if the desired signa is Rayleigh faded, then the probability of outage
with multiple Rayleigh faded interferers can be obtained by setting K = 0 in
either (3.51) or (3.53), which ever is appropriate. In Fig. 3.5, the probability of
outage is plotted as a function of the carrier-to-interference ratio

Qo
Nty

for various Rice factors and a single interferer. Observe that the Rice factor of
the desired signal has a significant effect on the probability of outage. Fig. 3.6
plots the probability of outage for K = 0 and 7 and varying numbers of
interferers. Observe that the number of interferers does not affect the probability
of outage as much as the Rice factor, provided that the tota interfering power
remains constant.

A=

(3.54)

4. MULTIPLE LOG-NORMAL NAKAGAMI
INTERFERERS

The probability of outage has been evaluated in the literature for a single
Nakagami interferer [364] and multiple Nakagami interferers [5, 370], in the
absence of shadowing. Hereweanalytically formulate the probability of outage
with multiple log-normal Nakagami interferers. For the case when the interfer-
ing signals have the same shadowing and fading statistics, we derive an exact
mathematical expression for the probability of outage. Let the instantaneous
power in the desired signal and the Ny interfering signals be denoted by sq and
sk, k=1,---, Ny, respectively. Again, for a specified receiver threshold Mg,
the probability of outage is

Ny
Or=P(A<Ap) =P (so <Am Y, sk) (3.55)
k=1
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Figure 3.5. Probability of outage with a single interferer. The desired signal is Ricean faded
with various Rice factors, while the interfering signal is Rayleigh faded; A¢;, = 10.0 dB.
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where A = so/ Z,’:’;l sk. Since the kth signa is affected by log-normal
shadowing and Nakagami fading, sy has the composite pdf

_ © fmp ™ ™1 { mkx}
10log % — 2
X__l— exp _( B10°ck n Hay, (dB)) Q. .
V2méoq, 204,

Le W = ZkN;I s be the total power from the Ny interfering signals, X
so/W, and Y = W. Then the joint pdf of X and Y is pxy(zy)
Yypso,w (zy,y) and

px(z) = /0 ypso (xy)pw (y)dy (3.57)

It follows that the probability of outage is

50
P 2
(W < A‘h>

1 - A . dz /0 ypso (zy)pw (y)dy (3.58)

Or
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Figure 3.6. Probability of outage with multiple interferers. The desired signal is Ricean faded
with various Rice factors, while the interfering signals are Rayleigh faded and of equal power;
Atn = 10.0 dB.

Substituting the Nakagami pdf for so and integrating with respect to x gives
the conditional probability [147]

mp—1 h
S0 ™Mo Ath 1
Pl— <Aunlf2 = 1- — ) =
(W< | °> hz:(,( % ) Rl

x
X / exp {_TM} y"pw (y)dy (3.59)
0 Qo

4.1 STATISTICALLY IDENTICAL INTERFERERS

Here we assume statistically identical co-channel interferers so that oq, =
ogand my =my, i =1, ..., Nj. Following Linnartz [203], theintegra in
(3.59) can be obtained by using Laplace transform techniques. The Laplace
transform of the pdf pw(y) is

L(s) = [ e Tpw(w)dy (3.60)

Theintegral in (3.59) isthen equd to the hth derivative of Ly (s)with respect
to s evaluated at the point s = (mgAin)/$. That is,
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/0 e Vylpw(y)dy = (~D)MLE(s) 3.61)
dh Ny 00
- (12 -8
= (=1 dsh {kl;[l/() € ykPSk(yk)dyk}

where the lagt line follows under the assumption of statistically independent
interferes. By using the composite distribution in (3.56) with my, = m;
mYInI 6—12

. 1 o0
e~ 5Yk dyy = —= / i
/0 Psy. () dyk NZ (10% (apy TV2oR2)/10 mr)™

(3.62)
Averaging over the log-normal shadowing distribution of the desired signal
gives the final result

oo (Mol A\ 1
0; = 1—/0 {Z (-%}ﬂ) = (3.63)

h=0

vl e da -z
dsh Prlefl \/;r—(lo(ﬂnk (dB)+\/§o'n).Z‘/1OS+mI)mI 5==a5

X ————€ exp —(1010g1090_“90 (dlﬁ))2 dfly .
V2roay 204

Equation (3.63) is an exact expression for shadowed Nakagami fading chan-
nels. When mg = mj; = 1, it reduces to the smple expression obtained by
Linnartz [203] for shadowed Rayleigh fading channels. If the path loss associ-
ated with each interferer is the same, then 2, = Q and the product in (3.63)
reduces to taking the Nth power. Let

2

o0 e_z

e =/ dz (3.64)

(s) oo (10(“01 (dB)+\/5anz)/1os+mI)mI

and use the identity [147]
dh N
G(s) = —5[F(s)]
(P sy (B LY
= N1< N; >¢=1( 1) (1> N, =i F(s) .(3.65)

Observe that G(s) isjust afunction of the derivatives of F(s), and



144

dv dv 00 e—x2

00 (10(““1 (dB)+\/§anx)/ws + my)™
(mr+w—1)!
= (—pwimtw— )

.6
(my = 1)1 (3:66)
ore) (10(“01 (dB) +\/—2.a'ﬂx)/10)we_x2
x/ 7 = dr .
—00 (lo(l‘n] (dB)+ 2UQI)/

§ + mp)mitw

We can obtain G(s) from (3.65) and (3.66), and substitute it into (3.63). Then
by using a change of variables the probability of outage in (3.63) becomes

mo—1 h mm;N;
Or = 1- — oA 10 #% @m/10) L (3.67)
hz=:0 ( o ) Nzt Y|
% /00 lo—ﬁdnzh/lﬂe—zza (moAth10~(“n° (dB)‘f‘\/iﬂ'ﬂIh)/lO) dz
-0

Theintegralsin (3.66) and (3.67) can be efficiently computed by using Hermite-

Gauss quadrature integration. Applying the Hermite-Gauss quadrature formula
to (3.66) gives

PO = (it

Np lo(ﬂﬂl (dB) +\/§0’Q.’Ez)’w/10
X Z H,,
t=1 (

(3.68)
lo(ﬂn, (dB)+\/2-0'n(Bt)/1OS + my)mitw

where H,, are weight factors, z; are the zeros of the Hermite polynomial

H,(z), and N, isthe order of the Hermite polynomial. By using thisresult and
the valuesin Table 3.1 (listed for convenience) we have

mo—1

0 1= 3 (~moAu10“% @m/10)" Y (3.69)
;o= 1- —moAth — :
= N

NP
x 3 Hy,107V2o0zh/0g (mo Mgy 10”40 (dB)+\/§anzh)/10> .
=1

Fig. 3.7 shows the probability of outage as a function of the carrier-to-
interference ratio

HQyp
= —20 3.70
Nrugq, (3.70)

Results are plotted for Ny = 6 interfering signals and varying degrees of fading
on the desired and interfering signals. Observe that the probability of outage is
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Zeros x; Weight Factors H,
+0.27348104613815 5.079294790166 x 10~*
+0.82295144914466 2.806474585285 x 10~*
+1.38025853919888 8.381004139899 x 1072
+1.95178799091625 1.288031153551 x 1072
+2.54620215784748 9.322840086242 x 10~*
+3.17699916197996 2.711860092538 x 1073
+3.86944790486012 2.320980844865 x 107
+4.68873893930582 2.654807474011 x 1071

Table 3.1.  Zeros and weight factors of 16 order Hermite polynomials [1].

Probability of Outage, 0,
)

10 15 20 25 30 35
A (dB)

Figure 3.7. Probability of outage when the desired and interfering signals are Nakagami faded.
Results are shown for various fading distribution parameters; oo = 6 dB, Ay, = 10.0 dB.

insengitive to changes in the m values for interfering signals. This phenomenon
demonstrates that co-channel interference is dominated by the fading of the
desred signd rather than fading of the interfering signals. Fig. 3.8 shows
the probability of outage for different values of the shadow standard deviation
oq. We can conclude that the number of interferers and the shadow standard
deviation have the most significant effect on the probability of outage.
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Figure 3.8. Probability of outage when the desired and interfering signals are Nakagami faded.
Results are shown for various shadow standard deviations; mo = 8, ms = 2, A¢n = 10.0 dB.

5. MULTIPLE LOG-NORMAL RICEAN/RAYLEIGH
INTERFERERS

This section presents an exact method for evaluating the probability of
co-channel interference for Ricean/Rayleigh faded channels with log-normal
shadowing. The results can be applied for a Ricean faded desired signa and
asingle

Rayleigh faded interferer, or vice versa. It can aso be applied for aRayleigh
faded desred signal with multiple Ricean or Rayleigh faded interfering signals.
Once again, let the instantaneous power in the desired signal and the Ny
interfering signals be denoted by s and sg, & =1, -+, Ny, respectively. For
a specified receiver threshold Ay, the probability of outage is, again,

Ny
Or=P(A<Xn)=P (So <At Y Sk) (3.71)

k=1

where A = sq/ Eff;l s, and each sy, has either a composite log-normal expo-
nential (Rayleigh fading) distribution or a composite log-norma non-central
chi-square (Ricean fading) distribution. The s,k =0, ..., Nrin (3.71xan

be reordered such that (so < 0%, Ansk) = (5o < YpL, 6kx), Where 3¢ is
exponentidly distributed, the 3¢,k = 1, ..., Nyae either exponentially or
non-central chi-square distributed. When the desired signal is Rayleigh faded
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S0 = spand 5, = s and §; = Ayn. Otherwise, when the desired sgnal
is Ricean faded and a single Rayleigh interferer is present, we observe that
P(So < )\thsl) =P(31/(30//\th) > 1). Therefore, USil’lg 8y = 81,8, = sg, and
81 = 1/ A, the

probability of outage is1 — P(s1/(so/An) < 1) = 1 —P(5,/6:51 < 1).
Thus, let X = §o/W and Y = W, where W = Y11, 8x3x. Thejoint pdf of
X and Yis pxy(z,y) =y ps,,w(zy,y) and

px(z) = /0 yps, (zy)pw (y)dy . (3.72)

Therefore,
5(2) 00 oo
Or=P(E<1)=1-["ds [“upisoipwidy . G73)

Substituting the exponentia pdf for p;, (zy) and integrating with respect to x
gives the conditional probability

~2 00
P (—;—[} <1 IQO) =1 —/0 exp {—Qio}pw(y)dy (3.74)

where € = E[3p). Following Linnartz [203], the integra in (3.74) can be

simplified by using Laplace transform techniques. Sincethe s, £ = 1,..., Ny

are al independent random variables, pw(y) is the convolution of the densities
of the dx 3. Hence, (3.74) becomes

2 Ni
P(SWO<HQO> = I—k]:[ng(s) (3.75)
=1

§=0x /S0

where Fj, (s) is the Laplace transform of the pdf ps, (), given by

) o)
ng(S) = / e—sz/ Kk+1exp{_Kk_M}
0 0 O Qi

Ki(K
x Iy (2 M) pa, (%) dz
Qi
©  Kp+1 ex {_ O s Ky, }
o Kn+1+0r50 P\ Kr+1+ 05082

><———6 expy — (10log 1982 — pay (dB))2 dQ
v 27TO'Qka 20?%

(3.76)
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where K is the Rice factor of the kih signal. Averaging over the shadow
distribution for the desired signal yields the final result

oo [ N
O = 1- / T1 Fs. (6e/%) 3.77)
0 k=1

2
13 (10log;,Q2 — [ (dB))
X —————expy{ — dQ

V 27TO'QOQO P 20'5210 0

The integrals in (3.76) and (3.77) can be efficiently computed using Hermite-
Gauss quadrature integration, as explained earlier. Corresponding expressons
for Rayleigh fading can be obtained by setting the K = 0in (3.76).

51 SINGLE INTERFERER

For aRayleigh faded desired signal and a Ricean faded interferer, (3.77) can
be used directly with Ny = 1and d; = A¢n- If we assume the simple path loss
model in (1.6), and define the normalized reuse distance as d; /dg, where dp and
d; aretheradio path lengths of the desired and interfering signals, respectively,
then the average carrier-to-interference ratio is

A = pq, (@) — M9y (ap) = 108log o (d1/dy) dB . (3.78)

The probability of outage is plotted against the normalized reuse distance in
Fig. 3.9, where it is shown to be insengitive to the Rice factor of the interferer.
Likewise, Fig. 3.10 plots the probability of outage against the normalized reuse
distance when the desired signal is Ricean faded and there is a single Rayleigh
faded interferer. Observe the strong dependency of the probability of outage
on the Rice factor of the desired signal.

52 MULTIPLE INTERFERERS

For aRayleigh faded desired signal with multiple Ricean/Rayleigh interfer-
ers, (3.77) can be used directly leading to the same (not shown) result as the
single interferer case; the probability of outage is insensitive to the Rice factors
of the interferers.

For a Ricean faded desired signal with multiple Ricean/Rayleigh interferers,
a different approach must be taken. An exact solution for the case of a Ricean
faded desred signa with multiple Rayleigh interferers has been presented by
Wang and Lea [349]. However, the case of a Rician faded desired sgna
with multiple Ricean interferers is still an open problem. One possibility is to
approximate the Rice distribution with a Nakagami distribution as discussed in
Sectionnaka, and use the results of Section 4..
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Figure 3.9. Probability of outage against the normalized reuse distance for a Rayleigh faded
desired signal and one Ricean faded interferer. The Rice factors of the interfering signal varied,;
Ath =10 dB, OQq =0y = 6 dB, ﬁ =4,

Problems

3.1. Consider the scenario in Fig. 3.11 which depicts the worst case situation
for the first tier of co-channe interference on the forward channel. Assume
acluster sze of 7 cdls, acdl radius of R = 3 km, apath loss exponent of
B = 3.5, and carrier-to-interference threshold Ay, (48y=10 dB.Ignore the
effect of handoffs and assume that the MS must stay connected to the BS in
the center cell.

a) Usingthesmplepathlossmode in (L6)with pq, 5., (do) = —10dBm
a d, = 1 km, a shadow standard deviation o = 8 dB, calculate the
probability of outage Or(d) in (3.47) by using the Fenton-Wilkinson
method.

b) Foroq = 4dB, what is required threshold Ay, such that the probability
of outage is less than 1%?

¢) Repeat b) for oq = 12 dB.

32 Condder the Fenton-Wilkinson method for approximating the sum of
log-normal random variables. Consider thesum of N log-normal random
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Figure 3.10. Probability of outage against the normalized reuse distance for a Ricean faded

desired signal and one Rayleigh faded interferer. The Rice factors of the desired signal are
varied; Ay = 10dB, 0g, = 0q, =6dB, 3 =4.

Figure 3.11.  Co-channel interference on forward channel for Problem 3.1.

variables
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~f =

Figure 3.12.  Proposed highway microcell system for Problem 3.8.

where the €, are independent zero-mean Gaussian random variables with
oq = 8 dB. Plot the mean iz (4pm) and variance o% of the approximate
Gaussian random variable Z(4g) as afunction of Nfor N = 2,3,4,.. ., 10.

3.3. This problem uses computer smulation to verify the usefulness of the
Schwartz-and-Y eh approximation and the Fenton-Wilkinson approximation
for the sum of two log-norma random variables. Consider the sum of two
log-normal random variables

I=0Q+Q

where the Gaussian random variables ; (4g) and Q, (aB) ae independent
and identicaly didtributed with zero mean and variance o§. By using the
Schwartz-and-Y eh method, plot the values of piz 4y and 0% asafunction
of the variance 0. Repeat for the Fenton-Wilkinson method. Now obtain
the same results by using computer ssimulation and compare the analytical
results. What are your conclusions?

34. You areasked to design ahighway microcdll system as shown inFig. 3.12.
Each cell has length 2R.

a) A BS with an omnidirectiona antenna is placed at the center of each
cell. Ignoring shadowing and envelope fading, determine the minimum
reuse factor needed 0 that the worst case carrier-to-interference retio,
A, isat least 17 dB. State whatever assumptions you make.

b) Now suppose that directiona antennas are used to divide each cell into
two sectors with boundaries perpendicular to the highway. Repeat part

a).

¢) Consider again the sectored cell arrangement in part b). If shadowing
is present with a standard deviation of o dB, what is the probability
of outage on a cell boundary? Assume soft handoffs between adjacent

cdls.

35. Derive eguation (3.50).
3.6. Derive equation (3.51).
3.7. Derive equation (3.53).
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3.8. Consider a microcellular environment where a Ricean faded signd is af-
fected by a single Rayleigh faded interferer. Neglect the effect of path loss
and shadowing. Suppose that the transmission quality is deemed accept-
able if both the instantaneous carrier-to-noise ratio and the instantaneous
carrier-to-interference ratio exceed thethresholds, ., and Asn, respectively.
Analogous to (3.53) derive an expression for the probability of outage.



Chapter 4

MODULATED SIGNALS
AND THEIR POWER SPECTRA

Modulation is the process where the message information is embedded into
the radio carrier. Message information can be transmitted in the amplitude,
frequency, or phase of the carrier, or a combination of these, in ather analog or
digital form. Mogt first generation cellular systems such as AMPS use analog
FM, because analog technology was well understood when these systems were
developed. However, the pressing need for greater spectra efficiency lead to
the use of digital modulation techniques in second generation digital cellular
systems.

To achieve high spectral efficiency, modulation schemes for FDMA and
TDMA systems have a high bandwidth efficiency, measured in units of bits
per second per Hertz of bandwidth (bitssHz). As discussed earlier in this
book, the link quality in many wirdess systems is limited by co-channd inter-
ference. Hence, modulation schemes must beidentified that are both bandwidth
efficient and capable of tolerating high levels of co-channed interference. More
specifically, digital modulation techniques are chosen for FDMA and TDMA
wirdess systems that satisfy the following three properties.

= Compact Power Density Spectrum: To minimize the effect of adjacent
channel interference, the power radiated into the adjacent band should be
60 to 80 dB below that in the desired band. Hence, modulation techniques
with anarrow main lobe and fast roll-off of side-lobes are needed.

= Good Bit Error Rate Performance: A low bit error probability must be
achieved in the presence of fading, Doppler spread, intersymbol interfer-
ence, adjacent and co-channel interference, and thermal noise.

= Envelope Properties. Portable and mobile applications typically employ
non-linear (Class-C) power amplifiers to minimize battery drain. Nonlinear
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amplification may degrade the bit error rate performance of modulation
schemes that transmit information in the amplitude of the carrier. Also,
spectral shaping is usually performed prior to up-conversion and non-linear
amplification. To prevent the regrowth of spectral side-lobes during non-
linear amplification, relatively constant envelope modulation schemes are
preferred.

A variety of digital modulation techniques are currently being used in wire-
less communication systems. Two of the more widely used digital modulation
techniques for cellular mobile radio are w/4-DQPSK and GMSK. The former
isused in the North American 1S-54 and Japanese PDC and PHS systems, while
the latter is used in the European GSM, DCS 1800, DECT, and CT2 systems.

This book does not treat analog FM in detail and we refer the reader to
other textbooks on the subject, such as those by Haykin [164] and Stremler
[308]. Section 1 begins the chapter with a general characterization of band-
pass modulated signals. Section 2. discusses Nyquist pulse shaping for 1SI-
free transmission. Sections 3. through 8. then provide a detailed treatment
of the various linear and nonlinear digital modulations techniques that are
suitable for mobile radio applications, including QAM, PSK, n/4-DQPSK,
orthogona modulation, OFDM, CPM, OMSK, and others. Since bandwidth
efficiency is of great concern in mobile radio systems, Section 9. discusses the
spectral characteristics of digitally modulated signals, beginning with agenerd
framework followed by specific cases.

1. REPRESENTATION OF BAND-PASS MODULATED
SIGNALS

Band-pass modulation schemes refer to modulation schemes that transmit
information by using carrier modulation. The carrier modulated waveform can
be expressed in the complex envelope form

s(t) = Re [5(t)er"!] @.1)

where
E(t) = §1(t) +j§Q(t) 4.2)

IS the complex envelope and £, is the carrier frequency. For any digital modu-
lation scheme, the complex envelope can be written in the sandard form

5(t) = AZb —nT,x,) (4.3)

Xp = ("L'na Tn-1, ---) Tn—K) 4.4

where A is the amplitude and {z, } is the sequence of complex data symbols
that are chosen from a finite alphabet. One data symbol is transmitted every
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T seconds, so that the baud rate is R= 1T symbols/s. The function  b(t, x;)
is an equivalent shaping function whose exact form depends on the type of
modulation that is employed. For example, with binary phase shift keying
(BPSK)

b(t,x,) = znpur(t) 4.5)

where

zn € {-1,+1} data symbol transmitted at epoch n
up(t) = u(t) —u(t —T) = unit amplitude rectangular pulse of length T

and where u(t) is the unit step function. Many other types of modulation
are consdered later in this chapter, where information is transmitted in the
amplitude, phase, and/or frequency of the carrier. In each case, the modulated
sgna will be represented in the standard form in (4.3) 0 as to simplify the
task of finding its power spectrd density (psd).

By expanding (4.1), the band-pass waveform can aso be expressed in the
quadrature form

s(t) = 51(t) cos 27 fct — 5¢(t) sin2x fct . (4.6)

Thewaveforms 3;(t) and 3¢(t) are known as the quadrature components S(t),
because they amplitude modulate the phase quadrature carrier components
cos2x f.t and SN 2w f.t.

Finally s(t) can be expressed in the envelope-phase form

s(t) = a(t) cos(2m f .t + H(t)) 4.7
where
a(t) = /8(t) +35(t) (4.8)
_ —1 [3q(t)
$(t) = Tan [sz(t)] . 9)

The three representations in (4.1), (4.6), and (4.7) are equivaent and will be
used interchangeably.

11  VECTOR SPACE REPRESENTATIONS

For digital modulation schemes, the bandpass signd that is transmitted
a each baud interval will belong to a finite st of finite energy waveforms
with afew exceptions. Let {sq¢(2), 51(2),...,sm—1(2)} denote the st of such
waveforms, where M is the sze of the set. The corresponding complex
envelopes are denoted by {3o(t), 51(%),. .., 8am—1(t)}. For now we will work
with the complex envelopes.
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An N-dimensional complex vector space is defined by the set of complex
orthonormal basis functions {¢g(t), ¢1(t), - .-, pn-1(t)}, where

/_ @i(t)p; (t)dt = by (4.10)

and é;; = 1,4 = j and O otherwise. Each waveform §;(t) can be projected
onto the set of basis functions to yield a signa vector

Sm = (3moy Smyy <oos Bmp_y), m=0,...,M—1  (411)

where 0
Sme = [ smlt)pi(t)dt 4.12)

—00

If the basis functions are chosen appropriately, then the $,,,(¢) can be expressed
exactly in terms of the basis functions. That is,

N-1
Sm(t) =D Smupilt), m=0,..., M —1. (4.13)
1=0

A systematic procedure for constructing an appropriate set of basis functions
is now described.

12 GRAM-SCHMIDT PROCEDURE
Define the inner product between two waveforms u(t) and v(t) as
(u,0) = / 7wty (t)dt 4.14)

and define the norm of the waveform u(t) as

lull =/ (w,u) . (4.15)

Note that the squared-norm

o0
ol = () = [ ju(e)as @#.16)
is the energy contained in u(t).

Given the finite set of finite energy signals {5o(t), 31(2),...,8m—1(t)}, an
orthonormal set of basis functions {¢o(t), p1(t),...,en-1(¢t)} can be con-
structed according to the following algorithm:

1 Setgo(t) = S0(t) and define

_ go(t)

wo(t) = Taoll

(4.17)
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5 50

0 ™ T 0 M3 7

A 50

0o A T 0 T

Figure 4.1, Signal set {3;(t)} for Example 4.1.

2. St g1(t) = 81(2) — (30, wo)eo(t) and define

_q1(?)
o1 =g “18)

3 Setgi(t) = 8i(t) — SE20(55, 05) = 8i(t) — T42h 81,005 () and define

gi(t)
i(t) = 4.19
#ill) = ]2 *19)

Repeat Step 3 until dl the §;(¢)’s have been used. If one or more of the above
geps yields g;(t) = 0, omit these from consideration. In the end a st of
N < M complex orthonorma basis functions {¢o(%), p1(t), ..., on-1(t)}
is obtained. The dimensiondity of the complex vector space N equals M
if and only if the set of waveforms {3¢(t), $1(¢),...,8m-1(t)} is linearly
independent, i.e.,, none of the waveforms is a linear combination of the others.
Example4.1

Congtruct and orthonormal basis set for the set of waveforms shown in
Fig. 4.1.

L Set go(t) = 3o(t). Then

_9(t) _ 3T, 0<t<T/3
o 10, else

2. Setgi(t) = 51(t) — (51, p0)po(t), where

Guon) = [ s = [ \fsTai= /73
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,®

NEE S

o T 213 ¢
Figure 4.2.  Orthonormal basis functions {¢;} for Example 4.1.

Then

_at) 3/T , T/3<t<2T/3
P10 = o] ‘{ 0, else

3 Sﬁgz(t) = §g(t) — (52,(p0)(p0(t) — (§2,<p1)(p1 (t), where

T
(32,00) = /0 Sa(t) et (t)dt = 0
T
(B2y01) = /0 52()@} (£)dt
2T/3
= [, Vra= 13
Then
(t)=92_(t)={ V3T, J2T]3<t<T
P2 = gl T 0, else

4 Set g3(t) = 33(t) — (33, 0)p0(t) — (33, 01)1(t) — (33, 02)2(t). But
g3(t) = 0, s0 ignore Step 4.

The set of basis function is shown in Fig. 4.2.

The 3;(t) can be expressed as a linear combination of the basis functions,
according to (4.13), and the corresponding signal vectors in (4.11) can be
constructed. For the above example, the signal vectors are

50 = (,/1/3,0,0)
8§ = (\/JT/E’ \/ﬁv 0)
S = (Oa \/EZ%’ \/{Z%)
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0, (M
m/ ------------ 3 gl
i
J173 0y (™

¢, (0
Figure 4.3.  Four signal vectors in 3-D signal space.

83 = (\/,1_1/3’ \/ﬁ? \/773)

These four signal vectors can be plotted in a 3-D signal space, as shown in
Fig. 4.3.

13 SIGNAL ENERGY AND CORRELATIONS
Define the inner product between two length-N vectors u and v as

N-1
(u,v) =u-v* =Y unf (4.20)
=0

and the norm of the vector u as

N-1
[ull = y/(u,u) = > [uf (4.21)
1=0

Consder the set of band-pass waveforms
sm(t) = Re [5m(t)e>™], m=0,...,.M —1 4.22)

The energy in thewaveform sy, (t) is

(o)

B = (5m, 8m) = / 52 (t)dt (4.23)

—00
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Using the relation in (4.22) aong with the identity Re[z] = (2 + 2*)/2we
obtain

s - [ (=05
= /_O;%/_Zﬁm(t)ﬁdt
1

+3 /0:0 |3m (8)|2 cos(4r fot + 26(t))dt

1 [o,0]
5[ lsme)Pas
2/ -
1,0 .

= 5(‘,3"1“,,1"1) ) (4.24)

Q2

where ¢(t) = Tan™! [5o(t)/51(t)]. The above approximation is accurate when
the bandwidth of the complex envelope is much less than the carrier frequency
%0 that the double frequency term can be neglected. For digital band-pass
modulated signals with baud rate R = 1/T, this condition is equivaent to
fT > 1.

By using the Gram-Schmidt procedure, the s,,,(t) can be expressed in terms
of a set of N (red) basisfunctions {®o(t), 1(t),...,on—1(t)} where N is
the dimension of the real vector space.

N-1
sm(t) = D smypilt), m=0, ..., M -1 (4.25)
1=0

yielding the corresponding signal vectors
Sm = (8mgy Smyy -+vs Smy_y), Mm=0,..., M -1 (4.26)

It follows the energy in s, (%) is

oo /N-1 2 N-1
E, = / <Z sm,.%-(t)> dt =Y sk =|sml? 4.27)
T\ =0 i=0

where we used the orthonormal property of the basisfunctionsin (4.10). Notice
that theenergy in s, (¢) is equal to the squared norm of the corresponding signal
VECLOr Syp,.

Likewise, the 3,,(t) can be expressad in terms of a st of N complex basis
functions {wo(t), ¥1(t),...,on—-1(t)} where N isthe dimension of the com
plex vector space. Note that the dimensionality of the vector space and the set
of basis functions for the s, () and the §,,,(¢) are different, but related. The



Modulated Signals and Their Power Spectra 161

energy in s, (t) is

2 -
1N1

1 oo N1 o
Ep = 5/ Y Smi()| dt=5 3 il = gl5al® . @28)
T li=0 i=0

1.
Em = |lsml® = 5lI5mll* - (4.29)

The correlation between the waveforms s, (t) and sk (t)is defined as

Pkm t)dt

T Lo
(smask)
[EER

= Re{—(—gm’—gk)} . (4.30)

IESIIEN

Finaly, the squared Euclidean distancebetween si(t)and sm(t)is

B = [ (omlt) = se(0)? dt

—00

1. .
lIsm — sell? = 518m — Skll* . (4.31)

2. NYQUIST PULSE SHAPING

Consider a modulation scheme where the complex envelope has the form

3(t) = A znp(t — nT) (4.32)

wherep(t) is ashaping pulse, {z,} isthe complex data symbol sequence, and
T is the baud period. Now suppose the complex envelope is sampled every T
seconds to yield the sample sequence {yx },

yk = S(kT +t,) = A znp(kT +t, — nT) (4.33)
where ¢, is atiming offset assumed to lie in the interva [0, T). First consider

the case when ¢, = 0; the effect of having ¢, # 0 will be dedlt with later. When
to=0

uw = A Z InPk—n
n

Azipo+ A Tnprn (4.34)
n#k
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where p,, = p(mT) is the sampled pulse. The first term in (4.34) is equal
to the data symbol transmitted at the kth baud epoch, scaled by the factor p,.
The second term is the contribution of al other data symbols on the sample y.
Thisterm is caled intersymbol interference (I1Sl).. To avoid the appearance
of 1Sl, the sampled pulse response {px } must satisfy the condition

Pk = OkoPo (4.35)
where 4, is the Dirac delta function defined by
[0, #k
5,,_{ 1 ik (4.36)
Inthis case
Yk = TkPo - (4.37)

Therefore, to avoid 1Sl the pulse p(t) must have equally spaced zero crossings
a intervals of T seconds. This requirement is known as the (first) Nyquist
criterion.

Wenow derive an equivaent frequency domain reguirement by showing that
the pulse p(t) satisfies the condition py = dxopo if and only if

P f)é% Y P(f—i—%):po. (4.38)

n=-oo

The term Pg(f) is called the folded spectrum. To avoid ISl, the folded
spectrum must be a constant value or in other words “flat.” Using the Fourier
transform, we can write

o= [ PO

00 /(2n+1) /2T

P(f)e* T df

neeo J (2n-1)/2T

_ Z /1/2 ( )ej27rk(f'+%)Tdf;

na—eo 1721

= /—11//227;[ i P(f—i—%)

n=—od

ej21'rfdef

1/2T ,
=7 / Pe(f)e?*Tgf (4.39)
_1/2T

[tfollowsthat p, and Px(f) are a Fourier series pair, i.e,

Pe(fy= Y pre 2T (4.40)

k=—-00
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Now suppose that the condition in (4.38) is satisfied. Then Ps(f) = poT
and from the last line of (4.39)

12T sink
pe = / T Tdf = o py = byapy . (4.41)
-1/2T Tk
Conversdly, suppose that the condition py = pedko IS satisfied. Then from
(4.40)
Ps(f)=po - (4.42)

The requirement on the folded spectrum in (4.38) allows us to design pulses
in the frequency domain that will yield zero ISI. First consider the pulse

P(f) = Trect(fT) (4.43)
where . Jl<a
) S 2T

rect(fT) = { 0, elsewh2eq;e (4.44)

This pulse yields aflat folded spectrum. In the time domain
p(t) = sinc(t/T) . (4.45)

This pulse achieves the first Nyquist criterion because it has equaly spaced
zero crossings at T second intervals. Furthermore, from the requirement of a
flat folded spectrum, it achieves zero 1S while occupying the smallest possible
bandwidth. Hence, it is caled an ideal Nyquist pulse. Sometimes the edge
frequency f = 1/2T is caled the Nyquist frequency.

We now examine the effect of the sampling or timing offset ¢, with the aid
of the ideal Nyquist pulse. With atiming offset

e = AZ:pnsinc((kT +nT +1,)/T)
n

= Azygsinc(t,/T) + A Z zpsinc((KT + nT + t,)/T) (4.46)
n#k

In this case, the ISI term is not zero. Furthermore, with the ided Nyquist

pulse the effect of the timing offset is exasperated because the IS term is not
absolutely summable as shown in Problem 4.1. Thisis caused by the dow time
decay of the ideal Nyquist pulse, in this case 1/t. To make our communication
systems more robust to timing errors, we would like to construct pulses that

satisfy the Nyquist criterion but decay faster with time.

To construct other Nyquist pulses, we start with the ideal Nyquist pulse,

Py (f), shown in Fig. 4.4(a). Tothe pulse Py (f), we add a “transmittence”’
function P,(f) as shown in Fig. 4.4(b). The critica requirement is that the
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Figure 4.4.  Construction of pulses satisfying the (first) Nyquist criterion.

transmittence function have skew symmetry about the Nyquist frequency 1/2T.
Any function with skew symmetry will do. The resulting Nyquist pulse P(f)
is shown in Fig. 4.4(c). Clearly, the pulse has a flat folded spectrum. The
corresponding time domain pulse p(t) can be obtained by taking the inverse
Fourier transform of P(f). Notice that the pulse P(f) takes up additiona
bandwidth in exchange for the faster decay of the corresponding time domain
pulse p(t).

Raised cosne and root raised cosne pulse shaping.. The raised cosine
pulse is defined by

T 0<|fI < (1-8)/2T
P(f)=¢ F[1-sinZ (f- )] (-p2r<|fi<+p)/2T
0 £l (1-B)/2T
(4.4

The bandwidth of the raised cosine pulseis (1 + 5)/2T. The roll-off factor
B,0 < B < 1 controlsthe bandwidth that is in excess of the Nyquist bandwidth.
Taking the inverse Fourier transform of P(f) gives the time domain pulse

(t)_sinvrt/T cos Bnt/T
PU= 0T 1- 4822212

(4.48)
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For 8 = 0, p(t) reduces to the sinc pulsein (4.45). Notice that theraised cosine
pulse decays as afunction of 1/¢3.

As discussad in Chapter 5, the pulse shaping is usually divided between the
transmitter and receiver filters. Very often the receiver filter h,(t)is “matched”
to the transmitter filter A4 (¢), in which case h.(¢) = hq(—t). The oveddl
pulse consisting of the cascade of the transmitter and receiver filtersisp(t) =
hq(t) * ho(—t), where » denotes the operation of convolution. The equivalent
condition in the frequency domain is P(f) = |H.(f)|*. In this case, the
transmitter filter has transfer function H,(f) = |P(f)|*/?. If the overal pulse
p(t) is arased cosne pulse with the transfer function P(f) in (4.47), then the
pulse hy () is said to be aroot raised cosine pulse. Taking the inverse Fourier
transform of H,(f)gives the corresponding time domain root raised cosne
pulse

cos[(1 + B)wt/T] + sin[(1 — B)nt/T)(46t/T) !

ho(t) = 4 4.4
(t) =45 VTl — 168212 /T?] (449
For 8 = 0, hy(t) reduces to the sinc pulse

hqo(t) = \/; sinc(t/T) . (4.50)

Raised cosine and root raised cosine pulses corresponding to 3 = 0.5 are
shown in Fig. 4.5. Strictly speaking the pulses in (4.49) and (4.5) are non-
causa. Therefore, in practice atruncated time domain pulse must be used. For
example, in Fig. 4.5 the pulses are truncated to 6T and time shifted by 3T to
yield causd pulses. Later we will look at the effect of the pulse truncation
length. Notice that the raised cosine pulse is a Nyquist pulse with equaly
spaced zero crossings at the baud period T, while the root raised cosine pulse
isnot.

3. QUADRATURE AMPLITUDE MODULATION
(QAM)
With QAM, the complex envelope is

AZb — nT,%n) (4.51)

where
b(t, %) = Tpha(t) (4.52)

he(t) is the amplitude shaping pulse, and =, = z1, + jzgn IS the complex
data symbol that is transmitted at epoch n. It is apparent that both the amplitude
and the phase of a QAM signa depend on the complex symbol. QAM has
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Figure 4.5. Raised cosine and root raised cosine pulses with roll-off factor 8 = 0.5. The
pulses are truncated to length 67 and time shifted by 3T to yield causal pulses.

the advantage of high bandwidth efficiency, but amplifier nonlinearities will
degrade its performance due to the non-constant envelope.
The QAM waveforms that are transmitted at each baud epoch have complex
envelopes
Sm(t) = Azmho(t) m=0,...,. M —1 . (4.53)
To represent the §,,(t),m = 0,..., M — 1in terms of a st of Signal vectors,
the required basis function is

A2
po(t) = Eha(t) (4.54)
where
A2 (o)
E,=—=— / R (t)dt (4.55)
2 Joxo
istheenergy intheband-passpulse Ah,(t) cos 2r f.t.Using thisbasis function
$m(t) = V2Ep Tm po(t) (4.56)
and the QAM complex signal vectors are*
Sm=V2Ey Ty, m=0,...,.M -1 . (4.57)

'Since only one basis function is needed, we use the scdlar & rather than the vector &, .
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Figure 4.6.  Complex signal-space diagram for square QAM constellations.

QAM dgnal congédlations.. A variety of QAM signa constellations may
be constructed. Square QAM constellations can be constructed when M is
a power of 4 by choosing zrm,zgm € {£1, £3, ..., £(N — 1)} and
N = v/M. The complex signal-space diagram for the square 4-, 16, and 64-
QAM congtdlaions is shown in Fig. 4.6. Notice that the minimum Euclidean
distance between any two signa vectorsis 2/2Ej,.

When M is not a power of 4, the signa constellation is not square. Usually,
the congtellation is given the shape of a cross to minimize the average energy
in the constellation for a given minimum Euclidean distance between signa
vectors. Examples of the QAM *“cross constellations’ are shown in Fig. 4.7.

Other types of QAM constellations are possible as well. Fig. 4.8 shows two
different 8-QAM constellations.

PAM sdgnal congtdlations.. Pulse amplitude modulation (PAM) can be
viewed as a specid case of QAM, where information is transmitted only in
the cosine component of the carrier.  With our formulation, this can be ac-
complished by using rea data symbols =, = zp, belonging to the set
{£1,43,...,£(m - 1)}. The PAM complex signd vectors are

Sm=vV2Es2m—-1-M), m=1,...,M . (4.58)

Typica 4- and 8-PAM signal constellations are shown in Fig. 4.9.
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Figure 4.7.  Complex signal-space diagram for cross QAM constellations.

0(1) 0 (1)

Figure 4.8. Complex signal-space diagram for 8-QAM constellations.

4, PHASE SHIFT KEYING (PSK)
The complex envelope of a PSK signal has the form

§(t) = A b(t — nT,x,) (4.59)
where ,
b(t, %) = hq(t)el¥n (4.60)
hq(t) isthe amplitude shaping pulse. The carrier phase takes on values
6. ="y 1o, (4.61)

M
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Figure 4.9. Complex signal-space diagram for 4- and 8-PAM constellations.

where 6, is an arbitrary constant phase, and the data symbols are defined as
zn =n,n € {0,1, ..., M — 1}, with M being the aphabet sze.

The PSK waveforms that are transmitted at each baud epoch have complex
envelopes

Sm(t) = Ay ()™ . m=0,...,M -1 (4.62)
Using the basis function in (4.54)
Sm(t) = V2ERempy(t), m=0,...,. M -1 . (4.63)

The PSK complex signal vectors are
Sm = V2Epe®  m=0,..., M -1 (4.64)

The complex signal-space diagram for 8-PSK (with 6y = () is shown in
Fig. 4.10. Notice that all PSK waveforms have the same energy Ej,.

41 OFFSET QPSK (OQSPK)

QPSK or 4-PXK is equivalent to 4-QAM, where z,, = 27, + jzg.» and
TIn,Ton € {—1/V2,+1/v2}. The QPK signa can have either +£90°
or 180° phase shifts from one baud interval to the next. With offset QPSK
(OQPSK), the complex envelope is

5(t) = A)_b(t —nT,x,) (4.65)

where
b(t,xn) = 21 pha(t) + j2Qnha(t — Tb) (4.66)

and T, = T'/2 isthe bit interval. With OQPSK signals the possibility of 180°
phase shifts is eliminated. In fact, the phase can change by only £90° every
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Figure 4.10.  Complex signal-space diagram for 8-PSK signals; 8, = 0.
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Figure 4.11.  Complex signal-space diagram QPSK and OQPSK signals.

T3, seconds. With OQPSK, the amplitude shaping pulse h,(t) is often chosen
to be the root raised cosine pulse in (4.49).

The signal-space diagrams for QPSK and OQPSK are shown in Fig. 4.11,
where Ej, isthe symbol energy. The dotted linesin Fig. 4.11 show the alowable
phasetransitions. The exact phase trgjectories depend on the amplitude shaping
function. Note that the phase trgjectories do not pass through the origin. This
property reduces the peak-to-average ratio of the complex envelope, making the
OQPSK signal less sengtive to amplifier nonlinearities than the QPSK signal.
It also reduces the dynamic range that is required of the power amplifier.
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4.2 w/4-DQPSK

QPK transmits 2 bits/baud by transmitting sinusoida pulses having one
of 4 absolute carrier phases. 7/4-DQPSK aso transmits 2 bits/baud, but
information is encoded into the differential carrier phase, and sinusoidal pulses
having one of 8 absolute carrier phases are transmitted at each baud epoch.

Let 6,, be the absolute carrier phase for the nth data symbol, and let Aé,, =
6, — 6n—1 be the differential carrier phase. With #/4-DQPSK, the differential
phase isrelated to the quaternary data sequence {zn}, z, € {%1, +3} through
the mapping

A6, = mn% , (4.67)

Noticethat the phase differences are =7 /4 and +37 /4. The complex envelope
of the 7/4-DQPSK signal is

§(t) = A b(t — nT,xp) (4.68)
where
b(t,xn) = hal(t)exp {j (e,H + xn% + 00> }
= he(t) exp {j% ( ”f Tk +xn> +j00} . (4.69)

The summation in the exponent represents the accumulated carrier phase, while
the last term is the phase change due to the nth information symbol. Assuming
that 6, = 0, the absolute carrier phase during the even and odd baud intervals
belongs to the sets {0, 7/2,7,3w/2} and {n /4,37 /4,57 /4,Tn/4}, respec-
tively, or vice versa. With w/4-DQPSK the amplitude shaping pulse hq(t) is
often chosen to be the root raised cosine pulse in (4.49).

The signal-space diagramsfor QPSK and 7 /4-DQPSK are shown inFig. 4.12,
where Ej, isthe symbol energy. The dotted lines in Fig. 4.12 show the alow-
able phase transitions. The phaser diagram for 7/4-DQPSK with root raised
cosine amplitude pulse shaping is shown in Fig. 413. Note that the phase
trgjectories do not pass through the origin. Like OQPSK, this property reduces
the peak-to-average ratio of the complex envelope, making the x/4-DQPSK
signal less sengtive to amplifier nonlinearities. Finally, we observe that unlink
QPSK the carrier phase of m/4-DQPSK changesby =+ /4 or £3x/4radians
during every baud interval. This property makes symbol synchronization is
easer with 7/4-DQPSK as compared to QPSK.
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Figure 4.12.  Complex signal-space diagram QPSK and m/4-DQPSK signals.
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Figure 4.13. Phaser diagram for w/4-DQPSK with square root raised cosine amplitude pulse
shaping; 3 = 0.5.

5. ORTHOGONAL MODULATION AND VARIANTS

Orthogona modulation schemes transmit information by using a set of wave-
forms, {3m(t)}M=;} that are orthogonal in time. Many different types of or-
thogonal waveforms can be constructed and here we consider afew methods.
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Orthogonal FSK modulation:.  Orthogonal M-ary frequency shift keying
(MFSK) modulation uses a set of M waveforms that have different frequencies.
The MFSK complex envelope is

3(t) = A)_b(t — nT,xy) (4.70)
where
b(t, x,,) = 3™ Ar by (t) (4.71)

adz, € {1, £3, ..., £M —1}. The MFSK waveforms that are transmitted
at each baud epoch have complex envelopes

Sm(t) = A® Aty (t), m=0,..., M -1 . (4.72)
By choosing thefrequency separation Ay = 1/2T,the §,,(t),m =0,..., M —

1 are orthogonal (see Problem 4.1). Sincethes,,(t) are orthogonal, the MFSK
signal vectors have dimension N = M. The appropriate set of basis functions

IS
) = ——2 ur ;=0 M-1 4
i(t) 2 (t), 1 sy ( .73)

Ep="= (4.74)

where

is the energy in the band-pass pulse Aur(t) cos 27 f.t. The MFSK complex
signd vectors are

8n=V2Ee,, m=0,...,.M-1 (4.75)

where e, = (e, €1,...,enm—1)iS avector of length M with a“1” in the mth
co-ordinate and zeros elsewhere.

Orthogonal modulation with binary orthogonal codes.. Another type of
orthogonal modulation starts with the rows of a Hadamard matrix Hps. The
Hadamard matrix is generated recursively according to

Hpe Hpypo
H, =
M { Hye —Hpypo
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where H, = [1]. For example,

+1 +1 +1 +1 +1 +1 +1 +1
+1 -1 +1 -1 +1 -1 +1 -1
+1 +1 -1 -1 +1 +1 -1 -1
+1 -1 -1 41 +1 -1 -1 +1
+1 +1 41 +1 -1 -1 -1 -1
4+1 -1 41 -1 -1 +1 -1 +1
+1 41 -1 -1 -1 -1 41 +1
+1 -1 -1 41 -1 +1 +1 -1

Notice that the rows of the Hadamard matrix are mutually orthogonal. A set of
equal energy M orthogonal waveforms can be constructed according to

(4.76)

M
=AY hmhe(t—kT.), m=0,...,.M—1 4.77)

where hr,, is the kth co-ordinate in the mth row of the Hadamard matrix,
T = MT, isthe symbol duration, and h.(t) is a shaping pulse either having
duration T, or satisfying Nyquist's first criterion with equally spaced zero
crossings at intervals of T, seconds. The energy in the waveform §,,(¢) is

2
_ M4 / B2(t) 4.78)

To construct signal vectors, the appropriate choice of basis function is

A M
pi(t) = hihe(t —kT,), 1=0,...,M—1 (4.79)
Ehk 1
and once again
§m = V2Ere,m, m=0,...,M -1 . (4.80)

Biorthogonal signals.. A set of M biorthogonal signals can be easily con-
gructed from a set of M/2 orthogond signals. The M-ary biorthogonal
waveforms have complex signal vectors

. _ [ V2Epe;, 1i=0,...,M/2-1
Sz—{—gi—M/z, i=M/2,.... M -1 (4.81)

where the vectors e; have length M/2. By using an appropriate set of bass
functions, for example in (4.73) or (4.79), the complex envelopes of the signal
waveforms can be easily constructed.
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Orthogonal multipulse modulation:.  With binary orthogona codes only
k = log,M bits are transmitted at each baud epoch. A more bandwidth
efficient scheme can be obtained by using the rows of the Hadamard matrix
H  to define N orthogona amplitude shaping pulses

=AY hyh(t—kT;), i=0,...,N—1 (4.82)

With orthogona multipulse modulation, a block of N seria data symbols,
each of duration T, is first converted into a block of N parallel data symbols.
The block of N information symbols is transmitted in parallel by using the
N orthogona amplitude shaping pulses in (4.82). The transmitted complex
envelopeis
=Y bt —nT,xy,) (4.83)
n

where

b(t, xn) = Z Ty hi(t) (4.84)

T = NT., and X, = (ZngsZny,---,ZTny_,) IS the block of N data symbols
transmitted a epoch n.

6. ORTHOGONAL FREQUENCY DIVISION
MULTIPLEXING (OFDM)

Orthogona frequency divison multiplexing (OFDM) is a modulation tech-
nique that has been suggested for use in cellular radio [54, 39], digital audio
broadcasting [119], digital video broadcasting, and wirelessLAN systems such
as|EEE 802.11, HIPERLAN, and MMAC [333]. OFDM isablock modulation
scheme where data symbols are transmitted in parallel by employing a (large)
number of orthogonal sub-carriers. A block of N seria data symbols, each of
duration Ty, is converted into a block of N pardlel data symbols, each with
duration T' = NT. The N parale data symbols modulate N sub-carriers that

are spaced 1T Hz apart.
The complex envelope of an OFDM signd is given by

5(t) = A _b(t — nT,xn) (4.85)

where

2n (b — 1) ¢
b(t,x,) = ankexp{ W( 7 2 ) } (4.86)
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wherenistheblock index, Nistheblocklength, xn = {Zng, Zny, .-+, Tny_;}
is the data symbol block at epoch n, and The frequency offset

exp {_jw(NT— l)t}

just ensures that band-pass signal is centered about the carrier frequency.

The data symbols z,, are often chosen from a QAM or PSK congtellation,
although any 2-D signal constellation can be used. If a rectangular shaping
pulse hq(t) = Aup(t) is chosen, then the LT Hz frequency separation of the
sub-carriers ensures that they are orthogonal regardiess of the random phases
that are imparted due to data modulation (see Problem 4.4). As we will see
later, other choices for h,(t) may result in a more compact psd, but the error
rate performance will degrade due to the loss of sub-channel orthogonality.

The OFDM system typically operates over anon-ideal channel with transfer
function T(f), such that the amplitude response [T'(f)| is not constant across
the channel bandwidth W. The power spectra density of the additive Gaussian
noise Spn(f) may not be constant either. Shannon [299] proved that the
capacity of anon-idea additive Gaussian noise channel is achieved when the
transmitted power €2,(f) is adjusted across the bandwidth W according to

) ={ g,—snn(f)/lT(f)P, ;:3’/ } 487)

where K is a constant chosen to satisfy the constraint

/ Qu(f)df < Ry (4.88)
w

and 2,y is the average available power to the transmitter. One method to
achieve capacity is to divide the bandwidth W into N sub-bands of width
W/Ag, where Ay = 1/T is chosen small enough so that |T'(f)|2/Snn(f)iS
approximately constant within each sub-band. The signals in each sub-band
may then be transmitted with the optimum power alocation .( f),, whilebeing
individually coded to achieve capacity.

If the number of sub-carriers N is chosen 0 that Ay = 1/T is essentialy
constant across each sub-band, then no equalization is necessary because the
IS is negligible. Viewing the problem another way, if the block length N
is chosen so that T = NTs » LT, where LT is the length of the channel
impulse response, then the effect of the intersymbol interference (151) is greatly
reduced. To eliminate the ISl altogether a the expense of a small decrease in
capacity, a guard interval of length GT; > LT, can be inserted between
successvely modulated OFDM blocks.

It is clear from (4.86) that the data symbols zj , for fixed n modulate
the nth sub-carrier. From (4.87), the transmitter power should be high when
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IT(£)1?/ Sun(f) islarge and small when T(f)/Snr(f) issmall. In apractica
system with a target bit error rate, this implies the use of a larger signa
constellation in sub-bands where |T'(f)|2/Sna(f) is larger. The technique of
using different sized signal constellations on the different OFDM sub-carriers
is sometimes called discrete multitone modulation (DMT).

6.1 MULTIRESOLUTION MODULATION

Multiresolution modulation (MRM) refers to a class of modulation tech-
niques where multiple classes of bit streams are transmitted sSmultaneoudy
that differ in their rates and error probabilities. MRM is easy to implement
in OFDM schemes by using multiplexed, interleaved, and embedded signd
congellations. Multiplexed MRM divides the sub-carriers into contiguous
blocks, and a different sze sgnd condelation and transmit power is used
in each block. A larger signal constellation will transmit more bits/baud but
aso require a higher sgnal-to-noise ratio to achieve a given error probability.
Interleaved MRM interleaves the different classes of bit streams onto the sub-
carriers in a cyclic fashion, i.e, if there are K different classes of hit streams,
then the sub-carriers 4,2 + K, ¢ + 2K, . . ., are assigned to the ¢th bit stream.
Each class of bit stream can be transmitted by using a different szed sgnd
constellation and power levd.

Embedded MRM is more subtle and relies upon the use of asymmetric
signd congtellations. Fig. 4.14 shows an example of a 166:QAM MRM signal
congtellation, that can be used to transmit two different classes of bit streams,
called low priority (LP) and high priority (HP). In Fig. 4.14, two HP bits are
used to sdect the quadrant of the transmitted signd point, while two LP bits are
used to sdlect the sgnal point within the selected quadrant. In order to control
the relative error probability between the two priorities a parameter A = d'/d”
is used, where d* is the distance between LP symbols and d” is the distance
between centroids in the HP symbols. In generd, A should be less than 0.5,
since the MRM congellation becomes symmetric 16cQAM a A = 0.5. As A
becomes smaller, more power is dlocated to the HP bits and, hence, they are
received with a smaller error probability.

6.2 FFT-BASED OFDM SYSTEM

A key advantage of usng OFDM is that the modulation and demodulation
can be achieved in the discrete-domain by using a discrete Fourier transform
(DFT). The fast Fourier transform (FFT) algorithm efficiently implements the
DFT.

Consider block n = 0 in (4.86) and ignore the frequency offset
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Figure 4.14. 16-QAM embedded MRM signal constellation, defining two priority classes.

Further assume that /4 (t) = uz(t). Then the complex envelope has the form?

! 2kt
3(t) = Z {]Nf,’ifs }UT(t) . (4.89)

Suppose the complex envelope is sampled at epochs ¢t = nT; to yield the
sequence
X —~(n:r)—ANz_j1 e {ﬂ”k"} =0,1,..., N=1. (4.90)
n=3=:§ s) = kzoxk Xp N , n=0,1, ..., . 4.
Notice that the vector X = {Xn N-lisjust the inverse DFT (IDFT) of
the vector Ax = A{zi}p, . After taking the IDFT, the sample sequence
(X, }V= ! can be passed through aD/A converter and carrier modulated.
When the OFDM modulator isimplemented as using an IFFT algorithm, the
amplitude shaping pulse hg(t) is no longer the ided rectangular pulse ur(t).
Rather, the pulse is generated by using a discrete-time approximation to the
rectangular pulse. To obtain this pulse, we pass the rectangular impulse train

N-1

= > 8(t-kTy) (4.91)

k=0

2For the remainder of our discussion we remove the block index 0.
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Figure 4.15.  Time domain OFDM amplitude shaping pulse.

through an ideal low-pass filter with impulse response

h(t) = sinc(t/Ts) . (4.92)
The gives the amplitude shaping pulse
N-1
ha(t) = Z sinc(t/Ts — k) . (4.93)
k=0

whichis plotted in Fig. 4.15. Notice that the pulse is non-causal. As discussed
in Section 9.6 this has some interesting implications for the transmitted power
spectrum.

Another key advantage of OFDM is the ease by which the effects of IS can
be mitigated. A guard interval consisting of a cyclic prefix or suffix of length G
can be appended to the sequence X. Assuming a cyclic suffix, the transmitted
sequence with guard interva is

XS = Xy (4.94)

N-1 .
= A kaexp{ﬂ”k"} . n=0,1, ..., N+G— 1(495)
k=0 N

where G is the length of the guard interval in samples, and (n)yis the residue
of n modulo N. To avoid areduction in data rate, the baud duration with guard
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Figure 4.16.  Block diagram of OFDM transmitter.

interval is T¢ = T,/(1 + ). The overal OFDM baseband modulator simply
consists of an IFFT circuit to implement the IDFT followed by aD/A converter,
as shown in Fig. 4.16.

The combination of the D/A converter, waveform channd g(t), anti dias
ing filter, and A/D converter yields an equivalent discrete-time channel with
sampled impulse response {gm }% _,, where LT is the length of the channel
impulse response. The discrete-time convolution of the transmitted sequence
{X3}N45=1 with the discrete-time channel produces the received sequence
{R$}, where

L
RS =S gmX3 . . (4.96)

m=0

Note that for our present discussion we have neglected the effects of noise.
The length of the guard interval, G, is assumed to equal or exceed the channel
length, L.

When a block is received, the first G > L samples are assumed to be
corrupted by 1S from the previous block. The ISl is removed by replacing
these samples with the cyclic suffix according to

R, = RgG+(n—G)N
L
= Y gmXn-myy» 0SN<SN-1. (4.97)

m=0

This operation isillustrated in Fig. 4.17.
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Figure 4.17. Removal of ISI by using the cyclic suffix.
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Figure 4.18.  Block diagram of OFDM receiver.

As shown in Fig. 4.18, the OFDM demodulator then performs an FFT on
the vector R = {R,,}1'=}. The demodulated sequence is

]. Nl ;27
¥ > Rpe W

Z; =
n=0
= Az, 0<i<N-1 (4.98)
where
L :2rmi
ni=Y gme N (4.99)
m=0

Notice that Z; is equal to Az; multiplied by the equivalent complex channel
gain n;. Hence, the IS due to the channel has been completely removed. When
noise is present, then the Z; must be used to make data symbol decisions. This
is the purpose of the seria metric computer in Fig. 4.18. The metric computer
will be discussed further in Chapter 5.
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7.  CONTINUOUSPHASE MODULATION (CPM)

Continuous phase modulation (CPM) refers to a broad class of frequency
modul ation techniques where the carrier phase varies in a continuous manner.
A comprehensive treatment of CPM is provided in Anderson et. al. [12].
CPM schemes are attractive because they have constant envelope and excellent
spectral characteristics, i.e., a narrow main lobe and fast roll-off of sdelobes.
The complex envelope of agenerd CPM waveform has the form

3(t) = Aexp (i (4(t) + 6,)} (4.100)

where A is theamplitude, 6, isinitial carier phaseat ¢ = 0, and
= 27r/ Z hezihs(r — kT)dT (4.101)

Theterm ¢(t) is cdled the excess phase. In (4.101), the symbols are defined
as follows:

» {z;] is the data symbol sequence and T is the baud period. The data
symbols are chosen from the alphabet {+1, £3, ---, £(M — 1)}, where
M is the modulation alphabet size.

» {ht} isthe sequence of modulation indices. When hy = h the modulation
index is fixed for al symbols. With multi-h CPM, the sequence {h}
is chosen in a cyclic fashion from set {Ay, A, ..., hg} of H modulation
indices. Thatis, hivg = h;.

= h¢(t) isthe frequency shaping function, thatiszerofort < Oandt > LT,
and normalized to have an area equal to 1/2. A full response CPM has
L =1, while partial repponse CPM has L > 1. Some possible frequency
shaping pulses are shown in Table4.1. A more compact power density spec-
trum is obtained by using frequency shaping functions having continuous
higher-order derivatives, such as the raised cosine pulse in Table 4.1.

An infinite variety of CPM dgnas can be generated by choosing different
frequency shaping pulses, modulation indices, and modulation alphabet sizes.
Itis useful to define the phase shaping function, 5(t),as

0 t<0
B(t) = { Johs(r)dr ,0<t< LT . (4.102)
1/2 ,t> LT
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pulse type hy(t)
L-rectangular (LREC) seruLr(t)

L-raised cosine (LRC) T [1 — cos (3;—5)] urr(t)
L-half sinusoid (LHS) 1= sin(mt/T)urr(t)
L-triangular (LTR) L (1 - LTl )

Table 4.1. CPM frequency shaping functions.

71 FULL RESPONSE CPM

Consider afull response CPM signa with asingle modulation index, h; = h.
Within the timeinterval [nT', (n + 1)T], the excess phase ¢(t) is

nTn=1 t
b(t) = 2rh / S ayhy(r — KT)dr + 2mh / @uhy(r = nT)dr
0 k=0 n
n—1
= wh Y zk+ 2mhz,B(t — nT) (4.103)
k=0
The first term in (4.103) represents the accumulated excess phase up to time
nT, while the second term represents the excess phase increment for t within
the interval [nT, (n + 1)T]. Note that the phase is continuous so long as the
frequency shaping function h¢(t) does not contain impulses, which accounts
for al practica cases.
Since (4.103) represents the phase within the interval [nT, (n + 1)T], the
corresponding complex envelopes for dl such intervals can be concatenated
together to write the full response CPM complex envelope as

5(t) = A> bt — nT,x,) (4.104)
where

n—1
b(t,xn) = exp {j (7rh Z Tk + 27rhxnﬁ(t)> } ur(t) (4.105)

k=0

where we have assumed an initial phase 6, = 0.
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Figure 4.19. Phase tree of binary CPFSK with an arbitrary modulation index. CPFSK is
characterized by linear phase trajectories.

Continuous phase frequency shift keying (CPFSK) is aspecid type of full
response CPM obtained by using the rectangular frequency shaping function
LREC with L = 1. For CPFSK

0 L t<0
Bt)={ t/2T ,0<t<T . (4.106)
12 ,t>T

CPM signals can be visualized by sketching the evolution of the excess phase
#(t) for al possible data sequences. This plot is caled a phase tree, and a
typical phase tree is shown in Fig. 4.19 for binary CPFSK. Since the CPFSK
frequency shaping function is rectangular, the phase trajectories are linear as
suggested by (4.106). In each baud interval, the phase increases by #h if the
data symbol is +1 and decreases by =h if the data symbol is—1.

711 MINIMUM SHIFT KEYING (M)

Minimum shift keying (MSK) is a specid case of binary CPFSK, with
modulation index A = 1/2. The MSK bandpass signd is s(t) = A cos ¢.(t),
where ¢.(t) = 2nfct + ¢(t) + 6,. Assuming that 6, = 0, the phase ¢.(t)
withintimeinterval [nT, (n + 1)T] can be obtained from (4.103) as

n—1

e ™ t—nT
o(t) = 27rfct+§i T+ —Zn
k=0

2 T

Iy

n—1
T n
= (21rfc + ﬁ) t+ 5 kE=O Tk — 7:17" . (4.107)

The MSK signal can be described in terms of the phase tree in shown in
Fig. 419 with A = 1/2. At the end of each symbol interval the excess phase
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Figure 4.20.  Phase-trellis diagram for MSK.

#(t) takes on vaues that are integer multiples of = /2. Since excess phases that
differ by integer multiples of 27 are indistinguishable, the values takenby (%)
a the end of each symbol interval reduced modulo 27 belong to the finite st
{0,7/2,m,3m/2}. Inthisfashion, the phase tree collapses into the phasetrellis
shown in Fig. 4.20.

Congder the MSK band-pass waveform in theinterval [nT', (n+1)T], given

by

n—1
- In T _m
s(t) = Acos (27r (fc+ 4T) t+ 3 Igmk 5 mn) ) (4.108)
Observe that the MSK signal has one of two possible frequencies
1 1
fr=fe- 37 and fuo=fet 7 (4.109)

The difference between these frequencies is Af = fy — fr = 1/(2T). This
is the minimum frequency separation to ensure orthogonality between two
co-phased sinusoids of duration T (see Problem 4.4) and, hence, the name
minimum shift keying.

Another interesting form for the MSK signal can be obtained by starting
with (4.104) and (4.105). After alengthy derivation which we omit here, we
can write the MSK complex envelope as

=AY (x,,nha(t —2nT) + jrguha(t — 2nT ~ T)) 4.110)

where

Tin = —ITQn-1T2n-1 (4.111)
IQn = TInT2n 4.112)
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and
ho(t) = cos (%) uor(t + 7)) (4.113)
he(t—T) = sin (21;—,) uar (t) . (4.114)

Notethat {z;»} and {zg»} are independent binary symbol sequences that take
on elements from the set {—1, +1}, and the half sinusoid amplitude shaping
pulse hq(t) has duration 2T. Notice that the information symbols z;, and
zqn ae transmitted on the quadrature branches with an offset of T seconds.
It follows that MSK is equivalent to OQPSK with a half-sinusoid amplitude
shaping pulse. This property can be exploited in practice to generate and detect
MSK signals.

8. PARTIAL RESPONSE CPM

Partial response CPM signals have a frequency shaping pulse hy(t) with
duration LT where L > 1. Partia response CPM signals have better spectral
characteristics than full response CPM signdls, i.e,, a narrower main lobe and
faster roll-off of sde lobes.

The partial response frequency shaping function can be written as

L-1

hy(t) = Y hy(B)ur(t —kT)
k=0
L-1

= Y hyx(t—kT) (4.115)
k=0

where
hyk(t) = hy(t + kT)ur(t) . (4.116)

Likewise, for the phase shaping function

L-1
B(t) = > Be(t — kT) (4.117)
k=0
where
Bi(t) = B(t + kT)ur(t) . (4.118)
Note that
0 ,t<0
Bi(t) = { JEhsr(r)dr ,0<t<LT (4.119)
Br(T) ,t>T
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and

L-1 1
2 B(T) =35 . (4.120)
k=0

An equivaent frequency shaping function of duration T can be derived by
noting that the baseband modulating signal has the form

z(t) = Zarnhf(t—nT)

L-1
= >N zahsa(t — (n+K)T)
n k=0
L-1
= > zmkhsa(t —mT) . (4.121)
m k=0
It follows that
z(t) =) hg(t —mT,xpm) (4.122)
m
where
L—1
hp(t, xm) = ) Tm-khpi(t) (4.123)
k=0
and
Xm = (Tm, Tm—1y «++» Tm—L+1) - (4.124)

Likewise, an equivalent phase shaping function of duration T can be defined as
L-1

Bt %Xm) =Y TmkPr(t) - (4.125)
k=0

Therefore, the partial response shaping functions hs(t) and 8(t) can been

replaced by equivalent shaping functions h (¢, x,,) and 5(t, x,,) of duration

T whose value depends on the current data symbol and the L — 1past data

symbals.

Example 4.2 LREC Frequency Shaping Function
For an LREC freguency shaping function

hy(t) = 52—TULT(t) .

Hence,
hf(t,xn) = xnhf’o(t) + CL'n_lhf,l )+ + .”L‘n_L+1hf7L_1(t)

where 1
hio(t) =hsi(t) = =hsp_1(t) = 2L_TUT(t) .
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Therefore,

h,f(t, xn) = (.’Bn +Tp 1+ + Ty L+1) (t)

2LT"

Example 4.3 LRC Freguency Shaping Function
For an LRC frequency shaping function

hg(t) = 51% [1 — cos (ﬁ)] urr(t) -

Hence,

hf(t,xn) = :L‘nhf,()(t) + zp_1hf W+---+ :En_th,L_l(t)

hyx(t) = [1 — cos (ﬂtl:;—kfr)” up(t) .

where

It follows from the above devel opment that the complex envelope of a partia
response CPM signal can be written in the standard form

u(t) = A b(t — nT,x,) (4.126)

where

n-—1

b(t,xn) = exp {j27rh (Z B(T,x;) + ﬂ(t,xn)) } ur(t) (4.127)

=0

and we have assumed an initial phase §, = 0. The excess phase over the
interva [nT, (n + 1)T] is

) = 21rh/ szhf (1 — kT)dr (4.128)
= 7h Z Ty + 2mwh Z T B(t — kT) (4.129)
k=n—L+1

-1
= O, +27h Z xxB(t — kT) + 2whz, B(t — nT)Y4.130)
k=n—L+1

where
6 =mh Y zx  modulo 2w (4.131)

is the accumulated phase state. During theinterval [nT, (n + 1)T], the excess
phase depends on the data symbol z,, the L — 1 previous data symbals,
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{Zn—-1,Zn—-2,...,Zn—r+1}, and the accumulated phase state 6,. The Sate of
the CPM signd at time ¢t = nT, is defined by the L-tuple

Sn = (em In-1,Tn-2,..- ,-Tn—L+1) (4132)

Since the vector (z,_1, n—2,--.,Zn-r+1) Can take on ML~1 vaues, the
number of states equals ML~ times the number of values that 6, can take on.

The modulation index is often restricted to be arationa number, h = m/p,
where m and p are integers that have no common factors. This constraint
ensures that the number of phase states is finite which required for the imple-
mentation of some types of CPM receivers. If m is even, then

0, ¢ {0, mm 2rm u«_@} (4.133)
D D D
while if m is odd
9, c {0, LUCRE LU C 1)7"”} . (4.134)
p’ P p

Hence, there are p phase states for even m, while there are 2p phase states for
odd m. In conclusion, the number of CPM dtates is

| pMEY, m even
S = { 2pME-1 | m odd (4.135)
For example, if h =1/4, M = 4,and L = 2, then
T T 3r 57 3w Tm
- =, — —_ =, — 4.136
0n€{0,4,2,4,ﬂ',4,2,4} ( )

and the number of States is 32.

CPM signals cannot be described in terms of a signal-space diagram, like
QAM and PSK. However, the CPM signal can be described in terms of the
trgjectories from one phase state to another. Figs. 4.22 and 4.21 show the phase
date diagrams for MSK and binary CPM with & = 1/4, repectively. Since
binary modulation is used, the phase trgjectories are only alowed to adjacent
phase states as shown by the dotted lines in the figures.

81 GAUSSANMINIMUM SHIFT KEYING (GM SK)

It will be shown in Section 9. that MSK has al the desirable attributes for
mobile radio systems, except for a compact psd. This can be aleviated by
low-pass filtering the modulating signal

o0 [o¢]

z(t) = Z zphs(t —nT) = —2—1? Z zpup(t — nT) (4.137)

n=-—0co n=—oo
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Figure 4.21.  Phase state diagram for binary CPM signals with h = 1/4.

Figure 4.22.  Phase state diagram for MSK signals.

x(t) glt) FM s(t)
(1) Modulator

— =

Figure 4.23.  Pre-modulation filtered MSK. The modulating signal is low-pass filtered to re-
move the high frequency components prior to modulation.

prior to modulation, as shown in Fig. 4.23. Such filtering removes the higher
frequency components in x(t) and results in a more compact psd.

GMSK is a special type of partial response CPM that uses a low-pass pre-
modulation filter having the transfer function

2
H(f) = exp {_ (£) 1“72} (4.138)
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where B is the 3 dB bandwidth of the filter. It is apparent that H(f) is
bell shaped about f = 0, hence the name Gaussian MSK. Transmitting the
rectangular pulse

1 1
ﬁrect(t/T) = ﬁuT(t +T/2)

through this filter yields the frequency shaping pulse

hp(t) = \/T ;;T:;f exp {—Z—H(l—i?ﬁ} dz
T or [Q (f/T—;Ll_/?) Q(t—”—;ﬂ)] (4.139)
where
Qo) = /:o \/12_7re_z2dz (4.140)
o’ = Erz‘l(n;—T)?' (4.141)

It is not difficult to show that the total pulse areais [ h¢(t)dt = 1/2 and,
therefore, the total contribution to the excess phase for each data symbol is
+7/2.

The excess phase change over the time interval from —T'/2to T'/2is

oo

$(T/2) — $(~T/2) = 7zofo(T) +7 Y. TnfBn(T) (4.142)

n=—oc0

nF#0

where

T/2-nT

Bn(T) =/ he(7)dr . (4.143)
~T/2-nT

The first term in (4.142) is the desired term, and the second term is the inter-

symbol interference (1Sl) introduced by the premodulation filter.

Fig. 4.24 plots a GMSK frequency shaping pulse (truncated to 5T and time
shifted by 2.5T) for various normalized filter bandwidths BT. Because the
frequency shaping pulse has a duration greater than T, ISl is introduced. As
BT decreases, the ISl increases. Thus, while a smaller value of BT results in
a more compact power density spectrum, the induced ISl will degrade the bit
error rate performance. This leads to a tradeoff in the choice of BT. Some
studies have indicated that BT = 0.25 provides a good tradeoff for mobile
radio systems [239].
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08 BT =0.25
BT =0.3
06 | /4
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i
0.0 [
02 L— . . — |
0.0 1.0 2.0 3.0 4.0 5.0
delay, #/T

Figure 4.24. GMSK frequency shaping pulse for various normalized filter bandwidths BT

82 LINEARIZED GMX (LGMK)

GMSK is anot linear modulation scheme. A linearized GMSK (LGM SK)
signal is useful because it smplifies signa generation, receiver algorithms, and
performance analysis. Here we derive a smple and accurate linear approxi-
mation to GMSK in the discrete-time domain, from which a continuous time
GMSK signal can be generated with a D/A converter.

The GMSK phase shaping function is the integra of the frequency shaping
function as defined in (4.102). Using integration by parts we can show that

Alt) = % (G (%4‘%) —G(%—%)) (4.144)
where
G(z) = Q (%) + \/%6_2% (4.145)

Since the phase shaping pulse 3(¢) is strictly non-causal, it must be approx-
imated in practice by using a truncated and time shifted verson. Here we
consider the time shifted pulse

Bt)=pE-T) . (4.146)
The phase shaping pulse 3(t) is shown in Fig. 4.25.
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Figure 4.25. LGMSK phase shaping pulse for BT = 0.3.

Suppose that the data symbol sequence [z} is differentially encoded to
yield the sequence
Yn = TnZn-1 T € {—1,+1} (4.147)

The sequence {yn} is then applied to the GMSK modulator to produce the
complex envelope

5(t) = exp {—jw z e B(t — kT)} . (4.148)
k=0
Now observe from Fig. 4.26 that 4(t) ~ 0,¢ < 0 and 3(t) ~ 3,t > 2T. We
now sample the complex envelope with a sample spacing of J/T to give

§(nT +mT/J)

2

exp {j i yeB((n ~ k)T + mT/J)}

k=0

= TIpZ3jyk - exp {j Y wBl(n-KT+ mT/J)}

k=n—1
= 5" Yotn-2 - exp {(¥n—29n-1B(T + mT/J)
+ yn—lyn:é(mT/J)}
= " yoyn—2 [Cos(yn—2yn—1B(T + mT/J)) (cont’d)
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+ jSin(yn—Qyn—IB(T + mT/J))]
x (o8 (yn—14nf(mT /1))
+ 8in(Yn-19nB(mT/ )] (4.149)

By using the fact that cos(x) is even function and sin(x) is odd function, and
Yn-1Yn € {—1,+1}, the cosine and sine terms can be rewritten as

5(nT +mT/J) = " lyoyn—o [cos(,@(T +mT/J))
+j8n_28n_18in(B(T + mT/J) )]
x [cos(BIMT/ 7)) + jsn-15n sin(B(mT/ ]))]

(4.150)
Since y2 = 1, the sampled signal reduces to

ST +mT/T) ~ " lyoyn_s [cos(B(T +mT/J)) cos(B(mT/J))
+JYn—1Yn COS(B(T + mT/J)) Sin(,@(TAn,T/J))
+JYn—2Yn—18in(B(T + mT/J)) cos(B(mT/ J))
+5%5n-28n SIN(B(T +mT/J)) sin(B(mT/.J))]
= " eos(B(T +mT/J)) cos(B(mT/J))yn—2
+5™ [cos(B(T +mT/J)) sin(B(mT/J))yn—29n- 19
+sin(B(T + mT/J)) cos(B(mT/J))yn]
+5" L sin(B(T + mT/J)) sin(B(mT/J))yn
(4.151)

Finally, we can eliminate the nonlinear terms, since they are much smaller than
the others. This leads to the LGMSK complex envelope

S(nT+mT/J) =~ 3" 1cos(B(T + mT/J)) cos(B(mT/J))yn—2
+5" sin(B(T + mT/J)) cos(B(mT/J))yn—1
+5™+ sin(B(T + mT/J)) sin(B(mT/ J))yn

(4.152)
The sampled LGM SK shaping pul se can now be obtained from the approximate
sampled complex envelope in (4.152). Assuming that J = 8we have the
following:

~ N

( sin(B(T + mT/8))sin(B(T + mT/8)),
) m= 0,...,7
hy(mT/8) = sin(B(T + (m — 8)T/8)) COS(ﬁ('r(nm:—sg??"‘/i)B),
cos(B(T + (m — 16)T/8)) cos(B((m — 16)T/8)),
L m=16,...,24

(4.153)
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h©

T

Figure 4.26. LGMSK shaping pulse for BT = 0.3.

Fig. 4.26 plots the interpolated LGMSK pulse, h,(t). Just asMSK isequivalent
to OQPSK with ahalf-sinusoid shaping pulse, LGMSK is equivalent to OQPSK
with the shaping pulse hy(t).

83 TAMED FREQUENCY MODULATION (TFM)

Tamed fregquency modulation (TFM) is a specid type of partia response
binary CPM that was introduced by Jager and Dekker [80]. To define TFM
signals, recall that the excess phase for MSK obeys the difference equation

™

¢(nT +T) — ¢(nT) = Tny - (4.154)

For TFM, the excess phase trgjectory is smoothed by using the partial response
condition
_ _ T ({Zp-1 Tn | Tntl

HnT +T) — GnT) = 7 ( oLy Tny el ) . (4.155)
The maximum excess phase change over any bit interval is equal to /2. To
complete the definition of the TFM signal, an appropriate premodulation filter
must be defined. If the premodulation filter has impulse response h¢(t), then
the excess phase can be written as ‘

o(t) = > zeB(t — kT) (4.156)

k=0
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where :

B(t) = 2rh / hy(t)dt . (4.157)
The excess phase change over thetimeinterval [nT, (n + 1)T}is

d(nT +T) — ¢(nT) = 2rh i zx (B(nT + T — kT) — B(nT — kT))

k=—o00
= 2rh i Tn_e (BT +T) — B(ET)) . (4.158)
£=—00

Expanding (4.155) in more detail gives

HnT + 1)~ pnT) = = ( Az 04 2
+%" + $"4+1 + gz 0+ .. ) . (4.159)
Comparing (4.158) and (4.159) gives the condition
W o =1
BUT +T)—-BUT) = 5 , £=0 : (4.160)
0 , otherwise
From the definition of 8(t) in (4.157) the above equation leads to
(e+1)T _é—h‘ , [f=1
/ he(ydt={ & | e=0 . (4.161)
&r 0 , otherwise

Oneway of obtaining h¢(t) isto useapulse hy (t) that satisfies Nyquist’' s third
criterion [248, 259

e war={ L s £=0 4.162
t)dt = ’ .
/(2e-1)T/2 ~(t) { 0, £¢+#0 ( )

and generate hy(t) by using scaing and delay operations through the filter
shown in Fig. 4.27. Thetransfer function of this filter is

1 . 1 1 .
- = pmimfT | - - j2nfT
5(f) 16h° ETRETT
1
= Ecos2(7rfT) : (4.163)

The overall pulse hg(t) has the form
He(f) = Hn(f)S(f)

= HN(f)i cos®(nfT) . (4.164)
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Figure 4.27.  Filter to generate a TFM frequency shaping pulse.

The filter Sf) ensures that the phase constraint in (4.155) is satisfied.
However, Hn(f) determines the shape of the phase tragjectories and, hence,
can influence the TFM power density spectrum. In general, Hy(f) has the

o Hy(f) = —2L_ny(p) (4.165)
NI sin(rfT) ! '

where Ny(f) is the Fourier transform of a pulse that satisfies Nyquist's first
criterion [248, 259]. One example is the raised cosine pulse | H,(f)|? defined
in (4.47). Condder, for example, the ideal Nyquist pulse (raised cosine pulse
with 8 = 0)

1 < <1/2T
win={3 : EEY
Using (4.164)+4.166) gives
1 T
He(f) = 4—};5%}:7,3 cos*(nfT) . (4.167)

The corresponding frequency shaping pulse whhy(t) is plotted in Fig. 4.28.
Note the close similarity to the GMSK pulsein Fig. 4.24.
Generalized tamed frequency modulation (GTFM) is an extenson of
TFM where the phase difference has the form
™

¢i(nT + T) — ¢i(nT) 5

The congtants a and b satisfy the condition 2a + 6 = 1 S0 that the maximum
changein ¢;(t) during one symbol period is restricted to +# /2. A large class
of sgnals can be constructed by varying the value of b and by varying the pulse
response 3(t). TFM is a specia case of GTFM where b = 0.5.

(azp-1+ bz + azpy1) - (4.168)
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Figure 4.28.  TFM frequency shaping pulse.

9. POWER SPECTRAL DENSTIES OF DIGITALLY
MODULATED SIGNALS

A digitally modulated band-pass signd can be written in the generic form
s(t) = Re {g(t)ej(27rfct+eo)}

_ %{g(t)ej(%rfct-f—f)o)+§*(t)e_j(2"fct+0")} (4.169)

where 6, is a random phase uniformly distributed over (—=,x). Modulated
signals are not wide sense stationary, but belong to aclass of random processes
that are cyclostationary. The autocorrelation function of s(t) is

¢ss(7) = E[s(t + 7)s(t)]

+ 5(t + 7)F* ()T + 57 (8 + T)g*(t)e—f(4’ffct+2"fcf+2"o>] :
(4.170)
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To proceed further, we note that
E0 [eij(47rf¢t+27rfc7‘+200)] — 0 (4171)

where Eg,[ - | denotes the ensemble average over the random carrier phase.
Using this result,

¢ss(7) = %fbag(r)eﬂ’ffcf + %dfgg(r)e‘ﬂ”f” : 4.172)
Finaly, the power density spectrum is the Fourier transform of ¢4(7),1.€,
1
Sss(f) = 5 [Szs(f — fo) + S(—F = £o)] (4.173)

where Ss;(f) is the power density spectrum of the complex envelope 3(t).
Observe that Ss;(f) is red, even though 3(¢) and ¢;;(7) are complex; this
property follows from the fact that ¢s5(7) = ¢%;(—7)as shown in Appendix A.
Therefore, .

Sss(f) = 5 [Séé(f - fc) + S§§(—f - fc)] . (4-174)
From the above expression, it is apparent that the psd of the band-pass waveform
S(t) is completely determined by the psd of its complex envelope §(t).

91 PSD OF A COMPLEX ENVELOPE

We have seen that the complex envelope of any digitaly modulated sgnd
can be expressed in the standard form

Azb —nT,xy,) . (4.175)
The autocorrelation of (t) is
psslt+7,1) = SE[3(+7)3(0)] (4.176)
= é;: S-S TEb(E + 7 — T, xi)b* (t — kT, x)] -
Observe that 5(t) is acycl ostlati oknary random process, meaning that the auto-

correlation function ¢s3(t + 7,¢) is periodic in t with period T. To see this
property, first note that

st + T+ 7,t+T)
2
= A_ZZEU’(H'T'*‘T—iTaxi)b*(t+T—kT,xk)]

= ——ZZE t+7‘—i’T,in_{_l)b*(t—le,xkl_H)] .
,LI I

@.177)
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Under the assumption that the information sequence is a stationary random
process we can write

bss(t + T+ 7,t+T) = —EZE [b(t + 7 — 9'T, %3 )b*(t — k'T, x4s)]
’L’ I

= ¢s(t+T1,t) . (4.178)

Therefore 3(t) is cyclostationary.
Since 3(t) iscyclostationary, the autocorrelation ¢33(7) can be obtained by
taking the time average of ¢s3(t + 7, t), given by

$35(T) < ¢zt +7,t) >
A? 1 (T
- _ZZT/ Eb(t + 7 — 1T, x:)b"(t — kT, xx)] dt

_ 22/ CEb(z 47 — (i — K)T, x0)b" (2,%2)] dz

A2 ~kT+T
= XS [ BB T = mT X ( x0)] d2
m ok
A2 ~kT+T
= ﬁZZ/kT E[b(Z+T—mT,xm)b*(z,x0)] dz
m kY

A? o0
= 97 Z/ E(b(z + 7 — mT,x,)b*(2,%x0)] dz . (4.179)

where ( - ) denotes time averaging and the second last equality used the station-
ary property of the data sequence {zx}. The psd of 5(t) is obtained by taking
the Fourier transform of ¢s3(7)3,

2 foe) o0 .
S§~(f) = E [;_T Z/ / b(z +7 - mT, )(:,vn)b}.l (Z, xo)dze_]z"rf'rd.r
m Y —Oo0J—00
A2 o0 )
/ b*(z,x )eﬂ"fzdze_ﬂ"f"‘T]

= |: Z/ e j27rfT’dTI

X / b*(z,xo)eJZ”f’dze_jz"fmT] (cont’d)
—00

*Note that expectation and integration are linear operations and their order can be exchanged.



Modulated Sgnals and Their Power Spectra 201
A2 —j2x fmT
= 2—T;E[B(f,xm)B (f;x0)]e™ (4.180)

where B(f,x,,) is the Fourier transform of b(¢,x,,). To express the power
density spectrum in amore convenient form, let

Spm(f) = %E [B(f,xm)B*(f,%0)] - (4.181)

Then \
Sss(f) = A? > Spml(f)em 2 imT (4.182)

Note that the psd in (4.182) depends on the correlation properties of the
information sequence x,, and the form of the equivalent pulse shaping function
b(t,xm). Now suppose that the data characteristics are such that x,, and xg
are independent for |m| > K. Then

Spm(f) = Spk(f), Im| 2 K (4.183)
where
Six(f) = FEBU BB (fx)]  Jml > K
= E[BU,x)BIB*(fx0)]  Iml > K
= SEBUX)  (ml 2K (@184
It follows that
Sss(f) = S&(f) + S&(f) (4.185)
where
A? .
Ss:(f) = T > (Somlf) = Sox(f)) e 2 ImT
[m|<K
A? )
S5(f) = FShx(f) Y e PHmT (4.186)

Theterms S¢;(f) and S&(f) represent the continuous and discrete portions of
the psd. Thefact that Sﬁ-( f) represents the discrete portion, can be ssen more

8§

clearly by using the identity

T Ze—ijfmT = Z § (f - %) (4.187)
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to write )
S&(f) = (%) Sb,K(f)Zn:J (f - %) . (4.188)

Finally, by using the property Si _(f) = S,;‘,m( f),the continuous portion of
the psd can be written as
A2
S5(f) = (Sb o(f) = Sb,x(f))

A2K

+ > {(Sb,m(f) = Sy, k(f)) eI ImT

m=1

+ (S5 = S () &2/}
= A? (Sb o(f) - Sb,K(f))

A2 it ,
+72Re { Y (Som(f) = Sbx(f)) €727 '"T} (4.189)

m=1
Note that the ensemble average and Fourier transform are interchangeable
linear operators. Therefore, if the complex envelope §3(¢) has zero mean, i.e,
E(b(t, x0)] = 0, then E[B(f,xq)] = 0. Under this condition

Sei (f) = %lE[B(f,xo)]IQ =0 . (4.190)

Hence, if b(t, xo) has zero mean, then S;;(f) contains no discrete components
and S;z3(f) = S5 (f). Conversely, if b(t, xq) has nonzero mean, then S;;(f)
will contain dlscrete components.

Alternative Method. An aternative method of computing the psd is as fol-
lows. From the first line in (4.180)

2 %0 oo |
Sss(f) = E [A— Z/ / b(z + 7 — mT, x)b* (2, %0 )dze 127 dr

= Z/ / b(7', xm )b (2, %0)]

x eI =2) 4y e=32m fmT (4.191)
Therefore, Sp,m (f) is given by the double Fourier transform
Som(f) = / / Gom (T, 2)e 1T =D gzdr! (4.192)
—00 J —00

where )
Ppm (T 2) = 5B [b(7', xm)b*(2,%0)] . (4.193)
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Uncorreated Source Symbols.  Supposethat b(t, x,,, ) depends on one sym-
bol only

b(t, Xm) = b(t, Zm) (4.194)
and that the data symbols z,, are independent. Then
1
Snolf) = FE[IB(a0)f] (4.195)
Sm() = FEBEIE  mlz1. @19
Hence, S53(f) isgiven by (4.185) where
S&(f) = Sm Zé<f——> (4.197)
AQ
S5() = T (Sealf) = Snalf) - (4.198)

Once again, if b(t, zy,) has zero mean, then S, 1 (f) = 0 (no discrete spectral
components) and
A2
Ss(f) = -—-Sb()(f) . (4.199)

Linear Full Response Modulation. Consider linear full response modula
tion schemes where b(t,x,) = zpho(t) and B(f,x,) = zoHa(f). From
(4.181)

Son(f) = paz(m) |Ha(f)|? (4.200)
where
Hence, from (4.182) the psd of the complex envelope is
A2
Sss(f) = IH (F)? Sza(f) (4.202)
where ‘
(f) = dae(m)e 72m/mT (4.203)

Note that the psd is the product of two components, one depends on the
amplitude shaping function and the other depends on the correlation of the data
sequence. With uncorrelated data symbols

Seolf) = SEllsl?|Ha(f)P (4.204)

1
Sem(f) = 5 luel | Ha(N)I*, |l 21 . (4.205)
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where py = E[zy,). The psd Ss:(f) is then given by (4.185), (4.197), and
(4.198). If py = 0,then Sp1(f) =0and
A2

Sss(f) = oz (Ha(H)I’ (4.206)

where o2 = JE[|z¢|?].

Linear Partial Response Modulation. Consider linear partial response mod-
ulation schemes where h,(t) has duration LT. Following the development in
Section 8. the equivalent shaping function has the form

b(ta xm) = bhq (ta xm)

L-1
= > Tm-khax(t) (4.207)
k=0
where
ha(t) = ho(t + ET)Up(t) (4.208)
Taking the Fourier transform gives
L-1
B(f,%m) = Y tm-kHon(f) - (4.209)
k=0
From (4.181),
1 L-1 L-1
Som(f) = ZE > wm-kHak(f) D 2% Hy o f)
k=0 =0
L—lL—l1
= Y Stw(m—k+OHuk(f)H;o(f) . (4210)
k=0 1=0 2

For the specid case of uncorrelated zero-mean datasymbols, ¢, (m—k+£) =
o28(m — k + £). Hence,
L-1
Som(f) = 02 Homre(f)Hyo(f) (4.211)
=0
where

1
oz = 5Ellzol’] .
Example 4.4 Duobinary Signaling For duobinary signaling, L = 2 and
hao(t) = ha(t) = Sa(rt/T) and Hao(f) = Ha(f) = Trect(fT), where

_ [T, IfI<1/eT)
rect(fT) = { 0, elsewhere
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With uncorrelated zero-mean data symbols

1
Som(f) = 3B [(a5Hao(f) + 221 Hoy(D) @nHao(f) + 2mor Han(F))]
202T%rect(fT) , m=0
= { o2T?rect(fT) , |m|=1
0 , otherwise

and from (4.182)
Ss3(f) = 4A*To? cos?(m f T)rect(fT) . (4.212)

Example 4.5 Modified Ducbinary Signaling
For modified duobinary signaling, L = 3and hq0(t) = he2(t) = Sa(nt/T)
and h,,1(t) = 0. With uncorrelated zero-mean data symbols,

~02T%rect(fT) , |m|=2
0 , otherwise

202T%rect(fT) , m=0
Sb,m(f) = {

and from (4.182)
Sss(f) = 4A%To? sin® (27 fT)rect(fT) .

92 PSD OF QAM

The psd of QAM with uncorrelated zero-mean data symbols is given by
(4.206). If ho(t) = ur(t), then

Sis(f) = A2To? (%)2 (4.213)

To fairly compare bandwidth efficiencies with different M, the frequency
variable should be normalized by the bit interval 7. For M-ary signaing
T = Tylogy, M. Hence,

sin 7 T}, log, M) 2

4.
7w fTylogy M (4.214)

Ss3(f) = A*To? (

With root raised cosine pulse shaping, |H.(f)|? = P(f) has the form
defined in (4.47) with he(t) in (4.49). The root raised cosine pulse is non-
causa. When the pulse is implemented as a digital FIR filter, it must be
truncated to afinite length 7. This truncation produces the new pulse } he(t) =
hq(t) rect(t/7). The Fourier transform of the truncated pulse hq () is Hy (f) =
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T=4T
- T=6T
T=8T

— no truncation

S,() (dB)

-100

0.0 0.5 1.0 1.5 20
Frequency, fT

Figure 4.29. Psd of QAM with a truncated square root raised cosine pulse with various
truncation lengths; 3 = 0.5. Pulse truncation leads to side lobe regeneration.

H,(f)=7Sa(fr), where * denotes the operation of convolution taken over the
frequency variable f. The psd of QAM with the pulse h4(t) can again be
obtained from (4.206) by simply replacing H,(f)with H,(f). As shown
in Fig. 4.29, pulse truncation can lead to significant side lobe regeneration.
Again, tofairly compare bandwidth efficiencies with different M, the frequency
variable should be normalized by the bit interval 7. The has the effect of
dividing the elements on the horizontal axis in Fig. 4.29 by afactor of log, M.

93 PSD OF PXK

For PSK signals with the uncorrelated data symbols and the equivalent
shaping function in (4.60), the psd is given by (4.206) with o2 = 1/2. Hence,
PSK signals have the same psd as QAM signals. The psd with rectangular and
root raised cosine pulse shaping is given by (4.213) and (4.214), respectively.
Again, to fairly compare bandwidth efficiencies with different M, the frequency
variable must be normalized by the bit interval Ty.

94  PSD OF OQPSK
For OQPSK, the equivalent shaping function is

b(t,xp) = b(t, zn) = 1 nhe(t) + jTonhe(t — T/2) (4.215)
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wherez , 39 n € {—1/v2,+1/v/2}. It follows that
B(f, %) = (810 + jzgue 712} Hy(f) (4.216)
With uncorrelated data symbols,
1
Seo(f) = QE[,B(f,zo)P]
1
= §lHa(f)l2 (4.217)
Therefore,

2
S5s(f) = gl Hal )

Hence, OQPSK has the same power density spectrum as QPSK.

(4.218)

95  PSD OF 7/4-DQPSK

To find the power density spectrum of 7/4-DQPSK we first compute the
autocorrelation

1
(]Sb,m('r',z) = iE [b(T’,xm)b*(z,xo)] . (4.219)
Form > 0,
! 1 !/ . i
Gom(t'y2) = EE |:ha(7' ) exp {]% Z mn} ha(z)]
n=1
1 I ,
= §E [exp {]Z nzzjlme ha(7)he(2)
= 0. (4.220)
Form =0,
/ 1 ' . .
$om(7,2) = IE [ha(T ) exp {J%ﬂio} ha(z) exp {“]%930”
= Shalr)hals) - (4.221)
Taking the double Fourier transform gives
Spo(f) = /oo /°° Pom (T, 2)e I3 =2) dadr!
1
= 5 H(D (4.222)
Finally, the psd is
A? 2
Sis(f) = Z7 | Hal£) (4.223)

Just like OQPSK, m/4-DQPSK has the same power density spectrum as QPSK.
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96 PSD OF OFDM

The psd of an OFDM signal can be obtained by treating OFDM as in-
dependent modulation on N sub-carriers that are separated in frequency by
UT. Ignoring the guard interval the data symbol period on each sub-carrier
is T = NTs, where Ty is the serial source data symbol period. Suppose the
data symbols that are modulating each sub-carrier have zero mean and variance
0% = 2E[|zkn|?]. Tokeep the 1/T-spaced sub-carriers orthogonal in time, the
amplitude shaping function A, (¢) must be the rectangular pulse hq(t) = ur(t).
However, if a loss of sub-channel orthogonality can be tolerated, then other
types of amplitude shaping pulses can be used, such as the root raised cosine
pulse. Assuming that the amplitude shaping pulse is (%), the psd of the

OFDM complex envelope is
1 N -1
iu(f-p(4=57))

Consider the rectangular amplitude shaping pulse h.(t) = wup(t) with
Fourier transform H,(f) = Sa(n fT). The corresponding OFDM psd is shown
in Figs. 4.30 and 4.31 for block sizes of N = 4and N = 32, respectively. As
the block size N is increased, the psd becomes flat in the N/T = 1/T; band-
width containing containing the sub-carriers, while the side lobes decrease. In
fact, in the limit as TV becomes very large, the sidelobes diminish to zero and
the complex envelope of the OFDM signal occupies the band

2

N-1
Ss3(f) = A’Ta? kz (4.224)
=0

< N 1
lfl = o =

(2T) — 2T,

This is the minimum possible bandwidth required for transmitting data sym-
bols at a rate of 1/T, symbols per second without intersymbol interference
(1S1). It can be achieved by transmitting the serial source data symbols using
single carrier modulation and the amplitude shaping pulse k4 (t) = Sa(nt/Ts).
However, as mentioned earlier, the transmission of data symbols with such a
high baud rate will suffer from channel induced ISl and require equalization at
the recelver.

For smaller values of N, improvement in the psd can be obtained by using
aroot raised cosine pulse shaping on each of the sub-carriers. Fig. 4.32 shows
the effect of using such pulse shaping, which can be compared directly with
Fig. 4.30. However, we repeat that the use of root raised cosine pulse shaping
will destroy the sub-carrier orthogonality. As shown in Chapter 5 the cost is a
floor in the bit error rate performance.

Finaly, it is interesting to examine the OFDM power spectrum, when the
discrete-time IFFT modulator is used. After D/A conversion, the complex time
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Figure 4.30.  Psd of OFDM with N = 4.
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Figure 4.32. Psd of OFDM with N = 4 and truncated square root raised cosine pulse shaping;
B8 = 0.25.

domain waveform that is transmitted on the kth sub-carrier is

§5x(t) = Azphai(t) (4.225)
where
N-1 )
ha(t) = Y 7™k Tosine(t/T, — n) (4.226)
n=0

and fr = k/NTs. It follows that the psd for the kth sub-carrier is

X A2 2 2
Ser(f) = Zroz [Ha( ) - (4.227)

Taking the Fourier transform of Ao (t) gives

Halc(f) =T;rect (*f‘) Sin(ﬂ'(f _ fk)NTS) e'j”(f_flc)(N—l)Ts

Ts) sin(n(f — fi)Ts)
_ £\ sin(m(NfTy — k) —jn(5— =) (N-1)T,
=Trect (E) Snlr (FTs k/N))e i ) (4.228)

The power spectrum for the kth subcarrier is

in(m s — 2
Skk(f) = A*Torect (i) 1—\,1—2 C:n ((W ((fj\g d - /]’?)))> (4.229)

T
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Figure 4.33.  Psd of OFDM with implemented with IFFT algorithm.

Since the data symbols on the subcarriers are independent, we canjust add their
psds together to yield the overal psd

f\ 1 X/ sin(r(NfT, — k)

2
) (4.230)

Sss(f) = A*To2rect <1—,s> sin(n(fTs — k/N))

which is plotted in Fig. 4.33. Note that the psd has the ideal rectangular form
rect(fT).

Finaly, the above results were obtained by using an ided reconstruction
filter in the D/A converter. This leads to a non-causal amplitude shaping pulse
hqa(t) shownin Fig. 4.15. Any practical implementation will truncate this pulse
in thetime domain. Thisin turn will lead to spectral sidelobes outside the band
|f] < 1/2T..

9.7 PSD OF FULL RESPONSE CPM

Recall that the equivalent shaping function for CPM is given by (4.105). To
compute the psd, we define the auxiliary function

r(t, zx) £ PO yp(t) (4.231)

and caculate its mean and autocorrelation function. If M-ary signaling is used
with the values of x, defined by

zxe{2m-1-M:m=1,2, -+, M} . (4.232)
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then

mp(t) = E[r(t k)]
LS~ i )
- el 2i—1-M)p(t
i ; Jug(t)
= sinf(B(t))ur(t) . (4.233)
where sinf(x) is defined by
. A sinMz
sinf(z) = Monz (4.234)
Also
Brnlt, 1) = 5B [r(t, 2} (1 20)] (4.235)
Evaluating the above expression for m = 0 gives the following result which
will be used later
¢ro(t,t') = =E[r(t,zo)r*(t, z0)]

E {ejzoﬁ(t)e—jroﬁ(t')} wr(t)ur(t')

E [ej(zoﬁ(t)—“ﬂ(tl))} ur (t)ur(t)

DN k= DO = DO = NI —
e,
=
-

( ,B(t)—ﬁ(t')> ur(@ur(t) . (4.236)

Toevauatethepsd, itisnecessary tocomputetheautocorrelation of b(z, x,,, ).

This can be done as follows

¢b,m(ta tl)

=E [b(t,%xm)b"(t', x0)]
exp{ Z .Z‘k} (t, zm r*(t/,xo)]
[ /m—1

H (T, 1k)> r(t,xm)r*(t',xo)}

(H (T, lk) (t, zm)r(T, ﬂio)T*(t’,.’IIo)]

(4.237)

Now suppose that the data sequence is uncorrelated. Then for m > 0
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bomltst) = 3T e (O T, )
= A" [sint(0)] [sint (B(T) — B())] ur(tur(?)
(4.238)
where we have used (4.236). Likewise, for m =0
oot t') = %E[b(t,xo)b*(t',xo)]
= %E [ j(zoﬂ(t)—jmoﬁ(t’))} up(t)ur(t)
= %sinf (ﬁ(t) - ﬁ(t')) up(t)ur(t')
= ¢rolt,t) - (4.239)

Finally, the psd is obtained by using (4.238) and (4.239) along with (4.182) and
(4.192).

Alternative Method. There is an alternate method for obtaining the psd that
provides more insight. Similar to the way that (4.189) was derived, we use
(4.182) along with the property Sy, _..(f) = Sy, (f)to obtain

2

Sii(f) = = (sb,o(f)+2Re{§j sb,m<f>e-j2ffmT}> @20

m=1

Taking the double Fourier transforms of (4.238) and (4.239) gives

_ Sr,O(f) m =10
Shanlf) = { mp DM (DM om0 @

m™ Y T) = sinf™1B(7T)
M (f) = Flm.(t)] = Flsinff(t)ur(t)]
W) = SR a0)R(f,a0)] = 5B [ TR (f,20)]
F|[ -] denotes the Fourier transform and
R*(f,0) = Flr*(t,20)] = F [e 7™ Dug(t)] . (4.242)

Then,
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A? N
Ss(f) = T (Sr,o + 2Re{M (FIM(f)
x i m —j27rfmT}>
A2m=1 A
= ? (SrO +2Re{ r(f)Mr*(f)
% i[ 6 ]27rfT] —]27rfT}) .
n=0
(4.243)
Observe that
lr(t,zk)| = ejz’“ﬂ(t)uT(t)\ =1 (4.244)
90 that
]mT(T)e—ﬂ”fT} = |m.(T)| <1 . (4.245)

The implication of equation (4.245) is that two separate cases must be consid-
ered when evaluating the psd.

Cae L. |m,.(T)| < 1. Inthiscasethe sumin (4.243) converges s that

_ A M, (f)M;(f)
Ss:(f) = T (Sr,o(f) + 2Re {exp 2n T} — mn (1) }) . (4.246)

and the psd has no discrete components.
Cae 2 |m.(T)| = 1. Thiscaseispossibleonly if

Im. (T)| = |E [e724A(T)] | 1. (4.247)
For this condition to be true we must have

o8 = ey (4.248)

where c is a constant. However, B(T) = 2nk;T 0 that zx3(T) = 2nk;T
mod(2x) for al zx. Then r(T, zo) = exp {j27rET} is a constant o that

my(T) = E[r(T, zo)] = e727%sT (4.249)

and .
M (f) = My (f)e’®™T (4.250)
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Hence, thepsd is

Sgs(f):f;:E <S7‘,0(f) + ‘Mr(f)|22Re{ i ej27r(f—E)mT}>

m=1

2
= 2 (Seal) = 1M + 1M ()P
x i e—J'Qr(f—E)mT>
2 S o
=& (sr,om MO+ MR S o (1T ;))
2
=2 (Srolh) - (D)

+ <%>2m§w}Mr(E]+n/T)fa (f ~ Ry - %) :

(4.251)

Clearly, the second term in the above expression is a discrete spectral compo-
nent. Findly, if z, assumes the values defined in (4.232), then

zk2mksT = 2rkfT  mod (2m) . (4.252)
However, h = 3(T)/n = 2k;T. Therefore,
zxhr = hr  mod (27) . (4.253)

Hence, h must be an integer for there to be a discrete spectra component.

971 PSD OF CPFX

Suppose that h is anon-integer o that the psd has no discrete components.
Then

T | .
R(f,mo) — /0 e]?ﬂ'kftﬂ?o . e—]ertdt

= Te I"U=20k)T Sy (n(f — kyzo)T) (4.254)

where
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Mr(f) = E[R(f,.’L’())]
_ T % T (f~(@m—1-M)kg)T
Mm:l
xSa(r (f — (2m — 1 -~ M)k;) T) (4.255)
1
Srolf) = FB[IR(,20)P]
T2 M
= Hr(f-@m—-1-Mk;)T) . (4.256)
m=1
Also,
MT* %i Jr(f+(2m-1-M)k )T
xSa(m (f — (2m — 1 — M)kf) T) (4.257)

These expressions are used in (4.246) to obtain the psd. If h is an integer, then
the psd will have a discrete component and

M
M (f) = eI gin(rfT) 3 e I7U=(m=1o0k)T - (405g)

M m=1
This expression can be used in (4.250) to obtain the psd.

If abinary modulation (M = 2) isused, the above expressions simplify even
more. For the case when h is not an integer

O.0(f) = TT2{Sa2(7r(f—kf)T)+Sa2(7r(f+kf)T)} (4.259)
M) = G IS () + kp)T)

eIk Sa (n(f — kf)T )} (4.260)
() = 3 { @IS (w(f + kp)T)

+ eI™UHkAIT S, (n(f — kf)T)} (4.261)
m(T) = sinf(2nk;T) = sinf(hr) . (4.262)

When h is an integer

_ T2sinrfT Y 1\’
®rp(f) = 5 {(ﬂ(f_kf)T> +<7r(f+kf)T) } (4.263)
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Figure 4.34a.  Psd of binary CPFSK for various modulation indices.

. Te ™ Tging fT 1 1
Mr(f) = 2 {w(f —ks)T M n(f + kf)T} (4.264)

Figs. 4.34a and 4.34b plot the psd 4S5:(f) /AT against the frequency fT.
The psd of MSK corresponds to & = 0.5. Note that modulation indices other
than 2 = 0.5 result in a narrower main lobe than MSK, but larger sidelobes.
Fig. 4.34b demonstrates the appearance of discrete components as & — 1.

9.7.2 PSDOFMSK

An alternative method for computing the psd of MSK starts by recognizing
that MSK is equivalent to OQASK with a half-sinusoid amplitude shaping
pulse. It follows from (4.110) that the MSK baseband signal has the form

3(t) = AD_b(t —2nT, zy) (4.265)
where
b(t, zn) = zlha(t) + j22he(t = T) (4.266)

and

ha(t) = cos (%) . (4.267)
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Figure 4.34b.  Psd of binary CPFSK for various modulation indices.

The Fourier transform of (4.266) is

B(f,n) = (=1, + jaf exp {-j2nfT}) Ha(f) - (4.268)
Since the data sequence is uncorrelated, the psd can be computed from (4.195)
and (4.196). Since the data sequence has zeromean, S, 1(f) = 0. Also,

Sol) = 5B [(h)? + @9)] 1Ha()P

= E[(z))?]|Ha(f)
|Ho(f)? . (4.269)
From (4.199)
(4.270)

32A%T [ cos2nfT 12
Ssslf) = —3 [1—16f2T2J

Once again, the psd of MSK is plotted in Fig. 4.34a

98 PSD OF GMSK AND TFM

GSMK and TFM are specid cases of partial response CPM. In generd,
the psd of partial response CPM is difficult to obtain except for a rectangular
shaping function. One solution has been suggested by Garrison [131], where
the modulating pulses are approximated by using a large number of rectangular
sub-pulses with properly chosen amplitudes.
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Figure 4.35.  Psd of GMSK with various normalized filter bandwidths BT'.

Fig. 4.35 plots the psd of GMSK with various normalized filter bandwidths
BT. Note that a smaler BT results in a more compact psd. Likewise,
Fig. 4.36 plots the psd of TFM and GMSK with BT = 0.25. Observe that the
psd of TFM compares well with that of GMSK. Thisis not surprising since their
corresponding frequency shaping pulses are quite similar, comparing Figs. 4.24
and 4.28.

Finally, itisinteresting to compare the spectra characteristics of GMSK and
7 /4-DQPSK sinceboth methods are extensively used in mobile communication
systems. To make afair comparison, we must remember that GMSK transmits
1 bit/baud while 7 /4DQPSK transmits 2 bits/baud. If 7/4-DQPSK uses root
raised cosine pulse shaping, then the spectral occupancy normalized to a bit
duration is is obtained by dividing the elements on the horizontal axis of
Fig. 45 by afactor of 2. For example & f = 1/(27}) (corresponding to
fT = 1.0) the side lobes are about 44 dB down from the main lobe (f = 0)
when 7 = 6T. From Fig. 4.35, with f = 1/(2T'), amost the same roll off is
obtained. However, for larger values of f, the GMSK pulse is seen to decay
faster.
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Figure 4.36.  Psd of TFM and GMSK with BT = 0.25.

Problems
4.1. Assume that areceived signal is given by

0

y(t) = > zup(t —nT)

n=—od

where zx = +1, and p(t) is the ideal Nyquist pulse

p(t) = sinc(t/T)
P(f)y = Trect(fT) .

There are two problems associated with this pulse shape. Oneis the problem

of realizing a pulse having the rectangular spectral characteristic P(f) given

above. The other problem arises from the fact that the tails inp(t) decay as
1/t. Consequently, a sampling timing error results in an infinite series of

ISl components. Such a series is not absolutely summable and, hence, the

sum of the resulting interference does not converge.

Assumethat p(t) = O for |t} > NT, where N is a positive integer. In spite
of the restriction that the channel is band-limited, this assumption holds in
all practical communication systems.

a) Duetoadlighttiming error, thereceived Signd issampled at ¢ = kT'+t,
where 0 < to < 7. Calculate theresponsefor ¢t = kT" + to. Separate
the response into two components, the desired term and an IS term.
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b) Assume that the polarities of z; are such that every term in the ISl is
positive, i.e., worst case I1SI. Under this assumption show that the I1SI
termis

2
ISI = —sm (mto/T) X:: t2/T2 .

and, therefore, ISI = co as N — oo.

4.2. Show that 16-QAM can be represented as a superposition of two four-
phase constant envelope signas where each component is amplified sepa-
rately before summing, i.e,

s(t) = [Ap cos 2n f t + By, sin 27 f,t] + [Cy, cos 27 fot + Dy, sin 27 f 4]

where {A,}, {B,}, {Cn}, and {D, } are statistically independent binary
sequences with dements from the set {—1,+1}. Thus, show that the
resulting signal is equivalent to

s(t) = I cos 2 fot + Qp sin 27 ft
and determine I, and @, interms of A, By, Cp,and Dy,.

4.3. An important parameter for digital modulation schemes is the peak-to-
mean envelope power ratio (PMEPR), defined by

LU
PMEPR = )

where [5(t)]2,,, is the largest value of |5(¢ )2 and (|3(2)]?) is its time
average. When non-linear power amplifiers are used it is desirable to keep
the PMEPR as small as possible.

a) Plot PMEPR for m/4-DQPSK with root raised cosine pulse shaping, as
afunction of the roll-off factor 3.

b) Repeat part @) for QPSK. What conclusions can you draw?

44. Two new modulation schemes have very recently been proposed for the
UWC-136HS third generation system, called Q-O-QAM and B-O-QAM. Q-
O-QAM transmits 2 bits/symbol, while B-O-QAM transmits 1 bit/symbol.
The mapping of Q-O-QAM data bits (agx, asg+1) t0 Symbols by is as
follows: The symbols b, are used to generate the symbols z, which are
given by

Ty = brelks

For B-O-QAM the mapping of data bits a, tosymbols by is asfollows: The



222

(a2k,a2e+1) b

0,0 +3
0,1 +1
1,0 -3
1,1 -1

ar by

0 +3
1 -3

symbols ay, are also used to generate the symbols z;, which are given by
T = bkejk%

a) Plot the signal space diagram for Q-O-QAM and B-O-QAM and show
the allowable transitions between the signa points in the signa con-
stellation. Why would these modulation schemes be useful for radio
transmitters that use non-linear power amplifiers.

b) Assuming an AWGN channel and coherent detection, write down an
expression for the probability of symbol error for Q-O-QAM and B-O-
QAM in terms of the bit energy to noise ratio +y,.

45. Consider two sinusoids waveforms
s1(t) = Acos2nft
s2(t) = Acos2n(fe+ Ag)t

a Determine the minimum value of Ay such that the inner product
(s1,82) = 0 over theinterval 0 < ¢t < T'. Assume that f.T > 1.

b Repeat part @) for the two sinusoids
s1(t) = Acos(2mf.t + ¢1)
Sz(t) = ACOS(27T(fc + Af)t + ¢2)
where ¢, and ¢ are arbitrary phases.

4.6. Suppose that an OFDM system is implemented with a guard interval that
isacyclic extension of the IFFT co-efficients as shown in (4.95).
a) Show that the output of the OFDM demodulator is given by (4.93).

b) Now suppose that the guard interval simply consists of a blank interval
where nothing is transmitted. Assuming that G > L > 0 can the
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data block xo be recovered by taking an FFT of the received block
Ro = {Rox}p g ?

4.7. Consider a CPM signal that is generated by using a triangular frequency
shaping pulse shown below

h(D)
1+

4

0 ]]" T 1t
2

Figure 4.37.  Frequency Shaping Pulse

a) Find the pesk frequency deviation &, sothat B(T') = /2.

b) Sketch the phase tree and phase trellis for the binary source symbol
seguence
x = (+1,+1,+1,-1,-1,+1,—-1, -1)

48. A CPM signd is generated from a baseband signal with a half-sinusoid
shaping function.

a) If h =1/2find the peak frequency deviation from the carrier frequency.
b) Sketch the phase tree and phase trellis if the data symbol sequence is
x = {+3,-1,+1,+3,-3,+1, -1} .

49, Sketch the phase-tree, the phase trellis, and phase state diagram for partial
response CPM with 2 = 1/2and

hy(t) = uor(t) .
410. Consider apartial response CPM signal

a) Generate a shaping function of duration 3T by convolving arectangular
shaping function of duration T with a rectangular shaping function of
duration 2T.

b) Define and sketch the three segments of the shaping function, Ay . (t),
k=0,1,2.
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c) Sketch the baseband signal if the symbol sequence is
x = {+1,~-1,+1,-1,-1} .
4.11. What are the phase states and states for the following CPM signals:

a) Full response binary CPFSK with either h = 2/3 or h = 3/4.
b) Partia response L = 3 binary CPFSK with either h = 2/3 or h = 3/4.

4.12. Consider a multi-h CPM waveform with the h sequence {h1,h2} =
{1, 2} and the frequency shaping pulse hf(t) = Ur(t). In the ith signaling
interval the excess phase changes by +r/4 radians if Ay = ; is used and
by /2 radiansif Ay = 3 is used.

a) Plot the phase-trellis assuming the initial phase 8, = 0.
b) Indicate the phase trajectory for the symbol sequence
x={l,-1,-1,1,1,1,-1} .

4.13. Design a Gaussian pulse-shaping filter with BT = 0.5 for a symbol rate
of 19.2 kbps. Write expressions for and plot, i) the impulse response and
frequency response of the filter, and ii) the frequency shaping pulse h¢(t).
Repeat for the case of BT = 0.2 and BT=0.75.

4.14. Consider TFM with the frequency shaping pulse

wfT

4h sin(wfT) cos”(wT) .

Hy(f) =

Suppose that this pulse is obtained by exciting afilter A{t)with a gate
function rect( t/T ). Find and sketch the impulse response of the filterh(t).

E —327 fm1 E

4.16. Consider the case of uncorrelated data symbols.
a) Show that if the symbols are equiprobable, then

E[|B(f, xo)ﬂ — [E[B(f,20)]*

= WZZ!B frai) = B(fa)l® -

i=1 k=1
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b) Compute the value of part a) for M = 2.

4.17. Consider the complex low-pass binary modulated signal
j(t)=A Z Zpha(t — nT)

where z,, € {1, +1}. The data sequence {z.,} is correlated such that

nl

]' *
brz(n) = §E[$kmk+n] =p
Compute the power density spectrum of 3(t).

418 Suppose that a binary data sequence x,r; € {—1,+1} is correlated
such that P(z,, = z,41) = 3/4, i.e, adjacent data bits are the same with
probability 3/4 and different with probability 1/4.

a) Compute the autocorrelationfunction ¢, (m)for this data sequence.
b) Compute the power spectrum S, (f)-

4.19. Suppose that an uncorrelated binary data sequence is transmitted by
using binary PAM with a root-Gaussian amplitude shaping pulse

Ha(f) = [ATe""(fT)Q} 1/2

a) What is the transmitted power density spectrum?

b) Find the value of 70 that the power density spectrum is 20 dB below
its peak value at frequency 1/T, where T is the baud duration.

¢) What is the corresponding time domain pulse h4(t)?
4.20. Consider a system that uses a set of M = 16 bi-orthogonal signals that

are derived from the Hadamard matrix Hg in (4.76). The set of 16 signals
is constructed according to

7

5i(t) = A hihe(t — KT, k=1,...,8
k=0
= —5(), k=9,...,16

where T' = 77, is the baud period. Note that 4 bits are transmitted per
baud.

Assume an uncorrelated data sequence and assume that all 16 waveforms
are used with equa probability.

a If he(t) = ur,(t), find the psd of the transmitted complex envelope
Szs(f)-

b Plot the power spectrum S3;(f) against the normalized frequency f75,
where T, = T'/4 isthe bit duration.
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Chapter 5

DIGITAL SIGNALING
ON FLAT FADING CHANNELS

The performance of a digital modulation scheme is degraded by many
transmission impairments including fading, delay spread, Doppler spread, co-
channel and adjacent channel interference, and noise. Fading causes a very
low instantaneous received signal-to-noise ratio (SNR) or carrier-to-noise ratio
(CNR) when the channel exhibits a deep fade, delay spread causes intersymbol
interference (1S1) between the transmitted symbols, and alarge Doppler spread
is indicative of rapid channel variation and necessitates a receiver with a fast
convergent algorithm. Co-channel interference, adjacent channel interference,
and noise, are al additive distortions that degrade the bit error rate performance
by reducing the CNR or SNR.

This chapter derives the bit error rate performance of digital signaling on
frequency non-selective (flat) fading channel with AWGN. Flat fading channel
models are appropriate for narrow-band land mobile radio systems or mobile
satellite systems.  Flat fading channels affect al frequency components of a
narrow-band signa in exactly the same way and, therefore, do not introduce
amplitude or phase distortion into the received signal. Freguency selective
channels distort the transmitted signa and will be the subject of Chapter 6.
Flat fading channel will be shown to significantly degrade the bit error rate per-
formance unless appropriate countermeasures are taken. Diversity and coding
techniques are well known methods for combating fading. The basic idea of
diversity systems is to provide the receiver with multiple replicas of the same
information bearing signal, where the replicas are affected by uncorrelated fad-
ing. Coding techniques introduce a form of time diversity into the transmitted
signal which can be exploited to mitigate the effects of fading.

The remainder of this chapter is organized as follows. Section 1 introduces
avector representation for digital signaling on flat fading channels with additive
white Gaussian noise (AWGN). Section 3. provides a generalized analysis of



228

the error rate performance of digital signaling on flat fading channels. Sec-
tion 2. derives the structure of the optimum coherent receiver for the detection
of known signals in AWGN. The error probability performance of various
coherently detected digital signaling schemes is considered including PSK in
Section 4., QAM in Section 5., orthogonal signals in Section 6., and OFDM in
Section 7.. Section 9. considers differential detection of PSK and = /4-QPSK.
Section 10. considers non-coherent detection and, finally, Section 11. considers
coherent and non-coherent detection of CPM signals.

1.  VECTOR SPACE REPRESENTATION OF
RECEIVED SIGNALS

Suppose that one of M complex low-pass waveforms {3, (t)}ar,", say
§;(t), istransmitted on aflat fading channel with additive white Gaussian noise
(AWGN). For such a channel, the received complex envelope is

() = g(t)i(t) + n(t) (5.1)

where g(t) = a(t)e?*® is the complex fading gain introduced by the channel,
and n(t) is zero-mean complex AWGN with a power spectral density (psd) of
N, watts/Hz. At any timet the complex fading gaing(t) isacomplex Gaussian
random variable. The receiver must determine which message waveform 5 (t)
was transmitted from the observation of received signal 7(¢).

In our present development, the pulses 3,,(t) are assumed to have duration
T. However, our results will aso apply to the case of root Nyquist pulses with
duration 7 # T, for example, the root raised cosine pulse. The only difference
is the length of the required observation interval.

If the channel changes very slowly with respect to the data symbol duration,
e, fmT < 1,theng(t) will effectively remain constant over the observation
interval. Under this condition, the explicit time dependency of g(t) can be
removed 0 the received signal becomes

T(t) = g5i(t) +7n(t) (5.2)

where g = ae’? is the fading gain. If the Gaussian fading process has zero
(non-zero) mean then the magnitude o is Rayleigh (Ricean) distributed and the
phase ¢ isuniformly (non-uniformly) distributed over [, 7]as described in
Chapter 2.1.2.

To facilitate the derivation of the optimum receiver and its analysis, it is
useful to introduce a vector space representation for the received signals. If
the channel is affected by AWGN, then the required basis functions are those
obtained by using the Gram-Schmidt orthonormalization procedure outlined in

! For land mobile radioapplications fm T < 1 is a reasonable assumption.
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Chapter 4.1.2. Using these basis functions, the received signal can be expressed
as

=Y Fapnl(t) + 2(t) (5.3)
n=>0
where
T
S AOEACE (5.4)
= g/ ) (t dt+/ 5.9
= gSz" +nn (56)
and
N-—-1
Z(t Z nn‘ﬂn . (5.7)
n=0
The above process yields the vector
f=g8 +n (5.8)
where
r = (Fo,71,...,TN=1)
é’i = (gioagiu'-'agi]v_x)
i = (fg,Ay,...,AN_1) .

For an AWGN channel, the 7y, k = 0, ..., N—1 are Gaussian random variables
that can be completely described by their means and covariances. The means
are

Bl = [ BROler(tdt = 0 59)

T rT 1
/ / SEROR (s)]p; (£)pi (s)dtds
0 0

T rT
Ny [ [ 8= s (t)pi(s)dtds

T
- N, /O o (1) ()t
= Ndj

and covariances are

R
Kz, = B[R]
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It follows that the 71, are independent complex Gaussian random variables with
Zero mean and variance N,. Hence, the vector i has the multivariate Gaussian

pdf (A.40)

N-1 4 1 \
p(n) = ZI;IO%NOGXP{—RI”H}

1 1 .9
—_ - . 5.10
Such noiseis said to becircularly symmetric, because thejoint pdf p(in) appears
as a hyperspherical cloud that is centered at the origin in the N-D vector space.
The waveform z(t) is a “remander process’ due to the fact that 7i(t) lies

outside the vector space that is spanned by the basis functions {pn (t)} =1
However,

E[z(t)r]] = E[2(t))g5,, + E[2(t)R]]
= EB[E(1)A]]
N-1
_ E[(ﬁ(t)— ﬁn%(t)) n;]
n=0

T N-1
N /0 E[(t)a*(m)]e;(r)dr — ) Elfinfilon(t)

n=0
= Nowj(t) — Now;(t) =0

Since E[z(t)7¥] =0, j =0, ...,N —1,itfollowsthat z(t) is uncorrelated
with the recelved vector £. This property implies that the remainder process
z(t) is irrdlevant when making the decison as to which signal waveform was
transmitted, aresult known asWozencraft's irrelevance theorem [365]. In other
words, the received vector r is the only data useful for the decision process and,
hence, represents “sufficient statistics’ for the problem at hand.

2.  DETECTION OF KNOWN SIGNALSIN ADDITIVE
WHITE GAUSSIAN NOISE

The maximum a posteriori probability (MAP) receiver generates the vector
r and from its observation decides in favor of the message vector §; that
maximizes the a posteriori probability P(gs;|f). If r is receved and the
decision ismadein favor of the signal vector 8,,, then theconditional probability
of decision error is

P,s =1 —P(g8,F) . (5.11)
The unconditional probability of decison error is
Po= [ (1= Plgsnl) p(E)dF - (5.12)
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The MAP receiver clearly minimizes the probability of decision error, since
the integrand is minimized for all possible recelved vectorsr.

By using Bayes theorem, the a posteriori probability P(g¢s,,|r) can be
expressed in the form

p(T|g8m)Pm

p(F)
where p(¥|¢s,,) is the joint conditional probability density function (pdf) of
the received vector ¥ given the transmitted message vector s.,,, and Py, isthe
prior probability of transmitting §,,. Since the pdf of the received vector p(tr)
is independent of the transmitted message vector, the MAP receiver chooses
the vector §,, to maximize p(¥|g8m)Pm. In other words, the MAP decision
ruleis

P(g8nm|f) = , m=0, -, M-1 (5.13)

ChoOSE & if  P(F|g8m)Prm > P(Flg8m )P Y #m (5.14)

Note that the MAP receiver requires knowledge of the complex channel gain
g, implying that the receiver must employ an adaptive channel estimator.

A receiver that chooses the vector §,, to maximize p(t|g$,, ) regardiess of the
prior messages probabilities is called a maximum likelihood (ML) receiver.
The ML decision rule is

choose §,,, if p(F|g8m) > p(F|g8r) YR #m . (5.15)

If the prior message probabilities are equdl, i.e., P,, = 1/M, then selection of
the signal vector that maximizes p(f|gs,,) also maximizes p(g8,|t). Under
this condition the ML receiver also minimizes the probability of decision error.
The prior message probabilities will be equal when the source coding is good.
In practice, an ML receiver is quite often implemented regardless of the prior
message probabilities, because they may unknown. Note aso, that the ML
receiver requires knowledge of the channel gain g.

To proceed further we need the joint conditional pdf p(¥|gs;,). Since T =
g8, + fand n has thejoint pdf in (5.10), we have

plilgin) = Grw e {~gli -l . 516

By using (5.16) in (5.15), it is apparent that the signd vector sy, that maximizes
p(F|¢8) aso maximized the metric (or distance measure)

£1(8m) = —|IF — g8ml|? (5.17)

In other words, the ML receiver decides in favor of the scaled message vector
g8, that isclosest in squared Euclidean distance to the received vector . Such
areceiver is said to make minimum distance decisions.
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An alternative form of the ML receiver can be derived by expanding (5.17)
as
p1(8m) = —[IE1* + 2Re {(F, 98m)} — lg*l18mI” (5.18)

Then notice that ||£]|% is independent of &, and ||3,||2 = 2E,. Hence, the
ML just needs to maximize the metric

p2(8m) = Re {(F,98m)} — |9/°Em . (5.19)

Using the definition of the inner product, the above metric can be written in the
dternate form

T
p2(8m) = Re{/o f(t)g*é“;l(t)dt}—lgVEm

Il

T
Re { / 'r"(t)e‘j¢§;‘n(t)dt} —aBEy, . (5.20)
0

The last line in (5.20) follows because the w4 (8, ) can be divided by o without
altering the decision process.

From the above development, the form of the ML receiver is clear. The
receiver must first perform quadrature demodulation as shown in Fig. 5.1 to
extract the complex envelope 7(t) = 7(t) + j7g(t). The received bandpass
waveform is

r(t) = 71(t) cos 2m fot — Fo(t) sin 2w fet . (5.21)

Then
[r(t) - 2cos2nfet] p = 7r(t) (5.22)
[—r(t) - 2sin2nfutlp = 7olt) (5.23)

where [ - JLp isjust a low pass filter to reject the double frequency term af-
ter demodulation. After quadrature demodulation, there are severd receiver
structures that are functionally equivalent, but differ in their method of imple-

mentation and complexity. As shown in Fig. 5.2, one possibility is to generate
the observation vector ¢ by correlating the received complex envelope with
the basis functions. This receiver structure is caled a correlation detector.

An functionally equivalent structure is shown in Fig. 5.3, where the complex

envelope is filtered with a bank of filters having impulse responses ¢} (1" — t)
and sampling the outputs at time T. Thefilter <¢}(T —t)is the matched filter to
@;i(t). Thisrecelver structure is caled amatched filter detector The matched

filter can be shown to be the filter that maximizes the signal-to-noise ratio at
the sampling instant when the input consists of a signal corrupted by AWGN.
This result is available in numerous textbooks and we do not present it here
(but see Problem 5.2). Finally, the metric computer in Fig. 5.4 processes the
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ﬁ@. LPE — 7D

r(t)l  2cos2mnf.t

- 2sin27mf. ¢

% LPF | — %(1)

Figure 5.1.  Quadrature demodulator.

observation vector r to produce the metrics u(b,,), m =0,...,M —1. The
decision is made in favor of the data symbol corresponding to the largest metric.

To show equivalence of the correlation and matched filter detectors, let
hi(t) = ¢} (T — t) denote the filter matched to ;(t). Then the output of the
matched filter is the convolution

t
wt) = [ Fohilt=ar
0
t
= [ #neiT -t s . (5.24)
0
Sampling the filter output at time T gives

W1y = [ #(r)s () (5.25)

Thisisexactly the same asthe correlation in (5.4). We note that other variations
of the ML receiver can be constructed in a similar fashion by direct implemen-
tation of (5.20) by using either abank of M correlators or a bank of M matched
filters.

Some simplifications can be made for certain types of signal sets. If the
message waveforms have equal energy such as PSK signals, then E,, = E for
al m. Hence, the biasterm «E,, in (5.20) can be neglected, leading to

43(En) = Re {(f, ej¢§m)} (5.26)

Re { / ’ F(t)e’j"’g;‘n(t)dt} . (5.27)
0

1

In this case, the receiver does not need to know the complete complex channel
gain g = ae??, but only the random carrier phase ¢. The random carrier phase
can be obtained in practice by using a phase locked loop.
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Figure 5.2.  Correlator detector.

] .o
N
r(t) ; -
' Fr
7
¢;_1(T_t)—_\i\¢
sample at
timeT

Figure 5.3.  Matched filter detector.

3.  PROBABILITY OF ERROR

Consider asignal constellation defined by the set M signal vectors {8, } 4.
Throughout this section, we assume equally likely messages o that P, =
1/M. By observing the vector r, the ML receiver chooses the message vector
8, that minimizes the squared Euclidean distance ||f — g8 ||?- To compute
the probability of ML decision error for an arbitrary set of signa vectors, we
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- |
o2E,
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- largest
IM2 g
+ Ry
;—Re(F,g’s.‘M ;_@i
aZEy,

Figure 5.4.  Metric computer.

first adefine convex decision regions R,,, around each of the signal points gs,,
in the N-D signal space. Fig. 5.5 shows an example of the decision regions.
Formally, the decision regions are defined by

Ry = {&: |IF = g8ml|* < (I ~ g8,)2 . Vil £} (5.28)
Observe that dl + € R, are closer to gs,, than to any other signa point
g8k, k # m. The ML decision rule becomes

choose s, if F € Ry (5.29)

The decision boundaries are hyperplanes that are defined by the locus of signal
points that are equidistant from two neighboring signal vectors.
The conditional error probability associated with sy, is

P(elsm) = P(Ff & Rm) (5.30)
= 1-P(f € Rp) (5.31)
= 1—P(clsm) (5.32)

where P(c|s,,) isthe conditiona probability of correct reception. By using the
joint conditiona pdf in (5.16) we can write

Pefim) = 1= | p(Flgsm)di (5.33)
Finally, the average probability of decision error is
1 M-1
Ple) = 47 > Plefsm) - (5.34)

m=0
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Figure 5.5.  Decision regions in an 2-D signal-space.

Sometimes it may be difficult to compute the exact probability of decision
error, due to the difficulty in defining the decision regions R,, and performing
the integration in (5.33). In this case, various upper and lower bounds, and
approximations on the probability of error are useful. First we introduce the
concept of the pairwise error probability.

31 PAIRWISE ERROR PROBABILITY

Now consider two of the M signal vectors §;and §;.\We wish to determine
the probability of decision error a the receiver, as if these two signa points
are the only ones that exist. Thiserror probability is called the pairwise error
probability because it can be defined for each pair of signal vectors in the signal
constellation. The two signal vectors §; and s, are separated at the receiver
by the squared Euclidean distance [|g8; — g8k||* = &?||§; — §k||°. Due to the
circularly symmetric property of the AWGN noise, the pdf of the noise vector
n is invariant to its rotation about the origin in the vector space. Hence, the
noise component along the vector g8; — g8 that joins the two signal vectors
has zero mean and variance N,.

A decision boundary can be established a the midpoint between the two
signal vectors as shown in Fig. 5.6. Suppose that vector §;is sent, and let
P(e|s;) denote the probability of ML decision error. The error probability is
just the probability that the noise along the vector gs; — gs, forces the received
vector r = §; + n to cross the decision boundary. This probability isjust equal
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- " decision
choose s ; boundary

choose §

Figure 5.6.  Two received signal points in an N-D signal-space.

P(els;) = @ «% (5.35)
J 4N, | '

where J?k = ||§; — 8k||* is the squared Euclidean distance between s;and §y.
Finally, wenotethat P(e|s;) = P(e|S). Hence, the pairwise error probability
between the message vectors §; and 5y is

to

P(8;,8k) = P(el8;) = Plelsy) = Q (5.36)

32 UPPER BOUNDS ON ERROR PROBABILITY

Suppose that s, is transmitted and let E; denote the event that the receiver
chooses s; ingtead. The probability of the event E; is the pairwise error
probability P(s;,8,). The conditional probability of decision error is

Plelsy) = (U E; ) (5.37)

J#k
By using the union bound

P (U Ej) <Y P(E)) (5.38)

we have
P(elsr) < Y P(3;,8) (5.39)
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Combining the above result with (5.36) gives

Plelsr) < Y. Q ( O‘?(Ig’“) (5.40
k)= 4N, 40)
7k o

and using (5.34) to further average over the signal set gives

(5.41)

A further upper bound can be obtained by first computing the minimum
squared Euclidean distance between any two signal points

dipin = min |8, = Sn* . (5.42)

Thus the pairwise error probability between §;and §;is bounded by

242
P(§;,5) < Q ( 9@%&) : (5.43)
Hence, we can write
2 72
Ple) < (M —1)Q (\/94—31\;“—“) . (5.44)

Finally, some other upper bounds can be obtained using the upper bound on
the Q-function (see Problem 5.1)

Q(z) < %e-f2/2 z>0 . (5.45)

Combining with the union bound in (5.41) gives

] M=l az(zzk
Ple) < 57 Zexp{ ! } (5.46)
oM = 8N,

and combining with the upper bound in (5.44) gives the smplest but loosest

upper bound
- 72
P(e) < (1) exp { i } . (5.47)
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33 LOWERBOUND ON ERROR PROBABILITY

A useful lower bound on the probability of decison error can be obtained
by bounding the error probability

P(e|by) > Q (\/—maz‘ﬁo' ) , if§; at least one neighbor at distance dy;y
0

, otherwise
(5.48)
Then
Ple) = Mmzop(dém) (5.49)
Wmin o2d?
> min .
2 Ty Q( —4N0 ) (5.50)

where wnin 1S the number of signal vectors having at least one minimum
distance neighbor. Certainly wp,i, > 2, S0 that

P(e) > MQ( Wﬂﬂﬂ) . (5.51)

34 BIT VERSUS SYMBOL ERROR PROBABILITIES

Thus far our figure of merit has been the probability of decision error or
symbol error probability, Pp;. However, we are very often interested in the
bit error probability, P,. In general, this error probability depends on the
particular mapping between databits and data symbols. Since each data symbol
corresponds to log, M data bits the bit error probability is bounded as follows:

Py
logo M

<P, <Py . (5.52)

Gray coding:. For signal constellations such as PSK and QAM, it is possible
to map the binary data bits onto the M-ary symbols in such a way that the
nearest neighboring symbols (in Euclidean distance) differ in only one bit
position. Such a mapping is caled a Gray code. When the signal-to-noise
ratio is high, we find that symbol errors are made onto the nearest neighboring
symbols with high probability. In these cases, symbol errors correspond to
single bit errors. Hence,

P
P, ~ —k“i . (5.53)

wherek = logy M.
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000..... 01— §

000..... 10— S
choose 000 ... 11— 3
ithrow 111..... 10— %§,,,

111..... 11— 3, |

Figure 5.7. Mapping of binary k-tuples onto M -ary symbols.

Equally likely symbol errors.. Consider the case where al symbol errors
are equaly likely. To compute the probability of bit error, first note that the
M = 2¥ symbols have a one-to-one mapping onto al possible 2* binary k-
tuples as shown in Fig. 5.7. Now suppose that al zeros k-tuple, or first row,
corresponds to the correct symbol. However, the receiver makes an error and
chooses ith row (symbol), i # 0. Since there are 2¢~! zeros and ones in each
column and a zero corresponds to a correct bit, the probability of a particular
bit position being in error is

2k-1 M

4.  ERROR PROBABILITY OF PSK

Error probability of binary PSK (BPSK):. From (4.64) and (4.61) with
6, = 0, the BPSK signal vectors are?

Sp = -8 =V2E, . (5.55)

Since there are only two signd vectors, the error probability is given by (5.36.
For BPSK signals, dg1 = 2v/2FE). Also BPSK transmits 1 bit/symbol so
the symbol energy is E;, = Ep, where Ej is the bit energy. Therefore, the
probability of bit error is

Py(y) = Q (vV2m) (5.56)
where «, is defined as the bit energy-to-noise ratio
o’E,
Yo = N, (5.57)

When the signal vectors lieina 1-D complex vector space, we simplify notation by using the scalars 3, 7,
7 rather than the vectors §;, f,and .
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Error probability of quaternary PSK (QPSK):. From (4.64) and (4.61)
with 8, = 7 /4, the QPK (or 4-PSK) signd vectors are

§o = —82=VE(l+j) (5.58)
§i = -5 =VEx(-1+7) (5.59)

The QPSK signa congtellation is shown in Fig. 5.8. The decision boundaries
correspond to the real and imaginary axis of the complex vector space. The
noise components 7y and ng are independent zero-mean Gaussian random
variables with variance N,. With minimum distance decisions, the probability
of symbol error is

PM = 6‘50)

= 1-P(c)
{m > —ad/2,fg > —ad'/z}

= 1-P{is > —ad/2} P {fg > —ad/2}

= 2
272
: 1-{1—62( )

where, again, « is the channel attenuation. Since d? = 4F;, we have

Py =1-[1-Q(v7) (5.60)
where vy, is defined as the symbol energy-to-noise ratio

o?E},
Vs = N, (5.61)
Suppose the data bits are mapped onto the data symbols using a Gray code
as shown in Fig. 5.8. Letting P, denote the probability of bit error, it follows
that

P(c) = (1~ P)?

and
Py=1-(1-P,)?

Comparing the above equation with (5.60).

Py = Q (Vs)

QPSK transmits 2 bits/symbol so the symbol energy is E, = 2E,,where Eyis
the bit energy. Sincey, = 2,

Py(v) =Q (\/E) .



242

decnsnon
“" boundaries

Figure 5.8. Complex signal-space diagram for QPSK.

Notice that the bit error probabilities of BPSK and QPSK are identical. Finally,
since OQPSK is identical to QPSK with the exception of the inphase and
quadrature branches being offset by T}, = T'/2 seconds, the error performance
of OQPSK isidentical to QPSK.

Error probability of M-PSK:. To derive the error probability of M-PSK
consider, for example, the 8-PSK signal constellation and associated decision
regions shown in Fig. 5.9. Once again data bits are mapped onto data symbols
by using a Gray code. Consider (4.46) and suppose that the message vector
30 = V2E}, istransmitted. The received signal vector is

F=ael®5y+7 . (5.62)

Since the error probability isinvariant to the angle rotation ¢, we can arbitrarily
st = 0 0 that

T = aSg+n
= aV2E,+1n (5.63)
It followsthat ¥ = 7y + j7g is a complex Gaussian random variable with pdf

r——a\/ZEh'} (5.64)

pi(T) = WN {_KF
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Figure 5.9. Complex signal-space diagram for 8-PSK along and the associated decision re-
gions.

Since 3, was transmitted, the probability of correct symbol reception with
minimum distance decisions is the probability that the received angle © =
Tan™'[fg /7] liesin theinterval [—/8, 7/8).

To find the pdf of the angle ©, we first define the new random variables

R=\/f+7%, 0 = Tan™! [fg /7] (5.65)

71 = Rcos O, g = Rsin® . (5.66)

Then by using a bivariate transformation of random variables (Appendix A),
the joint pdf of R and © can be obtained as

such that

r
TN,

Since we are interested only in the phase ©, we obtain the margina pdf of ©

1
pre(r,0) = exp {_F (rz —2a+/2E,rcos 0 + 2a2E,2L)} . (5.67)
[+

po(8) = /0 pr.o(r,8)dr (5.68)
1

—2v, s8in% 4 o0 ( 2
= —e T zexp< |z — /27vs cos 0) dz (5.69)
0

s

where vs = a?Ep/N, is the received symbol energy-to-noise ratio. The
probability of M-ary symbol error, Py isjust the probability that © lies outside
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the region [—n /M, m/M]. Thus

/M
Pulr) =1- [ p(6)ds . (5.70)
-n/M
A closed form expression for this integral does not exist, except for the cases
M = 2,4 which were considered earlier.

Error probability with Rayleigh fading:. When the channel experiences
fading, the error probability must be averaged over the fading statistics. If the
channel is Rayleigh faded, then « is a Rayleigh random variable. By using a
transformation of random variables,*y, and «y, have the exponential pdfs

Py (z) = Le-alm Py (T) = el >0 (571

Yb Y
where 4, and ¥, are the average received bit and symbol energy-to-noise ratios,
respectively, and 7, = log, M#,.
For BPSK and QPSK the average probability of bit error is

P = /0°°Q(\/%)p%(x)dx

N T
2 1+

1
~ & for 7, > 1.

The BPSK and QPSK hit error probability is plotted in Fig. 5.10 for an AWGN
channel and aflat Rayleigh fading channel with AWGN. Observe that Rayleigh
fading converts an exponential dependency of the bit error probability on the
bit energy-to-noise ratio into an inverse linear one. This behavior is typical for
any uncoded modulation scheme in Rayleigh fading, and results in ahuge loss
in performance unless appropriate countermeasures are taken. For M-PSK, the
average symbol error probability is

(5.72)

Py = /Ooo P (x)py, (z)dz (5.73)

where Pys(z) is given by (5.70). However, no closed form expression exists.
With Gray coding the bit error probability is approximately P, = Py /log, M.

Differential PSK (DPSK):. Thereceived carier phase for PSK signas is

2n
O = 5k +6,+ ¢ (5.74)
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Figure 5.10.  Bit error probability for BPSK and QPSK for a slow flat Rayleigh fading channel
with AWGN.

where 8, is an arbitrary constant phase and ¢ is the random phase due to the
channel. Thereceiver corrects for thephase ¢ by multiplying the received com-
plex envelopeby e~7% as shown in (5.27). However, in practice this operation is
not quite that smple, because the symmetries in the sgna congtellation creste
phase ambiguity. In particular, we note that any channel induced phase of the
form ¢ + 2kn /M, k an integer, will lead to exactly the same s& of received
carrier phases. While the receiver can use a phased locked loop to recover the
received carrier phase, there will remain aphase ambiguity which isamultiple
of 2z /M. This phase ambiguity must be resolved if the information is to be
recovered correctly.

Differential encoding is one of the most popular methods for resolving
phase ambiguity, where information is transmitted in the carrier phase differ-
ences between successive baud intervals rather than the absol ute carrier phases.
Differential encoding of PSK signals is done as follows. The information
squence {zx}, zx € {0,1,... M — 1} is differentially encoded into a new
sequence {dy } according to

dyp = Tp ® Ty (5.75)
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where @ denotes modulo-M addition. Then the sequence {dy} istransmitted
in the absolute carrier phase according to

2m
9k - ]_W_dk + 00 . (576)
After carrier recovery the recelved carrier phase is

~ 27 21l
O = Hdk + 6, + ﬁ

wheretheadditional term 27¢/M, ¢ an integer, represents the phase ambiguity.
The receiver computes the differential phase

(5.797)

O — 6p_1 mod 27 = %}(dk — dy—1) mod 27
2
= — dy_
M(dke k-1)
_ (5.78)
- Mt -

where © denotes modulo-M subtraction. Hence, the data sequence {z}is
recovered regardless of the phase ambiguity. R

In the presence of AWGN noise, the receiver must form estimates 6y of
the received carrier phases 6;. However, the noise will cause errors in these
estimates and occasionally 6 # 6. We note that an incorrect phase estimate
ék causes the decisions on both z; and z;_1 to be in error, assuming that the
phase estimates 8y, _, and 6, are both correct. Hence, at high signal-to-noise
ratios where errors occur infrequently, the bit error probability of DPSK is
roughly two times that of PSK.

5. ERROR PROBABILITY OF M-QAM

Error probability of M-PAM:. Consder the Gray coded 8-PAM system
signal constellation shown in Fig. 511. For the M — 2 inner points on the
signal constellation, the probability of symbol error is

202Eh>

(5.79)

where the 2 appears in front of the Q function because errors can be made by

crossing either of the two decision boundaries. Likewise, for the 2 outer points
on the signal constellation the probability of symbol error is

g=Q(2Mm) (5.80)

Ny
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Figure 5.11.  Complex signal-space diagram for 8-PAM.
Hence, the probability of symbol error is
M -2
= —°P,
Py I + MP
1 202E},
= 2(1—-— . 5.81
(-3)e( /2] o
Next we have to relate £}, to the average symbol energy. Since
=V2E,2m-1-M), m=1,....M (5.82)
the energy in 3, is
1
E, = 55%1 Ey(2m — 1 — M)? (5.83)
The average energy is
1 M
E., = Ehﬁz (2m—1-M
m=1
1 M
= Buy; (4 > 4(M +1) Z m+ M(M +1) >(5.84)
m=1 m=1
Using the identities
L n(n + 1) & n(n+1)(2n + 1)
D k=== Z ; (5.85)
k=1 k=1
and simplifying gives the result
M? —
E,, = E 1 (5.86)
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Hence from (5.81)
P =2 (1 ! ) 6 5.87)
M (Ys) = M Q —Mg_l’)’s (5.

(5.88)

where

is the average symbol energy-to-noise ratio.

Error probability of M-QAM:. Condder an M-QAM system having a
square constellation size M = 4™ for some integer m.  Such an M-QAM
system can be viewed astwo v'M-PAM systems in quadrature, each allocated
one-half the power of the M-QAM system. For example, the Gray coded
16-QAM system in Fig. 5.12 can be treated as two independent Gray coded
4-PAM systems in quadrature, each operating with haf the power of the 16-
QAM system. From (5.87), the symbol errorprobability for each v/M-PAM
systemis

oL 6 1
P\/M—2(1 \/M>Q( M—12) (5.89)
where v, is the average symbol energy-to-noise ratio of the M-QAM system.
Finally, the probability of correct symbol reception in the M-QAM system is

P.(e) = (1 - Pzp)? (5.90)
and the probability of symbol error is
Pu(vs) =1~ (1= Pz)? . (5.91)

For other types of M-QAM constellations, such as those in Figs. 4.7 and 4.8,
the error probability can be obtained by defining convex decision regions and
using the approach suggested in Section 3.

Error probability with Rayleigh fading:. If the channel is Rayleigh faded,
then s has the exponential pdf in (5.71). It follows that the average symbol
error probability is

Pyy =/0 Pr(z)py, (z)dz . (5.92)

Fig. 5.13 plots the (approximate) bit error probability P, ~ Pas/log, M against
the average received bit energy-to-noise retio, 4, = 7,/log, M, for severa
values of M. Notice that the 4, required to achieve a given bit error probability
increases with the alphabet size M. However, the bandwidth efficiency aso
increases with M, since there are logy M bits/symbol.
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Figure 5.13.  Bit error probability for M-QAM on an AWGN channel and a Rayleigh fading
channel with AWGN.

6. ERRORPROBABILITY OF ORTHOGONAL
SIGNALS

Orthogonal signals.. Consider the M-ary orthogonal signal set

§i=\/2Ehem,m=0,...,M—1 ;

249
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where e,, is alength-M vector with a“1” in the mth coordinate. If the signa
8o is transmitted, then the recelved signal vector is

f:(gVQEh+ﬁ07h17"'7ﬁM—l) (593)

wherethe n; are independent zero mean complex Gaussian random variables
withvariance N,. The ML receiver computes the decision variables

#3(8m) = Re(T, gsm) (5.94)

and chooses the signal with the largest (sm ). We have

1(so) = 20°Ep + fpoa/2Ey (5.95)
w(sm) = frmav2Ey, m=2,... M —1 (5.96)

where we have ignored the phase rotation on the noise samples. The u(sm)
are independent Gaussian random variables with variance 22 EN,,; the mean
of u(sp) is 2a¥ whilethe p(sy),m # 0, have zero mean. The probability
of correct decision conditioned on u(sy) = z is the probability that all the
p(sm), m # 0 are less than x. Thisisjust

M-1
Plclu(s1) =z) = [‘I’ (W)] (5.97)

Hence,

o - [ ()]

1 T — 2a’Ep)?
XTW(;\/_zE—JveXp {_(47EhTh)—} dz (598)
hiVo o

Now let y = (z — 2a%E},)//202E,N,. Then
00 M-1 1 2
_ —y2/2
P(c) = /_oo (@ (v+ v2%)] eV dn (5.99)

where
_ a2E’h
Ys = N,

Finally, the probability of symbol error is

(5.100)

Py =1-P(c) . (5.101)
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An alternate expression for the error probability can be derived by first condi-
tioning on the event that one of the A/ — 1 decision variables (s, ), m # Ois
the largest. Thisgives

z —202E), x M-2
= - O —
Fu 1)/ ( 2a2EhN>[ (\/2a2EhNo>]
2
m } dz . (5.102)

\/47ra2EhNo oxp { 1a2E,N,
Now let y = z/v/2a2E, N,. Then

Pa= (M=) [ @ (y= Vo) [0(u)"

2
exp{—y— dx .

1
V2 2
(5.103)

For orthogona signas s = vslog, M, and the bit error probability is given
by (5.54). If the channel is Rayleigh faded, then +, has the exponentia pdf in
(5.71), and the average bit error probability is

sz/o Py(z)py, (z)dz . (5.104)

Biorthogonal signals.. Consider the biorthogonal signal set

= \/2Ehel‘, ’i:O,‘.',M/z_l
Sl_{ —gi—M/Q, Z=M/2,,M—-]_ (5105)

Now suppose that s is transmitted. The receiver computes the M/2 decision
variables

p(sm) = Re(f,gsm) , m=0,...,M/2 -1 (5.106)

and chooses the one having the largest magnitude. The sign of p(sy,) is
used to decide whether s, Or spr/01, = —Sm Was sent. As before, the
w(sm) ae independent Gaussian random variables with variance 20?2 EN,;
the mean of u(so) is 2o whilethe u(s,,),m = 1,..., M/2 — 1, have zero
mean. The probability of correct decision is the probability that p:(se) > 0 and
|pe(sm)| < w(so),m =1,...,M/2 — 1. Condition on u(s;) = z,z > 0, we
have

T x
N —o % V(- E ) 5107
p(lu(sm)l < z) (m) (I)( \/WE_;LN_O) e

Hence,
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- N . M/2-1
Plo = /0 {q) <\/2a2EhNo> -° (—\/2a2EhNo>}

1 (z — 2a%E})?
xmexp {—W dx (5.108)

Now let y = (z — 2a?E})/v/202E N,. Then

_ o0 M/2_1 1 ___y2/2
P(e) = /—\/QW [@ (y + \/273) -9 (-—y - \/273)] —Ee dy .
(5.109)
Finally, Pyy = 1 — P(c). For biorthogond signals ~ys = ~yslogy M, but the bit
error probability isnot given by (5.54).

7.  ERROR PROBABILITY OF OFDM

For an AWGN channel, the error probability of OFDM can be calculated by
taking advantage of the property that the OFDM sub-carriers are orthogonal .
The optimum recelver for OFDM on an AWGN channel conssts of a bank
of correlator detectors, one for each sub-carrier. Since the sub-carriers are
orthogonal, thereisno crosstal k between them, and the symbol error probability
for each of the subcarriers can be obtained independently of the others.

A key advantage of OFDM is that the receiver can be implemented by
using fast Fourier transform (FFT) agorithm, as discussed in Chapter 4.6. In
the following discussion we assume that the guard interval is long enough to
isolate the OFDM blocks. Hence, we suppress the block index. Following
the development in Chapter 4.6, suppose that the discrete-time sequence X9 =
{X2}N+C-1 is transmitted over a flat fading channg with complex gain g.

n=0

The received sequence is R9 = {RS}N+G-1 where
RY = gX9 + i (5.110)

g = o??% isthe channel gain, and the #., are the noise samples. Suppose that
the f2,, are obtained by passing the recelved noise waveform through an idedl
anti aliasing filter having abandwidth 1/Tfollowed by a sampler. In this case,
the 7., are independent zero complex Gaussan random variables with variance
02 = LE[lfinl’] = No/Ts. | |
The receiver first removes the guard interval according to

Ry =Ry, gy 0SnSN -1 (5.111)
where (n)y is the residue of n modulo N. Demodulation is then performed
by computing the FFT on the block R to yield the vector Z = {Zi}i”if,l of N
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Figure 5.14. Block diagram of OFDM receiver implemented by using a DFT or an FFT.

decision variables
Z = ZR e "

= gA:z:z—i—Vz, 1=0,...,N—1. (5.112)
where A = /2E} /T and the noise terms are given by

1 =l j2min
==Y fige N (5.113)
N n=0

A block diagram of an OFDM receiver is shown in Fig. 5.14.
It can be shown that the v; are zero mean complex Gaussian random variables

with covariance N,

Pn,m = E[un V] = NT. ——0nm - (5.114)
Therefore, the Z; are independent Gaussian random variables having mean
g\/2E;, [Tz; and variance N,/NTs. To be consistent with our earlier results
for PSK and QAM signas, we can multiply the Z; for convenience by the factor

VNT; = /T 0 they have variance N,. Such scaling gives

Z; = g\/2Epzi + i (5.115)

where #; has variance N,. Notice that +/2E,z; = §;is equa to the complex
signal vector that is transmitted on the ith sub-carrier. For each of the Z;,the
receiver decides in favor of the signal vector 3; ,, that minimizes the squared
Euclidean distance 5

pGim) = 1Z; = g8iml® . (5.116)
Thus for each OFDM block N symbol decisions must be made, one for each of
the N sub-carriers. This can be done in either a serid fashion as in Fig. 5.14,
or apadle fashion.
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Finally, it is clear that the probability of symbol error is identical to that
achieved with independent modulation on each of the sub-carriers.  This is
expected, because the sub-carriers are orthogonal in time.

Interchannel Interference (ICI):. Perhaps a more interesting issue is the
effect of Doppler on the OFDM receiver performance. Although our analysis
will be undertaken for dow flat fading channels, a similar analysis will apply
provided that the guard interval is longer than the length of the channel |mpulse
response. We will show that variations in the complex channdl gain {gk}
over the duration of an OFDM block causes interchanne interference (ICI)
due to a loss of subchannel orthogonality. The ICI has an effect similar to
AWGN.

To isolate the Doppler effects, AWGN isignored. Thereceived discrete-time
sequence after removal of the guard interval is

Rn = 96+(n-c)vXn - (5.117)
The vector Z at the output of the FFT demodulator circuit is

N-1

Zi=/2Ey/T > znH(n —i) (5.118)
n=0
where
H(n —1i) ch+kc Wik 0<i<N-1. (5119)

To highlight the effect of channel time variations, (5.118) can be rewritten as

Z; = /2B, /TH(0)z; + ¢ (5.120)
N-1
=/2Ey/T > zpnH(n—1i) . (5.121)

n#i

Note that H(0) is amultiplicative noise term, while ¢;is an additive noise term
dueto ICl. If the channel istime-invariant, then g, = g and Z; = g/2E} /T'z;
asbefore. But for atime-varying channel Z;isafunction of al the data symbols
within ablock and, hence, interchannel interference (ICI) is introduced.

For N sufficiently large in (5.121), the central limit theorem can be invoked
and the ICI treated as a Gaussian random variable. Since z,, and H(n — i)
are independent random variables and E[z,] = 0, it follows that E[¢;] = 0.
The variance of ¢; is computed by evaluating the autocorrelation function at

where
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lag zero. Since 2E), - $E[znzl,] = Eaybnm, Where E,, isthe average symbol
energy, the autocorrelation of ¢; is

1

Pec(r) = 2E[cz fwl= = Y. EHMn-)H'(n—i-r)] . (5.122)

n#i,i+r

If we further assume the normaization E[|gx|?) = 1 and 2-D isotropic
scattering with an isotropic receiver antenna (see Chapter 2), then the autocor-
relation becomes

E E N-1N-1
d)cc('r) = an v JO 27Tfm k kl))
T N2 k=0 k'=0
2wk'r k
. [exp (] 7;\/ ) + (1 —4;)exp <j27]rvr>] (5.123)

where f,, is the maximum Doppler frequency. Note that the autocorrelation is
not influenced by the positioning of the guard interval, due to the symmetry of

the summations.
For symbol-by-symbol detection, it is sufficient to examine the variance of
the ICI term

E av E

9ec(0) = =~ = T

{N+2 Z — 1) Jo (27 fn T z)} (5.124)

where the fact that Jo( - ) is an even function has been used. Note that
variance of the ICl terms is only a function of Ea, N, Ts, and fm, but is
otherwise independent of the signa constellation. Fig. 5.15 plots the signal-to-
interference ratio

E,,/T

d)CC (0)

as afunction of f,,, T, for several values of N.
Suppose that the data symbols zy , are chosen from a 16-QAM alphabet.
From Section 5., the symbol error probability for 16-QAM is

r-se(fT)[i-te(y)] e

where v, is the average received symbol energy-to-noise ratio. With Rayleigh
fading, the symbol error probability is obtained by averaging (5.126) over the
pdf in (5.71). Assuming validity of the Gaussian approximation for the ICl,
the error floor due to ICI can be obtained by substituting the SIR in (5.125)
for 7s. The results are shown in Fig. 5.16. Simulation results are also shown
in Fig. 5.16 corroborating the Gaussian approximation for the ICI. Fig. 5.17

SIR =

(5.125)
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Figure 5.15.  Signal-to-interference ratio due to ICI.

shows the bit error rate performance of OFDM with N = 512 subcarriers,
a 16:QAM dgnd congdlation, and a 20 Mbps hbit rate for various Doppler
frequencies. Atlow 4, additive noise dominates the performance so that the
extranoise due to ICI has little effect. However, at large 4, ICl dominates the
performance and causes an error floor. Further measures are needed to improve
the performance.

8. ERRORPROBABILITY OF MSK

MSK signals can be recovered using a variety of techniques. One method
suggested by De Buda uses the fact that MSK is equivalent to OQPSK with a
half-sinusoid shaping function. From (4.110), the MSK complex envelope is

§ty=A4)" (x,mha(t —2nT) + jzgnha(t — 2nT — T)) (5.127)
n
where .
™
ha(t) = cos <ﬁ> uor(t +T) . (5.128)
The recelved complex envelope is
7(t) = g3(t) + n(t) (5.129)

where g = ae’®. The receiver first removes the effect of the phase rotation by
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Figure 5.17. Bit error probability for 16-QAM OFDM on a Rayleigh fading channel with

various Doppler frequencies.



258

r (1)

27
J dt Z 07
0
decision
device

?< output

decisions
JT dt >07? —j
T <¥-

Figure 5.18.  Coherent detector for MSK signals.

rAD

e I7(t) = 7r(t)cos ¢+ 7q(t)sind + j [F(t) cos g — F1(t) sin ]
adr(t) + nr(t) + j [adq(t) + nig(t)] (5.130)

where we have ignored the effect of the phase rotation on the noise 7(¢)because

itiscircularly symmetric. Detection then proceeds by processing the red and

imaginary parts of e=797(t) as separate binary PAM streams. The resulting
MSK detector is shown in Fig. 5.18. Note that the source symbols on the
in-phase and quadrature carrier components must be detected over intervals of

length 2T, the duration of the amplitude shaping pulse k4 (), and bit decisions
are made every T seconds. Since bit error performance of OQPSK and QPSK
(and BPSK) are identical, and MSK can be viewed as a form of OQPSK, it
follows that MSK has the same bit error performance as QPSK or BPSK.

9. DIFFERENTIAL DETECTION

Differentially encoded PSK (DPSK) can also be detected by using differen-
tially coherent detection, where the receiver estimates the change in the phase
of the received carrier between two successive signaling intervals. Since the
differential carrier phase between baud intervals is precisely what contains the
data, the basic mechanism for differential detection is obvious. If the carrier
phase changes slowly with respect to the baud period, then the phase differ-
ence between waveforms received in two successive signaling intervals will be
independent of the absolute carrier phase. However for fading channels, the
carrier phase can change over two successive baud intervals. This leads to an
error floor that increases with the Doppler frequency.

Binary DPSK:. Consider binary DPSK. Let 8, denote the absolute carrier
phase for the nth symbol, and Aé,, = §,, — 6, denote the differential carrier
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phase, where
Af, = { 2 y In=Hl (5.131)

, T, = —1

The complex envelope of the transmitted signal is

= A" hq(t — nT)e’% (5.132)

and the complex envelope of the received signd is

7(t) = ae?® A he(t — nT)e™ + a(t) (5.133)

where g = ae?? is the complex channel gain.

A block diagram of adifferentially coherent receiver for DPSK is shown in
Fig. 5.19. During the timeinterval [nT, (n + 1)T), the values of X, Xpn4, Yn
and Y4 in Fig. 519 are

X, = 2aBjcos(0,+ ¢)+ i

Xna = 2aEpcos(Bn_1+ @)+ Nr.d
Y. = 2aFBsin(0, + ¢) + g
Yia = 20aEpsin(0,-1 + ¢) + nQ.d (5.134)
where
A2 T
= / R2(t)dt (5.135)
2 Jo
is the bit energy, and the noise terms are
(n+1)T
ir = A / 71 (t)ha(t)dt
nT
nT
nrg = A 7y (t)he(t)dt
(n—1)T
(n+1)T
fip = A / fio(H)ha(t)dt
nT
nT
figg = A fig(t)ha(t)dt (5.136)
(n-1)T

Note that 72, 7y 4, g, and fig 4 are independent Gaussian random variables
with variance 2Ex N,.

In the absence of noise, it is easy to verify that U,, = 4a? EZx,,.To determine
the pdf of the decision variable U, it is convenient to express U, as

Un =Re{ZnZ;4} = 5 (Zn nd T ZpZna) (5.137)
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Figure 5.19.  Differentially coherent receiver for DPSK signals.
where
Zy = Xn+3Y, (5.138)
an = Xnd+and- (5-139)

It can be shown by using characteristic functionsthat U,, = W, — Y, where W
and Y are non-central and central chi-square random variables with densities
[309]

1 _ (wzn+4a?ED) 2\/wzno?E?
fw, (w) = e 2EpNe | L——"7n——1, wz, >0

2Eh]vo EhNO
(5.140)
1 _ _yTp
fraly) = SEN.C EhNo |y, >0 . (5.141)
4]

Defining V,, = W,,, the pdf of U,, is

fontw) = [ w0 o~ ud

1 Tpu—2a2 E;‘;
1E, N, SXP 2E, N,

k)
1 z"u—2a2E;‘: 202E, 2rnu
iE, N, SXP 2E, N, Q No '\ E4N, | ?
O0<zpu < @
(5.142)

—00 < zpu <0

I

where Q(a,b) is the Marcum Q function, defined by

b 22442
Q(a,b) =1 - / zem 2 Ip(za)dz (5.143)
0
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From (5.142), the bit error probability of DPSK with differential detection is

© 1 u+ 202 E2 1
P, = SR TR Ly = e 5.144
' /0 4E,N, eXp{ 2B.N, [ 2° 149

wherey, = a?Ey /N, is the received bit energy-to-noise ratio. For a ow
Rayleigh fading channdl, « is Rayleigh distributed s0 the received bit energy-
to-noise ratio has the exponential pdf in (5.71). It follows that the bit error
probability with dow Rayleigh fading is

1
20 +%)

91 DIFFERENTIAL DETECTION OF 7/4-DQPSK

The above results can be extended to differential detection of =/4-DQPSK.
Once again the complex envelopes of the transmitted and received signals
ae given by (5.132) and (5.133), respectively. However, with w/4-DQPSK,
Ab, = 7z, /4 wherez,, € {£1,+3}. A block diagram of the differentialy
coherent recever for w/4-DQPSK is shown in Fig. 5.20. The values of X,,,
Xnd» Yn andY,,; ae again given by (5.134). The detector outputs are

P, = (5.145)

1

Un = Re{Z.Z})} = 5 (ZnZia+ 2} Znd) (5.146)
]' x* *

Vo = Im{ZuZia} = =5 (ZnZa = Z3Zna) (5.147)

where .Z,, and Z,4 are defined in (5.138) and (5.139), respectively. In the
absence of noisg, it can be verified that the detector outputs are

U, = —a, Vy=—a, z,=-3

Up, = a, Vp=—a, 2,=-1

U, = a, Vp=a, ¢,=+1

Up = —a, Vy=a, zp=+3 (5.148)
where a = 2v/2a?E2. The bit error probability for 7/4-DQPSK with Gray

coding is quite complicated to derive, but can be expressed in terms of well
known functions [270]

P, = Q(a,b) — %Ig(ab) exp {—% (a2 + bQ)} (5.149)

wherel, (z) is the zero-order modified Bessdl function of the first kind defined
b
y 1 27
L(z) / 203049 (5.150)
0

T o



262

n+1)T ..
ri(1) A@\j Xy X decision
T device
delay T X U,

Ahy(1) X,, +) 20?7 |~
X
Ah (t Y,
(1) delay T XA +H 20?7 -
1) Y "
IX¢1 dr —
e nT ' Y,l ><

Figure 5.20.  Differentially coherent receiver for w/4-QPSK signals.

a = \/2% (1——\15) (5.151)
b = \/27,, (1+—\%> (5.152)

and ~y, isthe bit energy-to-noise ratio. Once again, if the channel is faded, then
the bit error probability can be obtained by averaging over the fade distribution.

10. NON-COHERENT DETECTION

If information is transmitted in the amplitude or frequency of a waveform,
then a non-coherent receiver can be used. Non-coherent receivers make no
attempt to determine the carrier phase. Non-coherent receivers are easier
to implement than coherent receivers. They typicdly alow the receiver to
be implemented with less expensive components that may also consume less
power. Non-coherent receiverstradeimplementation complexity for transmitter
power and bandwidth. Typical applications for non-coherent receivers include
one-way paging, where the receiver must be inexpensive and operate a alow
power budget. With one-way paging transmit functions are not required in the
terminal equipment.

Suppose that one of M complex low-passwaveforms, $p,(t),m =0,..., M—
1 is transmitted, say §;(t), on a flat fading channel with AWGN. The received
complex envelope is

F(t) = g8;(t) + 7i(t) (5.153)
where g = ae’? isthe channel gain that includes the random phase ¢, and 7(t)
isthe AWGN.

By projecting 7(t) onto the basis functions obtained through the Gram-
Schimdt orthonormalization procedureon the signal set {3y, (t)} M-} ,weobtain
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the received vector
F=g§ +n . (5.154)

Thejoint pdf of i is given in (5.10). The maximum likelihood non-coherent
detector does not use the random phase #in the decision process, and chooses
the message vector §,,, to maximize thejoint conditional pdf p(¥|as,,):

choose 8§y, if  p(F|adm) > p(T|asy) Vi #m . (5.155)
Letting p(¢) denotethepdf of <, we have
27
p(Fladm) = Eglp(F|sm, ¢)] = / p(Fladm, O)p(P)de . (5.156)

Using thejoint pdf of & in (5.10)

. 1 1
o d) = Gy e {~gy I - o8l
= @2rN,)N P 2N,
1
xexp{FRe(f',gém)} .
o
(5.157)
Now let
(F,g8m) = 9" (F,8m) = g XJim = aXpel =9 (5.158)
Hence
. IF + 202 B |2
p(F|adm, ¢) AL { N,
aX,,
xexp{ N cos(Bm—¢)} . (5.159)

Assuming a uniformly distributed random phase ¢gives

L 1 202 Ep + ||F))?
PiFlasn) = GoNgW P\ T aN,
1 2 aX
x%/o exp{ Nom cos(Op, — (j))} d¢

1 202 E,, + |IT||? aX,
- WEXP{‘#””*}IO (%) G100
o o o
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Since the term ||#||? is independent of the 111111111%}1111hypothesis  the signal
maximizes p(r|as,,) aso maximizes the metric

aF
exp { — X
i1 (5m) = (Q{WNO’)V;’V }Io (O‘NO ) (5.161)

If all message waveforms have equal energy, then considerable simplification
results. The ML receiver can choose §,,, to maximize

=1 (52)

(5.162)

However I(z) increases monotonically with x. Therefore, the ML receiver
can simply choose §,,, to maximize

p3(8m) = Xm (5.163)

From the above development, the structure of the ML non-coherent receiver is
clear. The recelver first uses the quadrature demodulator in Fig. 5.1 to extract
the real and imaginary components of the complex envelope r7(t) and Fo(t).
Then compute

Xm = |(F,8m)]
T
- / F()s%, (t)dt (5.164)
0
and maximize over the choice of §,,. Continuing further, note that
- .. 1/2
Xm = [(I‘],S[)m)Z-i-(rQ,SQ’m)z}

1/2

T 2 T 2
[( / f,(t)g,,m(t)dt> + ( / fQ(t)gQ,m(t)dt> } (5.165)
0 0

This leads to the detector structure shown in Fig. 5.21, commonly known
as aguare-law detector. Note that the square-law detector generates .X2,.
However, the choice of §, thatmaximizes X2 also maximizes X,.If the §,,
do not have equa energy then the metric in (5.161) must be used. This add
considerable complexity to the ML receiver because the channel gain a must
be determined and the Bessdl function Ip{z) must be calculated.

Il

Error probability of M-ary orthogonal signals. Consider the case of M-
ary orthogonal signals as discussed in Chapter 4.5. Assume without loss of
generdlity that 8 is sent. Then

o = gV2E+’ﬁ0
7 = N, t=1,...,M -1 (5.166)
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~ o~ 2
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Figure 5.21.  Non-coherent square-law detector.

Since the M-ary orthogonal signals have equal energy, we can use the metric
in (5.163). Then

1/2
X = |V2Brm| = V2E (1} + 1% 1) & (5.167)
The recaeiver will make a correct decision if
Xo>X;, Vi#0 . (5.168)

From Appendix A, X, hasthe Rice distribution

2 2 12
z z§ + 4a°FE azg
Pxo(%0) = 2E3V eXp {_ AEN }IO(N ) (5.169)
0 2] [0

whilethe X;, 1 # 0 are independent Rayleigh random variables with pdf

z?

T
() = I S O 5.170
px:(wi) = 5 eXp{ 4EN0} (5.170)

The probability of correct symbol reception is




P(C) = P(X1 < X, X9 < Xg,ooy X1 <X0)

A |

M-1
T; I
K3 _ 1 . d
2EN, e"p{ 4ENo}dxz> PXo(%0)dTo

0 _’L‘2 M-1
= /0 <1 — exp {—4E’(])V }) plzg)dzg (5.171)

Using the binomial expansion

1-2r=3 (’;) (-1t

k=0

gives
M-1 2
M-1 0o kx
k 0
P(c) = kzzo(_n ( L >/O exp{—4ENo}pX0($0)dz0 . (5.172)
However, the above integral is
& kz?
= — d
z /0 eXp{ 4ENO}pX°($°) o

2 22
o0 kx3 R oz
= exp e 4AENo ] dxg
0

" 4EN, [ 2EN, N,
R 1) (k + 1)z + 40’ E? (azo)
= - I, d
o 2EN, P { 4EN, “\, )
The trick is to manipulate the integrand to look like a Ricean pdf. To do so, let
2EN, E
r__ o r_
No=73 +1 B (k+1)
Then
oL kPEP) 1 {_ kYs }
TE+10P N [T E+1CPU B+

where v, = o*E/N, is the symbol energy-to-noise ratio. Hence,

& EDRMED ks
P(c) = ’g le—exp{—(k_'_l)} (5.173)

and the probability of symbol error is

M-1 k+1/M-1
(_1) ( k ) k'Ys
Pu=1-Plc)= S —L—k ep {— } (5.174)
5 CHC) o s
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Since orthogonal modulation is used, the probability of bit error is

M
Pp=———Py .
"TomMm -1

11. DETECTION OF CPM SIGNALS

CPM receivers can be categorized into three different types of dectection
schemes; coherent detection, differential detection, and non-coherent detection.
Furthermore, in each category there are two approaches; symbol-by-symbol
detectors and sequence estimators. For mobile radio channels, sequence esti-
mation based approaches are not favored for a least two reasons. First is the
hardware limitation dueto thelarge number of CPM states, sincethe complexity
of sequence estimators grows ex ponentially with the number of system states.
Second is the possible utilization of coding and interleaving to combat fading.
Coding issues will be discussed in detail in Chapter 8 The use of interleaving
requires separation of the CPM demodulator and the decoder. When convo-
[utional or trellis coding is used with CPM, a soft output symbol-by-symbol
detector is typically used to detect the CPM signals, while a sequence estimator
is still used for decoding. Therefore, this section only treats symbol-by-symbol
CPM detectors. While there exist a large variety of coherent and non-coherent
symbol-by-symbol CPM detectors, we present two structures. Both receivers
use multiple-symbol observation intervals to detect partial response CPM sig-
nals, and both generate soft outputs making them well suited to systems that
employ convolutional, trellis, or Turbo coding.

The CPM complex envelope during the timeinterval [nT, (n + 1)T]is

5(t,e) = +/2E;/Texp{jo(t, )}
= /2E,/T expj{0, + 27h i ziq(t —iT)} (5.175)

t=n—L+1
where E; is the symbol energy, T = (loga M )T, is the symbol duration, h
is the modulation index, and x is the data symbol sequence chosen from the
M-ary aphabet {£1,+3,---,£(M — 1)}. The phase shaping function is
B(t) = fot hy(t)dr., where h(t) is a partial response frequency shaping pulse
of duration LT. The accumulated phase 6, isequal to [wh sk mi] mod 2.
The CPM dtate at time ¢t = nT is defined by the L-tupte

Sn = (en,ﬂ:n_],xn_Q, o ):En—L—i—l) . (5176)

In the sequel, the CPM signal will also be denoted by 3(.Sy,, z,,)to emphasize
the finite state nature of the signal. For a dow flat fading channel, the received
signal is

F(t) = ga(t, z) + n(t) (5.177)



268
where 7(t) is a zero-mean complex AWGN with psd N, wattsHz.

111 COHERENT CPM DEMODULATOR

A coherent CPM demodul ator was proposed by Osborn and Luntz [254], and
Schonhoff[294]. Themetricsfor symbol z,, are obtained by observing 7 (¢) over
N,+1 successive symbol intervals and generating metricsforal M V»+! possi-
ble symbol vectors &, = {z,, by}, where b, = {zn41,- -+, Znsn, }. The ML
metric for z, is proportiona to the conditiona density p(#(¢)|Sn, Zn,bn, g)
and is given by®

ntNe Li1)T

ASnyZn,br) == 3 / I7(t) — g3(Si,z)|2dt . (5.178)
i—n 1T

Themetricsfor x,, can be obtained by averaging (5.178) over the M™» possible
values of b,, and averaging over al possibleinitial states S,,. This leads to the
metric

AMzn) = Z Z A(Sns Tn, bn)P(bn)P(Sy) = ZZ)‘(Snamn, b,),
’ (5.179)

where P(b,) and P(S,,) are the probabilities of b,and S,,respectively, and the
last equality follows because all the b, are equal, and al the S,are equal, for
equaly likely data symbols. By using (5.179) a set of M metrics is calculated
for the M possible z,,. The receiver decides in favor of the symbol having the
largest metric.

A simplified receiver that will yield amost the same performance uses the
suboptimum metric [254, 294]

+Np G4 1)T \
A(mn)=r{1gaxmax —Z/iT |7(t) — g5(S;,z;)|*dt p , (5.180)

b "
n n i=n

which is also exactly the same as the metric proposed by Kerr and McLane for
full response CPFSK [181].

112 NON-COHERENT CPM DEMODULATOR

The receiver adopts the same multiple-symbol detection strategy used for
the coherent receiver described in the previous section. After observing 7(¢)
over an N-symbol interval [(n — n1)T, (n + n2)T|,where N = ny + ny + 1,
the non-coherent CPM demodulator generates the following set of A7NV+L-2

3Slowly varying channels are assumed where g remains constant over the observation interval.
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conditional symbol metricsfor z,;

nine  a(341)T
Z / 7(t)§* (S, ;) dt
T

A(zn, by) = (5.181)

i:n—nl

whereby, = {Zn—n,—L+1, "> Zn—1,Zn+1, " Tntn,y } 1Sthe adjacent symbol
vector. Note that the phase term 6,,—, in, S, —y, does not affect the value of

(5.181) and can therefore be assumed zero. A smple symbol metric can be
formed by choosing the largest among all possible. A(z,, b,),Viz,

ntn2 ei+1)T
> / 7(t)5*(S;, z;) dt
iT

2
Mzy) = max (5.182)

n i=n-—n)

The sat of M symbol metrics o obtained is then used to make decisions on the
transmitted symbols.

For N =1 (ny = ng = 0), the symbol metric in (5.182) is the same one
used by the single-symbol receiver in [2] and, as aresult, the single-symbol
receiver can be trested as a specia case of the receiver presented here. In order
to calculate the metrics recursively, we can follow a similar approach to [305]
and rewrite A(z,, b,) as

2

n+ns
Man,bn) =| D TiFi (5.183)
i:n—-m
where
@Gyr
r; = /T (85 (Tipan, - - - 33) dt
1
F, = e ™i-tp v Fu_p=1. (5.184)

The metric generator structure is shown in Fig. 5.22. Generdly, the met-
ric calculator requires M* matched filters and generates MV +L~1 metrics
However, unlike the coherent receiver the complexity is independent of the
modulation index h. Actualy, since the term 6y is not explicitly exploited,
h is not even required to be a rational number. Finaly, it is observed that no
channel information is needed and, therefore, the receiver complexity is greatly
reduced.
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(n+)T
— [
nT

calculate
A(x, . by
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Figure 5.22. 'The symbol metric calculator. Note that the signal 3™ (t) is labeled to account for
P = M?" possible matched filters.

F A '\‘n)
r and choose (
)\'(xll)

=max A(x,,b,)

n

Problems
5.1. Derive the upper bound

Hint: Note that 4Q?(x) is the probability that a pair of independent zero-
mean, unit variance, Gaussian random variables u, v lies within the shaded
region of Fig. 5.23(a). This probability is exceeded by the probability that
u, v lies within the shaded region of Fig. 5.23(b).

-
‘\"l 2 .\-
] [ e T =2
7 x4 O - . WREL
/ .\‘. d

4 \
| | I _._....i LS _?_ u

_

(a) (b)

Figure 5.23.  Figure for Problem 5.1.

5.2. Consider the receiver model shown in Fig. 5.24, consisting of a linear
time-invariant filter h(t) followed by a sampler. The input to the filter
consists of apulse p(t) of duration T corrupted by AWGN

) =pt)+at) , 0<t<T
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g(1) F(t) = y() _ y(T)
@ (1) N
;l(t)

Figure 5.24.  Figure for Problem 5.2.

The output of the filter is
y(t) = Po(t) + 2(t)

where 5,(t) = p(t) « h(t) and 2(t) = 7(t) * h(¢). The signal-to-noise ratio
at the output of the sampler is defined as

[Bo(T)[?
Ef|z(t)[?]

Find the filter A(t) (and corresponding transfer function H(f)) that will
maximize the SNR.

5.3. Derive the expression for the symbol error probability of v M-PAM in
(5.87).

54. Show that the symbol error probability for coherent M-ary PSK isbounded
by p < Py < 2p, where

. w
p=a(vVEsinT)
and vy isthe symbol energy-to-noise rétio.

5.5. Supposethat BPSK signaling is used with coherent detection. The channel
is affected by flat Rayleigh fading and log-normal shadowing with a shadow
standard deviation of o, dB. Plot the average probability of bit error against
the average received bit energy-to-noise ratio 2, under the assumption that
the MSis stationary, i.e., use the Susuki distribution in (2.180). Plot severd
curves with different values of oq.

5.6. (computer exercise) This problem requires that you first complete the
computer exercise in Problem 2.20, wherein you will construct a Ricean
fading simulator. The objective of this question is to evaluate the perfor-
mance of BPSK signaling on a Ricean fading channd through computer
simulation.
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Suppose that we send one of two possible signal vectors §g = —§1 = V2E,
where E, = Ej is the transmitted bit energy. Assuming ideal coherent
detection, the received signal vector is

T =a8;+"n
where « is a Ricean distributed random variable and 7 is a zero-mean
complex Gaussian random variable with variance N,, For agiven a,the
probability of bit error is

By(vw) =@Q (\/E)

where v, = o?E}/N,. The probability of bit error with Ricean fading is
oo
Py = /0 Q (v 2%) p()dvp

Evaluate the bit error probability by using computer simulation, where «
is generated by the Ricean fading ssimulator that you developed in Prob-
lem 2.20. Assume that the value of « stays constant for a bit duration, i.e,,
update your fading simulator every T seconds, where T is the bit duration.
Assume f,T = 0.1.

Plot the smulated bit error probability, P,, against the average received bit
energy-to-noise ratio 4, = E[a?)E,/N,. Show your results for 0.5 < P, <
10~3 and for Rice factors K = 0,4, 7 and 16.

Note: To adjust 45 you will need to adjust the value of €2, in your faded
envelope generator.

57. Consider an AWGN channel where the channel gain, «,hasthefollowing
probability density function

p(a) =0.26(a) +0.56(c — 1) + 0.35(a — 2)

a) Determinetheaverage probability of biterror for binary DPSK signaling
over achannel withgain « in terms over the average received bit energy-
to-noise ratio 4,. What value does the probability of bit error approach
as 4y gets large?

b) Now suppose that two-branch antenna diversity is used with prede-
tection selective combining. Assume that the diversity branches are
perfectly uncorrelated. Determine the average probability of error in
terms of the average bit energy-to-noise ratio per diversity branch #..
What value does the probability of error approach as 7, gets large?

¢) Plot the probability of error for parts @) and b) on the same graph.
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5.8. Supposethat the average bit energy-to-noiseratio, s, inacell isuniformly
distributed between 12 and 16 dB. Calculate the average probability of bit
error in the cell assuming that there is dso Rayleigh fading, and binary

DPSK signaling is used.
5.9. Condder the differentially coherent receiver shown in Fig. 5.19. Show
that the pdf of U is given by (5.142).

5.10. Condder binary, orthogona signaling using non-coherent FSK modu-
lation and demodulation. The bit error rate for non-coherent FSK on an
AWGN channd is .

P, = 5 e~ /2
where v, = a?E} /N, is the received bit energy-to-noise ratio. Derive the

bit-error-rate for
a) aflat Rayleigh fading channel
b) aflat Ricean fading channel

5.11. Consider binary CPFSK modulation with modulation index A < 0.5.
Compute the minimum squared Euclidean distance between any pair of

band-pass waveforms as given by
nT . .
D2, = lim mi_n/ [s(t;x(‘)) - s(t;x(J))]2 dt
0

n—roc ’i,]

where s(¢;x%) and s(t; x9)) are the two band-pass signals whose phase
trajectories diverge at time ¢ = 0 and remerge sometime later. What is the
pairwise error probability between two such signals?

5.12. The squared Euclidean distance between apair of CPM band-pass wave-
forms, s(t;x®) and s(t;x\9), is

D? = / [s(t;x(i)) - s(t;x(j))]2dt
0

Show that

D? = 2(10g2M)Eb% / [1 — cos Ay(t)] dt
0

where M is the symbol alphabet size, Ey isthe energy per bit, and A4(t) is
the phase difference between the two signals.

5.13. Construct adifferential detector for MSK signaling. Obtain an expression
for the probability of bit error for differentially detected MSK on an AWGN

channdl.
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514. Suppose that GMSK signaling is used. Unfortunately, a GMSK pulse
is noncausal and, therefore, a truncated version of the pulse is usually
employed in apractical system, i.e,, thetime domain pulseis

t+T/2 2712 B242
[ VY In / /2 exp{ ™ } d.'L‘J UQLTT(t - L7T) .

Compute the maximum value of the ISl term in (4.173) as a function of the
normalized filter bandwidth BT when Ly = 3.



Chapter 6

ANTENNADIVERSITY

Rayleigh fading has been shown to convert an exponential dependency of
the bit error probability on the signal-to-noise ratio into an inverse linear one,
thereby resulting in avery large signal-to-noise ratio penalty. Diversity is one
very effective remedy that exploits the principle of providing the receiver with
multiple faded replicas of the same information bearing signal. To understand
the mechanism, let p denote the probability that the instantaneous signal-to-
noise ratio is below a critical threshold on each diversity branch. Then with
independently faded branches, p” is the probability that the instantaneous
signal-to-noise ratio is below the same critical threshold on al L diversity
branches.

The methods by which diversity can be achieved generaly fall into seven
categories: i) space, ii) angle, iii) polarization, iv) field v) frequency, vi) mul-
tipath, and vii) time. Space diversity is achieved by using multiple transmit
or recelver antennas. The spatial separation between the multiple antennas is
chosen o that the diversity branches experience uncorrelated fading. Chapter 2
showed that a spatial separation of about a half-wavelength will suffice with
2-D isotropic scattering and an isotropic antenna. Angle (or direction) diversity
requires a number of directional antennas. Each antenna selects plane waves
arriving from a narrow angle of arrival spread, so that uncorrelated branches
are achieved. Polarization diversity exploits the property that a scattering en-
vironment tends to depolarize a signal. Receiver antennas having different
polarizations can be used to obtain uncorrelated branches. Field diversity ex-
ploits the fact that the electric and magnetic field components a any point are
uncorrelated. Frequency diversity uses multiple channels that are separated by
a least the coherence bandwidth of the channel. In many cases, this can be
several hundred kilohertz. However, frequency diversity is not a bandwidth
efficient solution for TDMA and FDMA systems. Frequency hop spread spec-
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trum CDMA systems can exploit frequency diversity through the principle of
fast frequency hopping, where each symbol is transmitted sequentially on mul-

tiple hops (or carriers) that experience uncorrelated fading. Multipath diversity
is obtained by resolving multipath components at different delays by using di-

rect sequence spread spectrum signaling along with a RAKE receiver. Spread
spectrum concepts will be discussed in detail in Chapter 8. Time diversity is
obtained by transmitting the same information at multiple time periods that are
separated by at least the coherence time of the channel. Error correction coding

techniques can be viewed as an efficient method of time diversity. Unfortu-
nately, the coherence time of the channel depends on the Doppler spread, and a
small Doppler spread implies a large coherence time. Under this condition, it
may not be possible to obtain time diversity without introducing unacceptable
delay. Finally, the above techniques can be combined together. For example
gpace and time diversity can be combined together by using space-time coding
techniques.

This chapter concentrates on antenna diversity techniques. Section 1 dis
cusses receiver antenna diversity techniques where there is a single transmit
antennaand multiple receiver antennas. Section 7. considers transmit diversity
schemes where there are multiple transmit antennas and a single or multiple
receiver antennas.

1. DIVERSITY COMBINING

There are many methods for combining the signals that are received on the
disparate diversity branches, and severa ways of categorizing them. Diversity
combining that takes place at RF is called predetection combining, while
diversity combining that takes place a baseband is called postdetection com-
bining. In many cases there is no difference in performance, at least in an
ided sense. Here we concentrate on implementations that use postdetection
combining.

Consder thereceiver diversity system shown inFig. 6.1. The signalsthat are
received by the different antenna branches are demodulated to baseband with a
quadrature demodulator in Fig. 5.1, processed with correlator or matched filter
detector, and then applied to a diversity combiner as shown in Fig. 6.1. Here
we consider maximal ratio, equal gain, selective, and switched combining.

If the signal §,,(¢) is transmitted, the received complex envelopes on the
different diversity branches are

F(t) = gkdm() + (), k=1,..., L 6.1)

where gr = age™7¢* is the fading gain associated with the &' branch. The
AWGN processes nk(t) are independent from branch to branch. The corre-
sponding received signal vectors are

Tr = gxSym + Ny, k=1,..., L (6.2)



Antenna Diversity 277

=

r(t)

detector

(1)

detector

-

=

diversity
combiner

ALY L
detector

-y

Figure 6.1.  Postdetection diversity receiver.

where
Fki = gkgmi + ﬁ’ki - (63)

The fading gains of the various diversity branches typically have some
degree of correlation, and the degree of correlation depends on the type of
diversity being used and the propagation environment. To simplify analysis,
the the diversity branches are usually assumed to be uncorrelated. However,
branch correlation will reduce the achievable diversity gain and, therefore, the
uncorrelated branch assumption gives optimistic results. Nevertheless, we will
evaluate the performance of the various diversity combining techniques under
the assumption of uncorrelated branches.

The fade distribution will affect the diversity gain. In generd, the relative
advantage of diversity isgreater for Rayleigh fading than Ricean fading, because
asthe Ricefactor K increases there is less difference between the instantaneous
received signal-to-noise ratios on the various diversity branches. However, the
performance will always be better with Ricean fading than with Rayleigh
fading, for a given average received sgnal-to-noise ratio and diversity order.
For our purpose, we will consider the performance with Rayleigh fading.

2. SELECTIVE COMBINING
With selective combining (SC), the branch yielding the highest signal-to-
noise ratio is always sdlected. In this case, the diversity combiner in Fig. 6.1
performs the operation
I = maxfy . (6.4)
9% |
For radio systems that use continuous transmission, SC is impractical because
it requires continuous monitoring of al diversity branches to obtain the time-
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varying complex gains g;. If such monitoring is performed, then it is probably
better to use maximal ratio combining, as discussed in the next section, since
the implementation is not that much more complicated and the performance is
better. However, in systems that use TDMA, aform of SC can sometimes be
implemented where the diversity branch is sdected prior to the transmission
of a TDMA burst. The sdlected branch is then used for the duration of the
entire burst. Obviously, such an approach is only useful if the channel does not
change significantly over aTDMA burst. In this section, however, we evaluate
selection diversity under the assumption of continuous branch selection.
With Rayleigh fading, the instantaneous received symbol energy-to-noise

ratio on the kth diversity branch has the exponentia pdf

1 _
Doy () = —e 7%/ (6.5)

Ye

where ¥, is the average received branch symbol energy-to-noise ratio. With
ideal SC, the branch with the largest symbol energy-to-noise ratio is always
selected s0 the instantaneous symbol energy-to-noise ratio a the output of the
selective combiner is

v§ = max {y1, 72, -+, v} (6.6)

where L is the number of branches. If the branches are independently faded,
then order statistics gives the cumulative distribution function (cdf)

1L
Fy(z) =Prin <z, <z, o,y <al=[1-e %] . (67
Differentiating the above expression gives the pdf
L - 1L-1 -
Pys(z) = — |1~ e~/ % e %% (6.8)
20 = 2 1=
The average symbol energy-to-noise ratio with SC is
o
%= [ pgla)ds
0

0 _1L-1 _
= / £_/-£ [1 —_ e_.T/’YC:| e_w/fYCdm
0 7

L
= Ty,
k=1

Fig. 6.2 plots the cdf F,s(x) against the normalized symbol energy-to-noise
ratio z/%.. Note that the largest diversity gain is obtained in going from L = 1
to L = 2, and diminishing returns are obtained with increasing L. This is
typical for al diversity techniques.

, (6.9)

x| -
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Figure 6.2. Cdf of ~; for selective combining; 7. is the average branch bit energy-to-noise
ratio.

The bit error probability with dow fading is obtained by averaging over
the pdf of ~5. For example, consider binary DPSK with differential detection
having the bit error probability

Py(vd) = e . (6.10)

Hence, with SC
P = /0 Py(2)pyg ()da

o L - L1
= (141 7l 1— —Z/%e d
/0 2’_766 ( e ) T

L-1
L L=1) _yyn /°° o= (1+(n1)/3e)e g,
2’_)’0 n—0 n 0

Ly~ (e
T2 l+n+79

n=0

fl

(6.11)

where we have used the binomial expansion

(1-z)f1 = Lz—l (L— 1)(—1)%" . (6.12)

n=0 n
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Figure 6.3. Bit error probability for selective combining and binary DPSK with differential
detection.

The bit error probability is plotted in Fig. 6.3, where 4. is equa to the branch
bit energy-to-noise ratio snce binary modulation is being used. SC is seen
to give a very large improvement in error performance. When 4./gg1, (6.11)
shows that the bit error probability is proportional to 1/5%. Again, the largest
diversity gain is achieved with 2-branch diversity and diminishing returns are
redized with increasing L.

3. MAXIMAL RATIO COMBINING

With maximal ratio combining (MRC), the diversity branches are weighted
by their respective complex fading gains and combined. MRC redlizes an ML
receiver as we now show. Referring to (6.2), the vector

F=(f, Fo, --+, TL) (6.13)

has the multivariate Gaussian distribution

o 1 . .
p(rlg, Sm) = H 7N exp {—er‘k’i — gksm,i|2}
= o (4

1 1 & -
= ————exp{ — lerk—gksmﬂ} (6.14)
(27N,)IN { 2N, &
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where g = (g1, 99,--.,9L) iS the channel vector. From this expression, the
ML receiver chooses the message vector s,,, that maximizes the metric

L
p(dm) = - Z 7% — gkgmnz
k=1

It

L
— 5 {IEI? — 2Re (6354, 8m) + s 18ml?} - (6.15)

Since Y"£_, ||#x]1? is independent of the hypothesis as to which §,, was sent
and ||5,, ||> = 2E,, the receiver just needs to maximize the metric

kr.’msm E Z |gkl2

T
{ | ~;<t)dt}—zlgk|2Em (6.16)
k=1

If signals have equal energy then the last term can be neglected, since it is the
same for all message vectors. Thisresultsin

p2(8m) =

L
p3(dm) = Z (9kFe, Sm)

= r
Z { /rk t)5, ()dt} (6.17)

An aternative form of the ML receiver can also be obtained by rewriting the
metric in (6.16) as

L L
pa(Sm) = Re (Z szkv§m> —En Z |k [*

k=1

- / {(ng"k ) }dtZ|gk| E, (6.18)

k=1

From the above development, the ML receiver can be constructed. Thediversity
combiner in Fig. 6.1 just generates the sum

L
Z itk (6.19)

which is then applied to the metric computer shown in Fig. 6.4.
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Figure 6.4.  Metric computer for maximal ratio combining.

After weighting, co-phasing and combining, the envelope of the composite
signal component is

L
ay =3 o} . (6.20)
k=1
The weighted sum of the branch noise powers is
L
Ohior =No Y af . (6.21)
k=1

Hence, the symbol energy-to-noise ratio is

o N,

2 E L 2p L
,Y;nr _ aA‘/zf av _ Z o Lav _ Z'Yk (6.22)
’ﬁ,,t.Ot k=1 k=1

where v = a2 E,,/N,, and E,, is the average symbol energy in the signal
congtellation. Hence, v;™* is the sum of the symbol energy-to-noise ratios of
the diversity branches.

If the branches are balanced (which is a reasonable assumption with antenna
diversity) and uncorrelated, then +:*" has a chi-square distribution with 2L
degrees of freedom. That is,

1 L-1_—x/7 )
mr = T € . I
P = T @2



Antenna Diversity 283

10— = S
f P ".
' I.=2 :
0" | =2 |
= L=4 |
| / |
| |
e
fs10" |
=
10° |
-40.0 -30.0 -20.0 -10.0 0.0 10.0

Y, =Y, (dB)

Figure 6.5. Cdf of 42" for maximal ratio combining; 4. is the average branch symbol energy-
to-noise ratio.

where
e = Elvk] k=1, ..., L. (6.24)
The cdf of vyI** is
B L-1 1 z k
Frygnr(fli) =1- C—Z/’YC Z E (—_-) . (625)
k=0 " \e

It followsfrom (6.22) that the average symbol energy-to-noise ratio with MRC
IS

L L
=3 F=> =LA . (6.26)
k=1 k=1

Fig. 6.2 plots the odf Fyme(x). Plots of the cumulative distribution function
dlow easy comparison of the various combining schemes, without the need
to consider particular modulation schemes. For example, with SC the cdf in
Fig. 6.2 shows that F,s = 10~ aty5 — 4. = 20 dB. However, for MRC Fig. 65
showsthat Fym: (z) = 10~* at ¥ — 7, = 18 dB. Theimplication is that MRC
is 2 dB more effective than SC.

Since MRC is a coherent detection technique we must limit our attention to
coherent signaling techniques, e.g., BPSK and M-QAM. For example, if BPSK
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Figure 6.6.  Biterror probability for predetection maximal ratio combining and coherent BPSK
signaling.

is used the bit error probability is.

P, = / Py(2)pqypr (z)d

= / ( 2) f_)/va:l’_le_:c/%dx
— _ k
R EY e
k=0
where
. Ye
U= T4, (6.28)

The last step follows after some algebra. The expression in (6.27) is plotted in
Fig. 6.6. Once again, diversity significantly improves the performance.

4. EQUAL GAIN COMBINING

Equal gain combining (EGC) is similar to MRC because the diversity
branches are co-phased, but different from MRC because the diversity branches
are not weighted. In practice, such a scheme is useful for modulation tech-
niques having equal energy symbols, eg., M-PSK. With signals of unequal
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energy, the complete channel vector g = (g1, 92,...,91) iSrequired anyway
and MRC might as well be used. With EGC, the receiver maximizes the metric

p(Sm) = zL:Re(fke_j¢k,§m)

k=1
L i T
= Y Re {e—”’k / fk(t)é;‘n(t)dt} : (6.29)
k=1 0
This metric can be rewritten in the alternate form
L
w(En) = Re (Z e'mfk,é:n)
k=1

T L ‘
= / Re { (Z e‘mkfk(t)) g;u)} dt . (6.30)
0 k=1
The combiner in Fig 6.1 just generates the sum
L
F= Z e ki, (6.31)
k=1
The vector t is then applied to the metric computer shown in Fig. 6.4 with
Bn = 0,m = 1,...,L. The reason for setting S, = 0 comes from the

assumption of equal energy signals.
After co-phasing and combining, the envelope of the composite signal is

L
o = Z ok (6.32)
k=1
and the sum of the branch noise powersis LN,. The resulting symbol energy-
to-noise ratio is 2
7 = B (6.33)

The cdf and pdf for y$& does not exist in closed form for L > 2. However, for
L=2and ¥ =9 =% thecdf isequal to

F,Yeg () =1- e~ 28/ %e _ 7r_£—e_ac/;yc (1 —-2Q (‘ /2?)) . (6.34)
° Ye Ye

Differentiating the above expression yields the pdf
1 —2z/3 —2/7 ( 1 1 /z )
e = — ‘+ i — — —4[ =
Pyes(z) 7. Ve N / %

X (1+ 2Q (\/55-—)) . (6.35)
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The average symbol energy-to-noise ratio with EGC is

Vb = E

L L
= T2 Y Bload - (6.36)

With Rayleigh fading, E[a2] = 20% and E[ax] = /7/2 o. Furthermore, if
the branches experience uncorrelated fading, then E[axay] = Elax]E[ag]for
k #£ £. Hence,

E. o
~eE av 2 _ Y
¥ IN, <2L0 + L(L-1) 5 )
202 E,, 7T
- 2 (1+(L—1)Z)
= % <1+ (L — 1)%) . (6.37)

The error probability with 2-branch combining can be obtained by using
the pdf in (6.35). For example, with coherent BPSK signaling the bit error
probability is (see Problem 6.8)

P, = /Ooon(ac)p,ygg(:c)dx
= S (1-vi-w) (6.38)

1
IR

where
(6.39)

i

5. SWITCHED COMBINING

A switched combiner scans through the diversity branches until it finds one
that has a signal-to-noise ratio exceeding a specified threshold. This diversity
branch is selected and used until the signal-to-noise ratio again drops below the
threshold. When this happens another diversity branch is chosen which has a
signal-to-noise ratio exceeding the threshold. The big advantage of switched
combining is that only one detector is needed. There are severa variations of
switched diversity. Here, we analyze two-branch switch and stay combining
(SSC). With SSC, the receiver switches to, and stays with, the alternate branch
when the signal-to-noise ratio drops below a specified threshold. It does this
regardless of whether or not the signal-to-noise ratio with the aternate branch
is above or below the threshold.
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Let the symbol energy-to-noise ratios associated with the two branches be
denoted by ; and v,, and let the switching threshold be denoted by T. By
using (6.5), the probability that v; islessthan T is

q = Prly;<T|
= 1—e T/ (6.40)

Likewise, the probability that ; is lessthan Sis
p=1-e5/ (6.41)

Let v3* denote the symbol energy-to-noise ratio at the output of the switched
combiner. Then

Py < 8] =Pr (7" < Shi = m}U " < Shi¥ = w}] ©42)

Since~y, is statistically identical to -y,, we can assumethat branch 1 iscurrently
in use. It follows that

Pri{yi <T}N{y2 < S}, S<T
Pr{T<m <S}Um<TN»<SY, S§=2T

(6.43)
Theregion S < T corresponds to the case where +y; has dropped below the
threshold T and a switch to branch 2 is initiated, but v < T s0 that the
switch does not result in a ;" greater than T. On the other hand, the region
S > T corresponds to the case when either ~; is between T and S or when
1 has dropped below the threshold T o that a switch to branch 2 occurs, and
T < v, < 8. Since~; and v, are independent, the above probabilities are

Pr{n <TH v < S} =ap (6.44)

Pely" < 51 = {

Pr{T<m<sSHU{m<TNwe<s} =p-a+tap (645
Therefore,

(6.46)

sw _Jap S<T
Prlrg SS]_{p—quqp S>T

Fig. 6.7 plots the cdf F,sw () for several values of the normalized threshold
R = 10log,,(T"/7.) (dB). Observe that SSC always performs worse than SC
except at the switching threshold, where the performance is the same. Since
SSC offers the most improvement just above the threshold level, the threshold
level should be chosen as 4;h, the minimum acceptable instantaneous symbol
energy-to-noise ratio that the radio system can tolerate and still provide an
acceptable error probability performance. Finaly, the optimum threshold,
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Figure 6.7. Cdf of ~ysy for 2-branch switched diversity for several values of the normalized
threshold R = 10log,,(T/5.); 7 is the average branch symbol energy-to-noise ratio.

T = R#,, dependson 4. Since . varies due to path loss and shadowing, the
threshold must be adaptive.

The probability of bit error can be also be computed for SSC. The pdf for
7 is

1 _-T/’_Yc
_ ) 93¢ , =<T
p’ng (.'L') = { (1 + q)%e_z/,—yc , z Z T (647)
If binary DPSK is used, then the probability of error is
P = [ B@pge(a)de
_ _e-T
~ T (a+(1-ge”) . (6.48)

where 7, is the average branch bit energy-to-noise ratio. The above expression

is plotted in Fig. 6.8 for severa values of T. The performancewith T = 0 isthe
same as using no diversity at all, because no switching occurs. The performance
changes little for T > 6. As T increases, the probability of switching q also
increases, as shown in Fig. 6.9. For some system, it may desirable to keep q as
small as possible to minimize the number of switches.
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Figure 6.8. Bit error probability for 2-branch switched combining and differentially detected
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Figure 6.9.  Probability of switching for two-branch switched combining.
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Figure 6.10.  Differential detection with postdetection equal gain combining.

6. DIFFERENTIAL DETECTION WITH EQUAL GAIN
COMBINING

Equal gain combining has a simple implementation and very good per-
formance when used in conjunction with differential detection. Differential
detection circumvents the need to co-phase and weight the diversity branches.
The overal receiver structure is shown in Fig. 6.10. The structure of the in-
dividua differential detectors depends on the type of modulation that is being
used. For DPSK, the detector is shown in Fig. 5.19, while for =/4-QPSK the
detector is shown in Fig. 5.20. In the latter case, the U and V branches are
combined separately.

For DPSK the decision variable at the output of the combiner at epoch n is,
from (5.137),

B =

L L
Un= Uk =73 (ZniZnap + Zh xZnk,a) - (6.49)
k=1 k=1

Once again, by using characteristic functions it can be shown that U,, =
W, — Y,, where W,, and Y,, are non-central and central chi-square random
variables with 2L degrees of freedom, respectively, and having the densities

_ 1 w\ z (s + w) s
fwa(w) = SELN, (3—2) eXP{— ST, }IL—I (\/E—(EhNoéﬁo)

f()—(l)LlL*1 {—y} 6.51
W= \2EN,) @11 P 2E.N,S (631

where

L
$$=4E ) of (6.52)
k=1
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is the non-centrality parameter, and I,(z) is the nth-order modified Bessdl
function of the first kind, defined by

2
-}—/ e“osgcos(nﬁ)dt‘) . (6.53)

After some algebraic detail, the probability of error can be expressed in the
closed form [270]

Py(y) = 22L re me (6.54)
where I
1 Fdk oL -1
= = 6.55
i s () 639
and
L
=) % - (6.56)
=1

Since~; hasthecentral chi-square distribution in (6.23), averaging Py(7y;) gives
the result

1 Ye )’“
—1+k)! . (657
22L-1([, — +,),CLZb’° + (1_{_% (6.57)

This can be manipulated in the same form as (6.27) with

P, =

Ye
= B 6-58
2 1+ 7, ( )

The various diversity combining techniques are compared in Fig. 6.11 for
differentially detected binary DPSK signds. It is apparent that SSC results in
the worst performance, followed by SC. Differential detection followed by EGC
give the best performance. Once again, we stress that it does not make sense
to use MRC with differential detection since MRC is a coherent combining
technique. Therefore, acurve for MRC is not included in Fig. 6.11.

7.  TRANSMITTER DIVERSITY

Transmitter diversity uses multiple transmit antennas to provide the receiver
with multiple uncorrelated replicas of the same signal. The obvious advantage
is that the complexity of having multiple antenna is placed on the transmitter
which may be shared among many receivers. For example, the forward (base-
to-mobile) link in many wireless systems. The portable receivers can usejust
a single antenna and still benefit from a diversity gain.
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Figure6.11. Comparison of 2-branch diversity combining techniques for differentially detected
binary DPSK.

Transmitter diversity can take on many forms, distinguished by the method
of using the multiple transmit antennas. Transmit diversity is straight forward
for systems that use time division duplexing (TDD), where different time
dots on the same carrier are used in the forward and reverse links, because
of the reciprocity of the channel impulse response. At the base station the
signals received on all antennas can be processed during every received burst.
During the next forward burst, the antenna that provided the highest received
symbol energy-to-noise ratio is sdlected and used. Thisis aform of selective
transmit diversity (STD). Obviously, this scheme requires that the channel
change slowly.

For frequency division duplexed (FDD) systems, transmit diversity is more
complicated to implement, because the forward and reverse links are not re-
ciprocal. Time division transmit diversity (TDTD) can be used for FDD by
switching the transmitted signal between two or more transmit antennas. Alter-
nate bursts are transmitted through two or more separate antennas, atechnique
known as time switched transmit diversity (TSTD). Another method is delay
transmitter diversity, where copies of the same symbol are transmitted through
multiple antennas at different times. This has the effect of creating artificial
delay spread so the resulting channel looks like a fading ISl channel. An
equalizer can then be used to recover the signa and provide adiversity gain.
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Moreelaborate forms of transmit diversity use space-time or space-frequency
encoding of the transmitted information. These scheme require threefunctions:
(1) the encoding and transmission of the information sequence at the transmit-
ter, (2) the combining scheme at the receiver, (3) the decision rule for making
decisions. Alamouti [10] has introduced a simple repetition transmit diversity
scheme with maximum likelihood combining at the receiver. By using two
transmit antennas and one receiver antenna, the scheme provides the same di-
versity order as maximal ratio receiver combining with one transmit antenna
and two recelver antennas. This scheme requires no feedback from the re-
celver to the transmitter, and requires no bandwidth expansion. However, to
estimate the channel, the scheme requires separate pilot sequence insertion and
extraction for each of the transmit diversity antennas.

The scheme proposed by Alamouti can be considered a form of space-
time coding. More sophisticated forms of transmit diversity use specialy
designed space-time error correcting codes [298]. The data is encoded by
a space-time encoder that chooses the transmitted signal constellation points
90 that the coding and diversity gains are maximized. The encoded data is
split into n streams that are simultaneously transmitted by using n antennas.
Bandwidth efficient space-time trellis codes have designed for PSK and QAM
congtellations [298]. These techniques have been applied to 1S-136 with good
results [241, 242]. Furthermore, space-time codes may be designed with
multilevel structures, and multistage decoding can be useful when the number
of transmit antennas is large. This enables us to significantly reduce the
decoding complexity.

71  SPACE-TIME TRANSMIT DIVERSITY

Here we describe the scheme suggested by Alamouti [10] as an example of
transmit diversity. The scheme uses two transmit antennas and one receiver
antenna, referred to as 2 x 1 diversty. In any given baud period, two data
symbols are transmitted simultaneously from the two transmit antennas. Sup-
pose the symbols transmitted from Antennas 1 and 2 are denoted by §(;) and
8(2), respectively. During the next baud period, the symbols transmitted from
Antennas 1 and 2 are _§?2) and s7,,, respectively. The channel gains for the
two antennas are denoted by g¢; (¢) and g (¢t). If the channel stays constant over
two baud intervals then we can write

ge(t) = ge(t+ T) = g = e’ (6.59)
where T is the baud period. The received complex vectors are

Ty = 918(1) + g28(2) + 0(y)
rigy = —9152‘2) + gzézl) + ﬁ(2) (6.60)
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Figure 6.12.  Space-time diversity receiver for 2 x 1 diversity.

where 1ty and 1 ;) represent the received vectors at time t and ¢ + T', respec-
tively, and i,y and i) are the corresponding noise vectors.

The diversity combiner for this scheme is shown in Fig. 6.12. The combiner
constructs the following two signa vectors

Va) = 91T) +g2f(y
Vi) = g3Tq) — 1fy (6.61)

Afterwards, the receiver appliesthe vectors v(jyand v4)in asequential fashion
to the metric computer in Fig 6.4, to make decisions by maximizing the metric

p(81)m) = Re(f’(1),§(1),m>—Em(|91|2+|92|2)
@m) = Re(V@)8@m) = Bnllgrl? +102?)  (6.62)

wm

1

Using (6.59) and (6.60) in (6.61) gives
vy = (of +03)8) +gih) + g20fy)
Vo) = (of +03)8) —gi1ify + gshq) (6.63)

This isto be compared with the output of the MRC metric computersin Fig. 6.4.
With L = 2,
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T = giti + g3t
= (a2 +3)d, +gih + g3ty (6.64)

Comparison of (6.63) and (6.64) shows that the combined signals in each case
are the same. The only difference is the phase rotations of the noise vectors
which will not change the error probability due to their circular symmetry.

2 x L diversity:. We now consider the case of 2 transmit antennas and L
receiver antennas, and show that the performance is equivalent to a receiver
diversity order of 2L. Theresults are illustrated for the case of 2 x 2 diversty,
and the extension to L x L diversity will be obvious. To describe the scheme,
we need to introduce the following notation

gj; = channel gain between receiver antennaj and transmit antenna .
rqy,; = receved sgna a antennaj at timet.
T(g); = received sgna a antennaj a timet + T.

The encoding scheme remains the same as before: symbols §(;y and 85 are
transmitted from from Antennas 1 and 2 & time t, and symbols —s7,, and 57,
are transmitted from Antennas 1 and 2 a time t + T. The received signals are

Ty = g11801) +92,182) + Ny 1
Ta)2 = —91180) + 92,180 + )2
T2),1 = 91,2501) T 92,28(2) + A(2),1
F2)2 = —01,280y + 92,28(1) T R(2),2

The combiner shown in Fig. 6.13 constructs the following two signa vectors
‘~’(1) = QI,1I~'(1),1 + 92,1?(1),2 + 9?,25(2),1 + 92,25?1),1 (6.65)
Vi) = g2:F)1 — 911y 0 + G20 2)1 — 92u8(y),  (6.66)

Adgain, the receiver applies thevectors v(;yand v to the metric computer in
Fig 6.4 and decisions are made by maximizing the metric in (6.62).
To compare with MRC, we substitute appropriate equations to obtain

v = (a%,1 + 0‘%,2 + a%,l + a%,z)g(l)
+91101),1 + 92,1001y 5 + 91 9B(2) 1 + g2.2M1yy,  (6.67)
Vo = (of,+ ol + ab 1 + 0 9)8z
+9310(1),1 — 91,1003y 5 + G500 (2),1 — g210(yy,;  (6.68)
This is to be compare with the output of the MRC in Fig. 6.4. With L = 4,
I = gif1+g5F2 +g3F3 + g4fa
= (o + a3+ ok +a2)sy, +giny + gy + gifiy + gifa (6.69)
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Figure 6.13.  Space-time diversity receiver for 2 x 2 diversity.

Again, we see the 2 x 2 transmit diversity scheme is equivalent toa 4 x 1
diversity scheme with MRC. The extension to show that an 2 x L transmit
diversity scheme is equivaent to a 2L diversity scheme with MRC is obvious.

Implementation Issues.. There are severd key implementation issues with
the above transmit diversity scheme, including the following:

= Since there are 2 transmit antennas, the power per antenna must be halved
to maintain a constant transmit power. This results in a 3 dB loss in
performance compared to a single transmit antenna.

= With 2 transmit antennas, twice as many pilot symbols are needed compared
to the case of one transmit antenna. The pilots must aternate between the
antennas. Alternatively, orthogonal pilot sequences can be used.

= |n order to achieve sufficient fading decorrelaion on the diversity branches,
the transmit antennas must be spaced a the same distance that would re-
quired if the same two antennas were to provide receiver diversity. We

have seen in Chapter 2.1.5.1 that the required separation is severa tens of
wavelengths.
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Problems

6.1. Consider aRayleigh random variable, X, with apdf given by (2.42) in the
text.

a) Let {X),X>,...,Xn} beaset of independent Rayleigh random vari-
ables each with an rms value of 1/+/N. Derive the pdf of

Y = max (Xf,Xg,...,X;"V) .

This result is useful for the study of selective combining diversity sys-
tems.

b) Again, using the s&t { X, Xs,..., Xy}, derive the pdf of
Z=XI+X3+ - +X5 .

This result is useful for the study of maximal ratio combining diversity
systems.

6.2. Suppose that two-branch selective combining is used. However, the
branches are mismatched such that 5, # 4. where the %;,7 = 1, 2 ae
the average received symbol energy-to-noise ratios for the two branches.
Plot the cdf of v against the average normalized symbol energy-to-noise
ratio 10 logo(v5/7:), Where 4 = (71 + 42) /2. Show severd curves while
varying the ratio £ = 41 /7.

6.3. Consider using selective combining with coherent BPSK. For BPSK, the
probability of bit erroris Py(v;) = Q(,/2v§) Theinstantaneous bit energy-
to-noise ratio is given by (6.8).

a) Derive an expression for the average bit error probability
B= [ Ppy(e)ds

b) Repeat part @) for two-branch switched diversity combining where the
pdf of y$¥isgiven by (6.47).

¢) Plot and compare the results in parts @) and b) for two-branch diversity.

64. Suppose that binary DPSK signaling (zx € {—1,+1})is used on aflat
Rayleigh fading channel with 3-branch diversity. The diversity branches
are assumed to experience uncorrelated fading. The signal that is received
over each diversity branch is corrupted with AWGN having aone-sided psd
of N, wattyHz. The noise processes that are associated with the diversity
branches are mutually uncorrelated.
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a Suppose that a separate differential detector is used on each diver-
sity branch, yielding three independent estimates of each transmitted
bit, i.e, for z; the receiver generates the three independent estimates
(£}, %%,23). Majority logic combining is then used to combine the
three estimates together to yield the final decision Z, i.e,

P -1 iftwoormore:fcfC =-1
ET 41 if two or more Zj, = +1

Find an expression for the probability of bit error, P,. Evaluate.P, for
7. = 20 dB,where 7, is the average received branch bit energy-to-noise
ratio.

b) Evaluate the probability of bit error for 4, = 20 dB if the receiver uses
3-branch diversity with postdetection equal gain combining. Compare
with the result in part a).

¢) Generalize the expression for the probability of bit error in part a) to
L-branch diversity.

65. Derive (6.27) for BPSK and maximal ratio combining.

66. Derive (6.54) for DPSK with differential detection followed by equal gain
combining.

6.7. The bit error probability MSK signaling on a Rayleigh fading channel
with additive white Gaussian noise is

1 -
p—Lli_ [ %
2 14+

a) Derive a Chernoff upper bound (see Appendix A) on the probability of
bit error for the same channel and compare the Chernoff bound with the
exact error probability.

b) Repeat part @) if the receiver employs L-branch diversity. Assume
uncorrelated diversity branches with 4, = 4 = - - - 1, = 7.

68 Suppose that BPSK modulation is used with two-branch diversity and
coherent equal gain combining. Assume uncorrelated diversity branches
with 41 = 42 = 4.. Show that the probability of bit error for a Rayleigh
fading channel is given by (6.38).

69. Consider a system that uses L-branch selection diversity. The instanta-
neous received signal power on each diversity branch, ,sq;, ¢ = 1,..., L,
has the non-central chi-square (Ricean fading) distribution in (2.51). The
instantaneous recelved signal power from each interferer on each diver-
sity branch, sk, ¢ = 1,..., L has the exponentia (Rayleigh fading)
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distribution in (2.44). Note that al the so; and s ; are all independent.
Let \; = s0:/ SN sk 4 = 1, ..., L be the instantaneous carrier-to-
interference ratio for each diversity branch and A; = max; A;. Derivean
expression for the probability of co-channel interference outage

O] == P()\S < Ath) .
Plot O; against Ay, for various L.

6.10. Consider a coherent MSK system that operates over a dow flat Rayleigh
fading channel in the presence of a single flat Rayleigh faded co-channel
interferer. The received carrier-to-interference ratio is A = sq/s1, where
so and s, are independent exponentially distributed random variables with
density in (2.44). The average signal-to-interference ratio is defined as

1]>

A

2| %

a) Derive an expression for the probability density function of . What is
the mean value of A?

b) To improve the bit error probability performance, L-branch antenna
diversity is employed at the receiver. Assume that the A; experienced
on each of the diversity branches are independent. If selective diversity
combining is used, what is the probability density function of the signal-
to-interference ratio at the output of the selective combiner?

6.11. Suppose that two-branch antenna diversity is used with selective com-
bining. However, the branches have correlated fading so that the maximum
diversity gainis not achieved. Let y; and ~y2be thejoint pdf for the instanta-
neous it energy-to-noise ratio for each diversity branch, and let 5. = E[vi].
It is known that joint pdf of v; and 7y» is

1 ( 20/ 122 > exp{ 1+ T2 }

T1,T2) = = 0% = T 7.1 = p?)
Pum(@122) = oy o\ 5 = e(1 = p?)

where p is magnitude of the covariance of the two complex, jointly Gaussian
random processes that are associated with each diversity branch. Derive an
expression for the cdf of the output of the selective combiner

¥s = max{vy1,72} -

Plot the cdf for various p. What conclusions can you make?



This page intentionally left blank.



Chapter 7

EQUALIZATION
AND INTERFERENCE CANCELLATION

Land mobile radio channels are modeled as fading dispersive channels,
because of the multipath propagation and the randomly changing medium
characteristics. Many types of impairments are observed on these channels
such as multipath spread (or delay spread), fading, Doppler spread, nonlinear
distortion, frequency offset, phasejitter, impulse noise, thermal noise, and co-
channel and adjacent channel interference arising from spectrum sharing. This
chapter concentrates on the effects of delay spread, fading, Doppler spread,
thermal noise, and co-channel interference. Delay spread causes interference
between adjacent symbols, known as intersymbol interference (1Sl), a large
Doppler spread indicates rapid channel variations and necessitates a fast con-
vergent algorithm when an adaptive receiver is employed, and fading results
in avery low received signal-to-noise ratio or signal-to-interference ratio when
the channel exhibits a deep fade.

An adaptive equalizer is an arrangement of adjustable filters at the receiver
whose purpose is to mitigate the combined effect of ISl and noise [210, 274].
Two broad categories of equalizers have been documented extensively in the
literature; symbol-by-symbol equalizers and sequence estimators. Symbol -
by-symbol equalizers include a decison device to make symbol-by-symbol
decisions on the received symbol sequence, while sequence estimators make
decisions on sequences of received symbols. Many structures and adaptive
agorithms have been proposed for each type of equalizer for different channel
characteristics. Sequence estimators are generally more complex than symbol-
by-symbol equalizers, but can potentially offer better performance.

This chapter begins with a brief survey of adaptive equalization techniques.
Thisisfollowed by adiscussion of ISI channel modeling in Section 2.. The op-
timum receiver for digital signaling on an ISl channel is presented in Section 3..
Section 4. provides atreatment of symbol-by-symbol equalizers and Section 5.
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provides a treatment of sequence estimators. Section 6. provides an analysis
of the bit error rate performance of maximum likelihood sequence estimation
(MLSE) on datic ISI channels and multipath fading ISl channels. Finally,
Section 7. analyzes the performance of fractionally-spaced MLSE receivers on
ISl channels.

1  OVERVIEW
11 SYMBOL-BY-SYMBOL EQUALIZERS

Lucky [208, 209] was the first to develop an adaptive (linear) equalizer for
digital communication systems in the mid-1960s. This equalizer was based on
the pesk distortion criterion, where the equalizer forces the ISl to zero, and it
is caled a zero-forcing (ZF) equalizer. Soon after, Proakis and Miller [271],
Lucky et. al. [210], and Gersho [134] developed the linear LM S equalizer,
based on the least mean square (LMS) criterion. The LMS equalizer is more
robust than the ZF equalizer, because the latter ignores the effects of noise.
Thaper [319] examined the performance of trellis coded modulation for high
speed data transmission on voiceband telephone channels, and proposed a
simple receiver structure that used an adaptive linear equalizer. He reported
that the performance was close to ideal, but his work did not include the more
severely distorted multipath fading ISl channels.

Linear equalizers have the drawback of enhancing channel noise whiletrying
to eliminate 1SI, a characteristic known as noise enhancement. As a resullt,
satisfactory performance is unattainable with linear equalizersfor channels hav-
ing severe amplitude distortion. In 1967, Austin [20] proposed the nonlinear
decision feedback equalizer (DFE) to mitigate noise enhancement. Because
only the precursor ISl is eliminated by the feedforward filter of the DFE, noise
enhancement is greatly reduced. To eliminate the postcursor 1Sl, the estimated
symbols are fed back through the feedback filter of the DFE. However, this
introduces error propagation which can serioudy degrade the performance of
the DFE and complicate analysis of its performance. Belfiore and Park [29]
proposed an equivalent DFE, called apredictive DFE, by using alinear predic-
tor as the feedback filter. This structure is useful when a DFE is combined with
a sequence estimator for equalization and decoding of trellis-coded modulation
on an ISl channel [107].

Early adaptive equalizers were implemented by using a transversal filter
with a tap-spacing equal to the signa interval, T, known as symbol-spaced
equalizers. The performance of a symbol-spaced equalizer is very sensitive to
the sampling instant and can be very poor with an improperly chosen sampling
time [42, 329, 140]. Even with perfect timing and matched filtering, the
symbol-spaced equalizer cannot realize the optimal linear receiver because of
the finite tapped delay line structure. Brady [42], Monson [230], Ungerboeck
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[329], and Gitlin and Weinstein [140] solved this problem by proposing a
fractionally-spaced equalizer (FSE), where the tap-spacing is less than T. If
a symbol-spaced equalizer is preceded by a matched filter, then an FSE and a
symbol-spaced equdizer are equivalent. However, the exact matched filter is
difficult to obtain in practical applications because its structure depends on the
unknown channel characteristics and, hence, an FSE is quite attractive. It can
aso be argued that the FSE can achieve an arbitrary linear filter with a finite-
length fractionally-spaced tapped delay line. Hence, the FSE is expected to
outperform a (finite-length) symbol-spaced equalizer even with ideal matched
filtering and sampling.

Inthe 1980's, Gersho andLim [135], Mueller and Salz [237], and Wesol owski
[354] proposed an interesting decision-aided equalizer, known as an ISl can-
celler. Theoreticaly, ISI cancelers can eliminate ISl completely without any
noise enhancement. However, a decision-aided mechanism is employed in the
equalizer so that it suffers from error propagation, similar to a DFE.

Various adaptation algorithms have been proposed to adjust the equalizer
coefficients. The LMS algorithm, proposed by Widrow et. al. [357], and
analyzed by Gitlin et. al. [139], Mazo [220, 221], Ungerboeck [327], and
Widrow et. al. [358], isthe most popular because of its simplicity and numerical
stability. However, the LMS agorithm converges very slowly for channels with
severe amplitude distortion.  This dow convergence is intolerable for many
practical applications. For example, Hsu et. al. [171] reported that the LMS
algorithm is not suitable for an HF shortwave ionospheric channel, because
the channel has severe amplitude distortion when a deep fade occurs and the
channel characteristics change very rapidly.

A considerable research effort has been directed to finding a fast-convergent
algorithms for adaptive equalizers. In 1974, Gordard [146] described a fast-
convergent agorithm later known as the recursive least square (RLS) ago-
rithm. This agorithm utilizes all available information from the beginning
of processing, and converges much faster than the LMS algorithm. Unfortu-
nately, the computational complexity is proportiona to N2, where N is the
order of the equdizer, which is too high for many practica applications. To
reduce the complexity, Falconer and Ljung [113], and Cioffi and Kailath [58]
developed different fast RLS agorithms in 1978 and 1984, respectively. These
agorithms have acomplexity proportiona to the equalizer order N. However,
when the agorithms are implemented with finite precision arithmetic, they tend
to become unstable. Examples of this numerical instability were reported by
Mueller [236].

Another RLS agorithm, caled the recursve least square lattice (RLSL)
algorithm, was investigated by Morf et. al. [232], Satorius [291, 292], Fried-
lander [124], and Ling and Proakis [200]. The RLSL algorithm has a higher
complexity that the fast RLS algorithms, but has better numerical stability.
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However, numerical instability of the RLSL algorithm was still reported by
Perl et. al. [260].

Some applications of symbol-by-symbol equalization techniques to multi-
path fading channels were studied by Monson [230, 231], Hsu et. al. [171], Ling
and Proakis [201], and Eleftheriou and Falconer [99]. For rapidly time-varying
channels, areinitialization procedure might be needed for fast-convergent ago-
rithms in order to avoid numerical instability [97]. Finaly, Wong and McLane
[363] examined the performance of trellis-coded modulation for HF radio chan-
nels having in-band spectra nulls. They considered both linear and non-linear
equalization and proposed a modified DFE (MDFE).

12 SEQUENCE ESTIMATION

The Viterbi algorithm was originally devised by Viterbi for maximum like-
lihood decoding of convolutional codes [341, 342]. Forney recognized the
analogy between an ISl channel and a convolutional encoder, and applied the
Viterbi algorithm for the detection of digital signas corrupted by 1Sl and ad-
ditive white Gaussian noise [127]. Because of the efficiency of the Viterbi
algorithm, the implementation of optimum maximum likelihood sequence
estimation (ML SE) for detecting | SI-corrupted signalsisfeasible.

After Forney's initial work [127], the MLSE receiver was modified and
extended. Magee and Proakis [215] proposed an adaptive ML SE receiver that
employed an adaptive channel estimator for estimating the channel impulse
response. Ungerboeck [328] developed a simpler MLSE that dso accounted
for the effect of carrier phase errors and sampling time errors.  Acampora
[6] used MLSE for combining convolutional decoding and equalization, and
extended the application of ML SE to quadrature amplitude modulation (QAM)
systems [7].

MLSE has a complexity that grows exponentially with the size of signa
constellation and the length of channel impulse response. MLSE isimpractical
for systems having a large signal constellation and/or having a long channel
impulse response. Considerable research has been undertaken to reduce the
complexity of MLSE while retaining most of its performance. Early efforts
concentrated on shaping the original channel impulse response into the one
having a shorter length. Then a sequence estimator with a smaller number
of states can be applied. In [275], Qureshi and Newhall employed a linear
equalizer as the shaping filter. This method is quite successful if the original
channel and the desired channel have a similar channel spectrum. Falconer and
Magee [112], and Beare [27] adaptively optimized the linear equalizer and the
desired channel response, by minimizing the mean square error between the
output of the equalizer and the desired channel. This scheme has improved
performance when the original channel is quite different from the desired one,
but it has ahigher complexity. As mentioned earlier, linear equalizers enhance
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the channel noise. Lee and Hill [191] proposed using a DFE to truncate the
channel impulse response S0 as to reduce the system complexity and mitigate
noise enhancement.

Another approach for reducing the complexity of MLSE lies in simplifying
theViterbi agorithm itsdf. By employing suitable decision regions, Vermuelen
and Hellman [337] and Foschini [120] observed that only a smal number
of likely paths need to be extended to obtain a near maximum likelihood
performance. Wesolowski [355] employed a DFE to determine a small set of
likely signal points, and then used the Viterbi algorithm to find the most likely
sequence path through areduced-state trellis. Clark et. al. [60] and Clark and
Clayden [61] aso proposed some similar detection methods.

Recently, two novel reduced-state sequence estimation techniques have been
proposed. Eyuboglu and Qureshi [109] proposed reduced-state sequence es-
timation (RSSE), atechnique that is especialy useful for systems with large
sgna constellations. Duel-Hallen and Heegard [90, 89] proposed delayed
decison-feedback sequence estimation (DDFSE), a technique that is useful
for channels with long impulse responses (DDFSE can be applied on channels
with an infinite impulse response). Chevillat and Eleftheriou [49] indepen-
dently proposed the same dgorithm, but for a finite length channel. Both
RSSE and DDFSE use the Viterbi agorithm to search for the most likely path,
and provide agood performance/complexity trade-off. In both schemes, afeed-
back mechanism must be introduced to compute the branch metrics, because
of the reduction in the number of system states. This feedback introduces error
propagation. However, the effect of the error propagation is much smaller than
with a DFE [109, 90]. Eyuboglu and Qureshi [109] aso observed that for
channels with afinite channel impulse response, DDFSE can be conveniently
modeled as a specid case of RSSE. Eyuboglu [107] and Chevillat and Eleft-
heriou [49] dso suggested using RSSE for systems employing trellis-coded
modulation. Sheen and Stilber have obtained error probability upper bounds
and approximations for RSSE and DDFSE for uncoded systems [301] and
trellis-coded systems [302].

Eyuboglu and Forney [108] proposed a combined precoding and coded
modulation technique that achieves the best coding gain of any known trellis
code. With their technique, equalization is achieved by using Tomlinson-
Harashima precoding [108], which requires that the channe impulse response
be known at the transmitter.

For decoding convolutiona codes, asequentid decoding algorithm isagood
dternative to the Viterbi agorithm, especially when the encoder has along con-
straint length and the system has a moderate-to-high SNR [199]. It is apparent
that sequential sequence estimation (SSE) can be applied for detecting 1S1-
corrupted signals. Long and Bush [206, 205], and Xiong et. al. [368] reported
some results on this gpplication. In [206, 205], the Fano agorithm [114] was
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employed as the detection algorithm, and a DFE was used to determine the path
to be extended. If the DFE makes correct decisions most of the time, then the
number of nodes visited by the Fano algorithm can be reduced. The multiple
stack algorithm [48] was employed in [368] for avoiding the erasure or buffer
overflow problem encountered with sequential detection algorithms. Systems
with an infinite impulse response were also considered in [368].

Applications of sequence estimation techniques to multipath fading ISl chan-
nels were studied by D’aria and Zingarelli [76], D’avella et. al. [77], and
Eleftheriou and Falconer [99]. MLSE was employed for equalizing UHF land
mobile radio channels in [76, 77], and employed for equalizing HF shortwave
ionospheric channels in [99]. Tight upper bound on the error probability of dig-
ital signaling on fading I1SI channels with MLSE have been provided by Sheen
and Stiber for uncoded systems [300] and trellis-coded systems [303]. Katz
and Stuber [285] have applied SSE for the detection of trellis-coded signals on
multipath fading IS channels.

13 CO-CHANNEL INTERFERENCE CANCELLATION

The spectral efficiency of TDMA cellular systems, such as 1S-54/136 and
GSM, islimited primarily by co-channel interference (CCl). Several approaches
may be used to combat CCl. Adaptive antenna arrays that use beam and
null steering principles are one solution. Co-channel interference cancella-
tion (CCIC) is another approach where signal processing techniques are used
to cancel the CCl. CCIC receivers can use either a single antenna or multiple
antennas. Single antenna CCIC recelvers treat the channel as a multiple-input
single-output (MISO) channel. The problem in this case is very similar to
CDMA multiuser detection. However for narrowband systems, such as IS
54/136, the CCIC receivers usually employ multiple receiver antennas to gain
additional degrees of freedom. The use of multiple receiver antennas crestes a
multiple-input multiple-output (MIMO) channel.

Winters[361, 362] suggested an optimum linear minimum-mean square error
(MMSE) combining technique for flat fading channels with CCI. The optimum
combiner jointly combats the effects of fading and CCl through digital beam
forming with an M-element spatial diversity combiner. For the case of two
antenna elements, direct matrix inversion (DMI) was suggested as a means of
updating the antenna weighting coefficients. Optimum linear combining has
the disadvantage that it cannot combat 1SI. Co-channel interference and ISl
can bejointly combated by using symbol-by-symbol egqualization techniques.
DFE-based approaches have been suggested by Duel-Hallen [91], Tidestav et
al. [320] and Uesugi etal. [326].

By extending Forney’s maximum likelihood receiver [127], Van Etten [103]
proposed MLSE for joint maximum likelihood sequence estimation. Varia
tions of the MLSE approach have been suggested by many authors, including
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Giridhar et al. [138], Yoshino et al. [375], Yokota et al. [374], and Ranta et
al. [277). Bottomley and Jamal [41] have developed a scheme that combines
adaptive antenna arrays and MLSE equalization. CCIC is performed in the
Viterbi metric and the receiver is equivalent to Winter's optimum linear com-
biner under flat fading channel conditions. This work was extended by Molnar
and Bottomley to areceiver that uses horizontal and vertical polarized antenna
arrays [229]. The polarization diversity increases the diversity gain against
fading that is lost when the Viterbi branch metric is modified for the purpose
of CCIC. An interesting modification to the receiver in [41] was very recently
proposed by Bottomley and Molnar [40], where CCIC is used for both channel
and data estimation.

Finaly, we note that CDMA multi-user detection techniques can be readily
extended to narrow-band to perform CCIC in narrow-band TDMA systems.
In many cases, the mathematical framework is the same or very similar. The
optimum multiuser detector for asynchronous CDMA systems was developed
by Verdi [336]. A variety of less complex suboptimal CDMA multi-user
detectors have aso been developed, including the decorrelator detector [211,
212] linear MMSE detectors [367], non-linear decision feedback detectors
[92, 93], and multi-stage detectors [334, 335].

2. MODELING OF IS CHANNELS

Chapter 4 showed that the complex envelope of any modulated signal can
be expressed in the generd form

§(t)=AD bt —nT,xy) . (7.1)

This chapter regtricts attention to linear modulation schemes where
b(t,xn) = Tphe(t) (7.2)

hq(t) isthe amplitude shaping pulse, and {z, } isacomplex symbol sequence.
In general, ASK and PSK waveforms are included, but most FSK waveforms
are not.

Suppose that the signal in (7.2) is transmitted over a channel having a time-
invariant complex low-pass impulse response g¢(t). The received complex
envelope is

7(t) = zph(t — nT) + fi(t) (7.3)

where 00
h(t) = /_ ha(m)g(t = r)dr (7.4)

is the convolution of the transmitted pulse h,(¢t) and the channel impulse
response g(t), and 7(t) is azero-mean complex additive white Gaussian noise
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Figure7.1. Digital signaling on an ISIchannel. The receiver implements a filter that is matched
to the received pulse followed by a symbol rate sampler.

(AWGN) with a power spectral density of N, watts’Hz. Since the physical
channel is causal, the lower limit of integration in (7.4) can be replaced by zero,
resulting in

}m)zAwm@mu—rmT £>0 . (7.5)

Finaly, the overdl pulse h(t) is assumed to have a finite duration so that
h(t) = 0fort < 0and t > (L + 1)T, where L is some positive integer.
We will show in Section 3. that the maximum likelihood receiver consists of
an analog filter h*(—t) that is matched to the received pulse h(t), followed
by a symbol- or T-spaced sampler. Assuming that a matched filter has been
implemented, the complex low-pass signal at the output of the matched filter is

y(t) = anf(t —nT) + v(t) (7.6)

where o
ﬂﬂ:LthMh+ﬂm (1.7)

and o
v(t) = /_oo h*(T)z(t — 7)dT (7.8)

is the filtered noise. Note that the overal pulse response f (t) accounts for
the transmit filter, channel, and receive filter. The overall system as described
above is shown in Fig. 7.1.

Sampling the matched filter output every T seconds yields the sample se
quence

ye = y(kT) = Z nf (kT — nT) + v(kT)

Il

Z Tnfr—n +
n

I

Tk fo + Z Tnfr—n + Vk (7.9)
n#*k

where f, = f(nT) and v, = v(nT). The first term in (7.9) is the desired
term, the second term is the I1SI, and the last term is the noise at the output of
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Figure 7.2.  Discrete-time model for digital signaling on an ISI channel.

the matched filter. It follows that the overal discrete-time system in Fig. 7.1
can be represented by adiscrete-time transversal filter with coefficients

f= (f—L7 f—L+11 ) f—l, f07 fl, sy fL—la fL) . (710)

This representation is depicted in Fig. 7.2.
From (7.9), the condition for ISI-free transmission is

fn = 6nofo (7.11)
in which case
Yk = T fo+ vk - (7.12)
Chapter 4.2 shows that the pulse f (t) satisfies fn = dnofo if and only if
Al & 7n
Fz(f)=Tn=Z_ooF<f+T> = fo . (7.13)

That is, it is sufficient and necessary that the folded spectrum Fx(f) beflat.
For 1SI-free transmission, the pulse f (t) can be any function that has equally
spaced zero crossings.

21 VECTOR REPRESENTATION OF RECEIVED
SIGNALS

As discussed in Chapter 5.1, a Gram-Schmidt orthonormalization procedure
can be used to express the received signal as

N-1
F(t) = Y Fapn(t) + 2(t) (7.14)
n=0

wherethe {¢, (t) } form acomplete set of complex orthonormal basis functions
defined over theinterval (0, T) and

N-1
Aty =) — ) i - (7.15)
n=0
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It can be readily shown that
k= Tnhg, + ik (7.16)
n
where!

T
b, = [ b(t-nT)pilt)dt
0

T
A = / A()k (8)dt . (7.17)
0
Since the 7, are complex Gaussian random variables with zero-mean and

covariance 3E[f}fim] = Nobkm, the vector ¥ = (1,7, --,7n) has the
multivariate Gaussian distribution

N-1 1 1
rix,H) = ——exp —=— |T
plelx ) = T g e =57

where
H= (h07 h2’ R hN—l)T (7.19)

and
hy = (Big, hiys - hey) - (7.20)

3.  OPTIMUM RECEIVER FOR ISI CHANNELSWITH
AWGN

The maximum likelihood receiver decides in favor of the symbol sequence x
that maximizes the likelihood function p(w [x, H) or the log-likelihood function

logp(w|x,H),i.e.,
choose x if logp(wix,H) > logp(w|x,H) Vx#x. (7.21)

For an AWGN channel, p(w|x, H) has the form in (7.18) and the decision rule
in (7.21) is equivalent choosing x to maximize the quantity

N-1 2
plx) = - Z Tk — anhkn
k=0 n
N-1 N-1
NS (F,’;anhkn +«sz_«,;;h;n>
k=0 k=0 n n
N-1
- <anhkn) (Zw:‘nh;n> . (1.22)
k=0 m

n

Asin Chapter 5.1, we assume that h (t) has duration T, athough the development applies to longer pulses
as well.
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Since the term 2,1:’:‘01 7|2 is independent of x, it may be omitted so that the
maximum likdihood receiver chooses x to maximize

N-1 N-1
(%) = 2Re {Zm; 3 fkh;;n} Y S aaeh, Y hehh, (.23

n

where Re{Z} denotes the red part of z. To proceed further, note that

N-1

oo
A}x_r}noo kzz:o Tehg, = /_oo F(r)h* (v — nT)dr = y, (7.24)
N-1 o
Jim kg‘a he bt = /_  h{r = D)W (r = mT)dr = fn_o(729

where y,, and f,,—, were introduced earlier. The variables {y,} are obtained
by passing the received low-pass signal 7(t) through the matched filter A*(—t)
and sampling the output. Note that the T-spaced samples a the output of the
matched filter must be obtained with the correct timing phase, and in the above
development perfect symbol synchronization is implied. The {f,} are caled
the I'SI coefficients and have the property that f,, = f*,,. By using (7.24) and
(7.25) in (7.23) we have the final form

pu(x) = 2Re {z m,’;yn} — Z an:v;fm_n . (7.26)

The noise samples at the matched filter output are, from (7.8),

o0
Vp = / h*(r)a(nT + 7)dr (7.27)
-
and their discrete autocorrelation function is
1
duv(n) = EE[V]H_nl/;] = Nofn . (7.28)

31 DISCRETE-TIME WHITE NOISE CHANNEL
MODEL

The correlation between the noise samples poses some complications when
implementing the various equalization schemes. To overcome this difficulty,
a noise whitening filter can be employed to process the sampled sequence
{yn} asdescribed below, resulting in an equivalent discrete-time white noise
channel model. The z-transform of the vector f is

L
F(z)= Y faz™™ . (7.29)

n=—1"L
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Using the property f = f—n we can write
F*(1/2*) = F(2) . (7.30)
It follows that F(2) has 2L roots with the factorization
F(z) = G(2)G*(1/z*) (7.31)

where G(2) and G*(1/z*) are polynomias of degree L having conjugate
reciprocal roots. There are 2% possible choices for the roots of G*(1/2*) and
any one will suffice for a noise whitening filter. However, some egualization
techniques such as RSSE and DDFSE require that the polynomial of the overall
response G(2) have minimum-phase. In this case, we can choose the unique
G(2) that has minimum phase, i.e., al the roots of G(z) are inside the unit
circle. With this choice of G(2), the noise whitening filter |/G*(1/Z*) is a
stable but noncausal filter. In practice, such an noncausal noise whitening filter
can be implemented by using an appropriate delay. If the overall response
G(2) need not have minimum phase, then we can choose G*(1/z*) to have
minimum phasg, i.e., al the roots of G*(1/z*) are inside the unit circle. This
choice ensures that the noise whitening filter 1/G*(I/z*) is both causal and
stable.
Example 7.1
Consider a simple T-spaced two-ray channel where the received pulse is

h(t) = ha(t) + ahy(t — T)

and the transmitted pulse h,(t) is normalized to have unit energy. The IS
coefficients are

fo = /°° B* ($)A(t + nT)dt

-0

1+ |af? n=0
= a n = 1
a* n=-1
and, hence,
F(z) = a*z+(1+]af*) +az?

= (az7l'+D)(a*z+1) .

There are two possible choices for the noise whitening filter. Under the as-
sumptionthat |a| > 1, suppose that the zero of G* (1/z*) is chosen to be inside
theunit cirde. That is,

G(z) = l4+az!
G*(1/z") = 1+4+a*z .
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In this case, the noise whitening filter is stable and causal, and the overall
system is characterized by the non-minimum phase polynomial

G(z)=1+4az"t .

Again, under the assumption that |a| > 1, suppose that the zero of G*(1/z*)
is chosen to be outsde the unit circle. That is,

G(z) = l+4a*z
G*(1/z*) = 1+az! .

In this case, the noise whitening filter is stable and noncausal, and the overall
system is characterized by the minimum phase polynomial

G(z)=1+a"z .

For any choice of noise whitening filter, the filter output is

V(z) = (X(z)F(z)+u(z))-éT(11W‘7

1
G*(1/z*)

From (7.28), the power spectra density of the noise at the input to the noise
whitening filter is

= X(2)G(z) + v(z) (7.32)

Sulf) = NF(@TY,  |f1< o (133

Therefore, the power spectra density of the noise a the output of noise whiten-
ing filter is
F(ej27rfT)
St} = Nofgr (e
G(ejZWfT)G*(ej'ZvrfT)
o G(ejzvrfT)G*(ej27rfT)

1
- N, <5 (734

which is clearly white. The above development leads to the system shown in
Fig. 7.3, with the equivalent discrete-time white noise channel model shown in
Fig. 7.4. The discrete-time samples at the output of the noise whitening filter

dae
L

Ve =D gnThn Mk - (7.35)

n=0
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Figure 7.3.  Block diagram of system that implements a filter matched to h(t) followed by a
discrete-time noise whitening filter.

Figure 7.4.  Discrete-time white noise channel model.

It follows that the effective overal channel impulse response can be described
by the channd vector

g = (g0, 91,--+, 9.)" . (7.36)

The symbol energy-to-noise ratio is

_E _ Bl Sk lgil?

T =N 9N, (1.37)

and the bit energy-to-noiseratiois v, = s/ log, M where M is the modul ation
alphabet size.

311 TIME VARYING CHANNELSWITH DIVERSITY

For time-varying channelswith D-branch diversity, the corresponding discrete -
time white noise channel model is shown in Fig. 7.5. At epoch k, the tap gains
associated with diversity branch d are described by the vector

gi(k) = (go,a(k), gra(k), ... gra(k))” (7.38)

The {gi a(k)} are discrete-time complex Gaussian random processes that are
generally correlated with the covariance matrix

B, (m) = 5Elga(k +m)gl (k) (1.39)



Equalization and Interference Cancellation 315

Xk

Figure 7.5. Discrete-time white noise channel model with D-branch diversity, from [300].

where H denotes Hermitian transposition. The received sample on branch d at
epoch k is
L
Ukd = D Gi,a(k)Th—i + Thd - (7.40)
=0
The 7 4 ae independent complex zero-mean white Gaussian noise samples
withvariance %E[lnk,dF] = N,. The average received symbol energy-to-noise
ratio for branch d is
i_ B _ Ellex) Tio Ellgial’]
d 1=0 1
= — = 2 . 41
T TN, 9N, (7.41)
In many cases, the branches are balanced so that 4¢ = 4, d = 1,...,D.The
averaged received branch bit energy-to-noise ratio is 7, = 7,/ log, M.

3.1.2 T/2-SPACED RECEIVER

In practice the the matched filter outputs are often oversampled for the
purpose of extracting timing information and to mitigate the effects of timing
erors.  One important example that will be consdered at various points in
this chapter is when the output of the receiver filter, y(t), is sampled with rate
2/T. In this case the overall channel impulse response and sampler can be
represented by a T/2-spaced discrete-time transversal filter with coefficients

f(Q) :(f_Qz)La f_22)L+17 Tty fgz)a f(§2)a f1(2)7 R 2%)——15 fQ(i)) . (742)

where (- )@ indicates rate 2/T sampling. If it so happens that the samples in
(7.42) are obtained with the correct timing phase, i.e., f,(f) = f(nT/2), then

f = (f-r, f-r+15 -y fo1, fos frs ooy foo1s fL) (7.43)
2 2 2 2 2
(f£2)La f_22)L+2a vy f£22)7 f(g )a f2( )) ey 2([,)_2, fQ(L))
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Figure 7.6. Block diagram of system that implements a filter matched to h(t) followed by a
T'/2-spaced sampler and a T'/2-spaced noise whitening filter.

where f£2) = ( ffg,z) and f, = ). More details on ti ming phase sensitivity
will be provided in Section 7.4.

The T/2-spaced noise samples at the matched filter output have the autocor-
relation

$u(n) = N f12) (7.44)
The z-transform of £(2), denoted as F(?)(z), has 4L roots with the factorization
F@(z) = G@(2)(GPD(1/2*))* (7.45)

where G (z2) and (G (1/2*))* are polynomials of degree 2L having con-
jugate reciprocal roots. The T/2-spaced correlated noise samples can be
whitened by using afilter with transferfunction 1/(G®(1/z*))*. Once again,
(G®@(1/2*))* can be chosen such that all its roots are inside the unit circle,

yielding a stable and causal noise whitening filter. On the other hand, we could

choose the overall response G (z) to have minimum phase, if necessary. The
output of the noise whitening filter is

Z R (7.46)

where { n,(f)} is a T/2-spaced white Gaussian noise sequence with variance
LE[ln (2)12] = N, andthe {g7(12)} are the coefficients of a T/2-spaced discrete-

time transversal filter having atransfer function G(®(z). The sequence {m(2)}
is the corresponding T/2-spaced input symbol sequence and is given by

@ _ [ Tapp, n=0,24,...
z; { 0 n=135.. (7.47)

The overall system and equivalent discrete-time models are shown in Figs. 7.6
and 7.7, respectively.
Comparing (7.31) and (7.45), we have

2L L
> 92 = 3ol = A=y (7.48)
k=0 k=0
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Figure 7.7.  Discrete-time white noise channel model with rate 2/T sampling.

Nﬁti ce that the samples v{2) and w52, ; correspond to the nth received baud,
where

vy = Zggk Tni + 150 (7.49)
2 2 2
wa, = Z AT (7.50)
i=0

Finally, by comparing (7.35) and (7 50), we note that v ) is not necessarily
equa to v, because a different noise whitening filter is used to whiten the

T/2-spaced samples.

4. SYMBOL-BY-SYMBOL EQUALIZERS

There are two broad categories of symbol-by-symbol equalizers, linear for-
ward equdizers and nonlinear decison feedback equalizers. As shown in
Fig. 7.8, a linear forward equalizer condsts of a transversa filter with ad-
justable tap coefficients. The tap co-efficients of the equalizer are denoted by
the column vector

¢ =(co, €1, -+ eN-1)T (7.51)

where N is the number of equalizer taps. Assuming that the equalizer is
preceded by a whitened matched filter that outputs the sequence {vn},the
output of the equalizer is

En= Y CjUn_j (7.52)
s

where the v,, are given by (7.35). The equalizer output Zj is quantized to the
nearest (in Euclidean distance) information symbol to form the decison .
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Figure 7.8.  Linear transversal equalizer with adjustable T'-spaced taps.

Observe that the overall discrete-time white noise channel and equalizer can
be represented by a single filter having the sampled impulse response

q=1(90,91, -, qN+L1-1)" (7.53)
where
N-1
gn = E ngn—j
3=0
= c’g(n) (7.54)
with
g(n) = (gnagn—lagn-—Qa---7gn—N+1)T (755)

and g; = 0,7 < 0,7 > L. That is, q is the discrete convolution of g and c.

Let the component of g of greatest magnitude be denoted by g4, . Note that
any choice of noise whitening filter that does not result in an overal transfer
function G(2) with minimum phase may have d; # 0. Also, let the number
of equalizer taps be equal to N = 2dy + 1 where d; is an integer. Perfect
egualization means that

g=e;=(0,0,...,0,1,0,...,0, 07 (7.56)
S —

d—1 zeroes

whered — 1 zeroes precedethe“1” and d is an integer representing the overall
delay. Unfortunately, perfect equalization isdifficult to achieve and does not
always yield the best performance.
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41 LINEAR EQUALIZER
411 ZERO-FORCING (ZF)

With a zero-forcing (ZF) equdizer, the tap coefficients ¢ are chosen to
minimize the peak distortion of the equalized channel, denned as

N+L-1

D, = — Gn — 4§ (7.57)
P ‘Qd| nz::o |TL nl

n#d

where g = (do, ..., dn+r—1)" isthe desired equalized channel and the delay
d is a positive integer optimized to have the value d = d; + da [59]. Lucky
showed that if the initial distortion without equalization is less than unity, i.e,

Z lgal <1, (7.58)

n;édl

Igl

then D, is minimized by those N tap values which simultaneously cause
g; = g; ford — dy < j < d+ dy. However, if the initial distortion before
equalization is greater than unity, the ZF criterion is not guaranteed to minimize
the peak distortion. For the case when ¢ = e4 the equalized channel is given

by
q= (QO7"' ,qdl—laO"“ ,0,1,0,... ,O,Qd1+N,---,(IN+L—1)T - (759)

In this case the equalizer forces zeroes into the equalized channel and, hence,
the name “zero-forcing equalizer.”

Equalizer Tap Solution. For a known channel impulse response, the tap
gains of the ZF equalizer can be found by the direct solution of a simple set of
linear equations [59]. To do so, we form the matrix

G = [g(dl), . ,g(d), .. ,g(N +dy — 1)] (7.60)

and the vector

q=(4as->Gds-»dN+a1-1)" - (7.61)
Then the vector of optimal tap gains, ¢op, satisfies

copG =" — cop = (G717 . (7.62)

Example 7.2.
Suppose that a system has the channel vector

= (0.90, —0.15,0.20,0.10, —0.05)" ,
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where g; = 0,7 < 0,7 > 4. The initial distortion before equalization is

!g 2 Z lgn| = 0.5555

and, therefore, the minimum distortion is achieved with the ZF solution. Sup-
pose that we wish to design a 3-tap ZF equalizer. Since g, is the component
of g having the largest magnitude, d; = 0and the optima equalizer delay is
d = 1. Suppose that the desired response is o = ep 0 that ¢ = (1, 0, 0).
We then construct the matrix

G = [g(0),8(1),8(2)]

0.90 —0.15 0.20
[0.00 0.90 —0.15]
0.00 0.00 0.90

and obtain the optimal tap solution
cop = (G™1)7q = (1.1111, 0.1852, —0.2160)7
The overal response of the channel and equalizer is
= (1.0, 0.0, 0.0, 0.1806, —0.080, —0.031, —0.011, 0,...)7

Hence, the minimum distortion with this equalizer is

Diin = Z gn — Gn| = 0.30247 .

Adaptive Solution. In practice, the channel impulse response is unknown to
the receiver and a known finite length sequence x is used to train the equalizer.
During the training mode, the equalizer taps can be obtained by using the
following steepest-descent recursive algorithm:

C;H-l =+ afnx:—j—dl , i=0,...,N-1 (7.63)
where
€En = Tp_q— i77.
= Tna= Y Citni (7.64)

is the error sequence, {c7} is the set of equalizer tap gains at epoch n, and «
is an adaptation step-size that can be optimized to provide rapid convergence.
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spectral density (psd)

— 2w fT
Sulf) = NoP@T), |71 < 5 (1.70)
Therefore, the psd of the noise sequence {¢,,} a the output of the equalizer is
No
See(f) = F(ei2eITy |fl < 2T . (7.71)

and the noise samples have variance

) 1/2T
or = T S,
¢ o cc(f

1/2T N
=T —2 __df . 7.72
/—1/2T F(ed?nfT) s (7.72)

If E[|zx|?] = 1 and g, = dno, then the signal-to-noise ratio at the output of the
infinite-tap equalizer is

Ellzxl?] _ 1
- — = (1.73)
¢ ¢
Finally, we can show that (see Problem 6.2)
F(*MT) = Fy(f), Il < (7.74)

. 2T

where Fy(f) is the folded spectrum of F(f) defined in (7.13), and F(f) =
|H(f)|? is the Fourier transform of the pulse f(t) = h(t) * h*(—t). It is clear
from (7.72) that ZF equalizers are unsuitable for channels that have severe
ISI, where the folded spectrum Fyx(f) has spectral nulls or very small values.
Under these conditions, the equalizer tries to compensate for nulls in the folded
spectrum by introducing infinite gain at these frequencies. Unfortunately, this
results in severe noise enhancement at the output of the equalizer. Mobile radio
channels often exhibit spectra nulls and, therefore, ZF equalizers are typically
not used for mobile radio applications.

412 MINIMUM MEAN-SQUARE-ERROR (MMSE)

The minimum mean-square-error (MMSE) equalizer is more robust and
superior to the ZF equalizer in its performance and convergence properties
[271, 270, 274]. By defining the vector

Vp = (Um Un—15 +- -, Un—N—H) (1.75)
the output of the equalizer in (7.52) can be expressed in the form

In=c"vp=vlc . (7.76)
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A MMSE equalizer adjusts the tap coefficients to minimize the mean square
error (MSE)

A -
J = Ellen-q -zl
= E [chnv,’fc* — 2Re{vlic*Tp_q} + lxn_dﬂ . 1IN

Equalizer Tap Solution. If the channel impulse response is known, the
optimum equalizer taps can be obtained by direct solution. Define

M, Elv,v]]
v E{viz,_4] (7.78)

e e

where M, isan N x N Hermitian matrix and v is a length N column vector.
Using these definitions and assuming that E[|z,_4|?] = 1, the mean-square-
error is

J =c"M,uc* —2Re{vic'} +1 . (7.79)

Thetap vector ¢ that minimizes the mean square error can obtained by equating
the gradient V. .J to zero. It can be shown that (see Problem 6.15)

V.J— (B_J, 3_J) — 2¢™M, — 2v¥ . (7.80)
860 aCN_l
Setting VJ = 0 gives
Cop = (MI)7Hvi . (7.81)

By using the identity (A1) = (AT)~! and the fact that M, is Hermitian,
the minimum mean-square-error (MMSE) is
Jmin = ¢j,Mycy, — 2Re{vics } +1
= 1-viM;lv, . (7.82)
Since the overal channel and equalizer can be represented as a single filter with
impulse response q in (7.53) it follows that the MMSE can aso be expressed

in the form
Jmin = lla — all* + No|le|® . (7.83)

Example 7.3
Consider a system having the same channel vector as in Example 7.2. Sup-
pose that we wish to design a 3-tap MSE equdizer. In this case

v = (=0.15, 0.90, 0.00)

and
Jé] —0.1500 0.1550

M, =| —0.1500 8  —0.1500
0.1550 —0.1500 S
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where 8 = 0.8850 + N,. The inverse of My is

-1 _ adj(M,)
M, = det(M,)

where det(M,) = B(5? — 0.069025) + 0.006975 and

f% —0.0225  0.158 —0.02325 0.0225 — 0.1558
adj(M,) = | 0.153 —0.02325 (3% —0.024025 0.158 — 0.02325
0.0225 — 0.1558 0.158 —0.02325 32 — 0.0225

Hence,
] ( —0.158?% +0.1358 — 0.1755
Cop = —~—— | 0.9082 — 0.02253 — 0.018135
det(M,) 0.1582583 — 0.0243
With this tap solution,
1
in=1—————(0. 2 )
Joni T (0.832582 — 0 013689)

and as N, — 0, Jmin = 0.001089424.

Adaptive Solution. In practice, the channel impulse response is unknown.
However, the equalizer taps can be obtained by using the stochastic gradient
agorithm

Gt =} + aev)_; j=0,...,N—1 (7.84)

where €, is given in (7.64). To show that (7.84) leads to the desired solution,
note from (7.80) that

VeoJ = 2E[cvpvi —z,_gv]
= 2E[(c"vp — Zp_g)V]]
= 2E[e,vii] =0 . (7.85)
It follows that
Elenvy,_;] =0, j=0,...,N-1. (7.86)

Performance of the MSE Equalizer. The performance of an MSE equalizer
having an infinite number of taps provides some useful insight. In this case

C = (Coooy -++5C0y vy Coo)
Vn

('Un+oo, coey Uny ooey 'Un—oo) .
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Since the delay d with an infinite-tap equalizer is irrelevant we can choose

d =0 0 that L<i<o
* 1 _ g*—] s S] <

Elznvn—] = { 0 , otherwise

The equation for the optimal tap gain vector ¢c”M,, = vZ can be written in the
form

(7.87)

oQ

> ci(fj-i + Nobij) = g*; —0<j< oo . (7.88)

1=—00

Taking the z-transform of both sides of (7.88) gives

C(z) ( G(2)G(1/2") + NO) -G (1)) (7.89)
and, therefore, (1)
CE) = G TN, (7.90)

The equivalent MSE equalizer that includes the noise whiteningfilter 1/G* (1/2*)
is

! 1 _ 1
G(2)G*(1/2*) + N, F(2)+ N,

Notice that C'(2) has the same form as the ZF equalizer in (7.69), except for
the noise term N, in the denominator. Clearly, the ZF and MSE criterion lead
to the same solution in the absence of noise.

The most meaningful measure of performance is the bit error probability.
However, for many equalization techniques, the bit error probability is a highly
nonlinear function of the equalizer co-efficients. One possibility is to evaluate
the MM SE of an infinite-length MM SE equalizer [270]

1/2T
Joo = / o
min T ) joT FE if

df . (7.92)

C'(z) =

(7.91)

1/2T N
S / Yo
—1721 Fs(f) + N,
Note that 0 < Jmin < 1, and that Ji, = 0 when there is no 1S or noise and
Jmin = 1 When the folded spectrum Fy;( f) exhibits a spectrd null.

Another useful measure for the effectiveness of linear equalization tech-
niques is the signal-to-noise-plus-interference ratio (SNIR) defined as

|gal

SNIR = .
Z’Y*L g2 + No 255 g1

(7.93)
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Figure 7.9.  Decision feedback equalizer.

Although the MSE equalizer accounts for the effects of noise, satisfactory
performance still cannot be achieved for channels with severe ISl or spectra
nulls, because of the noise enhancement at the output of the equalizer [270, 107).
Another problem with alinear equalizer is the adaptation of the equalizer during
data mode. This problem is especially acute for systems that use trellis-coded
modulation, because the equalizer-based decisions are unreliable and inferior
to those in uncoded systems due to the reduced separation between the points
in the signal constellation. This problem can be partially aleviated by using
periodic training, where the equalizer taps are alowed to converge in the
periodic training modes. When the equalizer has converged, the updating
algorithm is disabled [88]. However, this approach is only suitable for fixed
channels or channels with very slow variations such as voiceband data channels.

42  DECISION FEEDBACK EQUALIZER (DFE)

The deleterious effects of noise enhancement that degrade the performance
of linear equalizers can be mitigated by using a nonlinear decision feedback
equalizer (DFE). The DFE consists of two sections; afeedforward section and a
feedback section. A typical DFE isillustrated in Fig. 7.9. The DFE is nonlinear
because the feedback path includes adecision device. The feedforward section
has an identical structure to the linear forward equalizer discussed earlier, and
its purpose is to reduce the precursor 1Sl. For reasons to be discussed later,
the input to the feedforward filter is the sampled output of the matched filter.
A separate noise whitening filter is not used in this case. Decisons made
on the equalizer outputs are propagated through the feedback filter, which is
used to estimate the ISl contributed by these symbols. The coefficients of
the feedback filter are the sampled impulse response of the tail of the system
impulse response including the forward part of the DFE.
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The output of the DFE is
N-1 M
Ty = Z CN-1-iVn+i — ZFiﬁn—i (7.94)
i=0 i=1

where {c;} and {F;} are the tap coefficients of the feedforward and feedback
filters, respectively, and {&;} is the sequence of previously detected symbols.
Recall that the overall channel and feedforward portion of the equalizer can be
represented by the sampled impulse response in (7.53). By using (7.35), the
DFE output can be written as

N-1 M
ITn = Z gN-1-iTn+i — Z FiZn i +nn
i=—L i=1
M M
= Znqno1+ Y (Tn-i = Fn-i) qv—14i + D (qN-14i — Fi)En—i
i=1 i=1
N-1 L

+ ) gN-14iTni T Y, AN-14in_i+ N (7.95)
i=1 i=M+1
If we choose
Fi = (gN-1+1 = CTgN_l_H;, ] = l, 2, e ,M (7.96)

30 that the second summeation is zero and if correct decisions are made o that
the first summation is zero, then

N-1 L
Bn=Tnqn-1+ O qN-14iTnti+ Y, GN-14i%n—i+ 0y . (7.97)
i=1 i=M+1

The first and second summations in (7.97) are the residua 1Sl associated
with the feedforward and feedback filters, respectively. Note that feedback
coefficients in (7.96) result in the complete remova of ISI from the previously
detected symbolsif L < M.

Equalizer Tap Solution. The co-efficients {¢;} and {F;} can be adjusted
simultaneously to minimize the mean square error, sometimes called aMM SE-
DFE. Define

(co, €1y +--y en—1)T (7.98)
(YntN—-1) YntN-2, -+, yn)T (7.99)
X, = (fn_1, Tn_2, .., Tn_m)” (7.100)
(F1, By, ..., Fp)T (7.101)

<
3
Il
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and

¢ = (c7,F7) (7.102)
yo = (5, %x5)7 (7.103)

Then the MSE can be expressed as

J = E[zn — 2/}
= E[&y,57¢ — Re{yic za} + |za?] . (7.104)

Since (7.104) and (7.77) have the same form it follows that the optima tap
solution can be obtained by defining

M, £ E[j.3/] (7.105)
- A -

vyl = E[y,’f:cn] (7.106)
Ep = (M])7'ys . (7.107)

Adaptive Solution. The feedforward taps of the DFE can be adjusted by
using

A= + ey j=0,....,N—-1 (7.108)
while the feedback coefficients can be adjusted according to
FM = FP + aendyy_; ji=1,...,M . (7.109)

To seethat this leads to the desired solution, observethat VeJ = 2E[e, V2] = 0
implies that

Elenthy,] = 0, j=0,...,N-1 (7.110)
Elenzy_;] = 0, j=1,...,M. (7.111)

Performance of the DFE.  Since the feedback section of the DFE eliminates
the postcursor residual ISl at the output of the forward filter, it is apparent that
the optimum setting for the forward filter for an infinite length DFE is identical

to a stable, non-causal, noise whitening filter that results in a overall channel
with a minimum phase response [274]. The MMSE for the infinite length DFE
is [289]

1/2T
Jmin = exp T/ In
—1/2T

No
P No] df} (7.112)

where0 < Jpin < 1.
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4.3 COMPARISON OF SYMBOL-BY-SYMBOL
EQUALIZERS
The typical steady-state performance for the various symbol-by-symbol
equaizers is now illustrated. Consider 4-PSK modulation on the gtatic 1Sl
channels shown in Fig. 7.10, where we have plotted

F(ed?ITy = G(ej27rfT)G*(ej27rfT) )

Channel A is an 11-tgp typical data-quality twisted copper par telephone
channel with [363]

g4 = (0.0000 + j70.0000, 0.0485 + 50.0194, (7.113)
0.0573 + 50.0253, 0.0786 + 70.0282, 0.0874 + ;0.0447,
0.9222 + 50.3031, 0.1427 + 50.0349, 0.0835 + 50.0157,
0.0621 + 50.0078, 0.0359 + 50.0049, 0.0214 + 50.0019) .

Channels B and C have [270]

gs = (0.407, 0.815, 0.407) (7.114)
goc = (0.227, 0.460, 0.688, 0.460, 0.227) . (7.115)

Channels B and C have severe ISl, with Channel C having the worst spectral
characteristics because of the in-band spectral null.

Fig. 7.11 shows the performance of the linear ZF and MM SE equalizers for
Channel A. The equalizers have 21 taps and the tap gains are obtained using the
previously discussed iterative techniques. The linear ZF and MM SE equalizers
have about the same performance for Channel A.

Fig. 7.12 shows the performance for Channel B. With linear equalization,
the optimum tap weights are obtained from a direct solution that assumes a
known channel response. Obviously, the linear ZF equalizer is not suitable
for Channel B and the linear MMSE equalizer does not perform much better.
The performance of a non-linear MM SE-DFE with 11-tap forward section and
10-tap feedback section is aso shown. The non-linear MMSE-DFE offers
much better performance than the linear ZF or MMSE equalizers for the same
complexity. Likewise, Fig. 7.13 shows the performance on Channel C. Again,
both the linear ZF and MM SE equalizers perform quite poorly, while the non-
linear MM SE-DFE offers much better performance.

5. SEQUENCE ESTIMATION
51 MLSEAND THE VITERBI ALGORITHM

Recall that the overal disrete-time white noise channgl with D-branch di-
versity reception can be modeled by collection of D transversal filters that are
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Performance of 21-tap ZF and MSE linear equalizers for 4-PSK signaling Chan-
nel A in Fig. 7.10.

T-spaced and have (L + |)-taps, as shown in Fig. 7.5. From Fig. 7.5, it can
be seen that the channel has a finite number of states. If the size of the signal



Figure 7.13. Performance of the 21-tap ZF and MSE linear equalizers and a 21-tap DFE
equalizers for 4-PSK signaling on Channel C in Fig. 7.10.
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constellationis 27, there are total of Ns = 2"L states. The state at epoch k is

Ok = (Th-1,Tk-2," ", Th-L) - (7.116)

Assume that k symbols have been transmitted over the channel. Let
Vo = (¥n1, Un2, *+-, vn,p) denote the vector of signals received on all
diversity branches at epoch n. After receiving the sequence {V,}t_,, the
ML receiver decides in favor of the sequence {z,}£_; that maximizes the
likelihood function

p(Vk, ey Vllmk, ety .771) (7.117)
or, equivalently, the log-likelihood function
logp(Vg, -+, Vil zg, -+, 1) - (7.118)

Since the noise samples {n, q} in (7.35) areindependent, and V ,, depends only
on the L most recent transmitted symbols, the log-likelihood function (7.118)
can be rewritten as

logp(Vk, e ,Vl‘fl)k, e ,1131) =
Ing(vklxlm e 7$k-—L) + Ing(Vk_l, e avllwk—la Tt ,.’E(7119)

where z4_p, = 0for £ — L < 0. If the second term on the right side of (7.119)
has been calculated previously a epoch & — 1 then only the first term, called
the branch metric, has to be computed for the incoming signal vector Vy a

epoch k.
The moddl in Fig. 7.5 gives the conditional pdf

2

1 1 D L
VilZk, ++ yZk_l) = ———F7€XpP§ — Uk d — i dTk—i
p(Vilzk k-L) N,)P P{ No‘; k.d ;ghd k—i
(7.120)
0 that log p(Vi|zk, -+ , zk_1) yields the branch metric
D L 2
He == |Vkd = D 9idTk-i (7.121)
d=1 1=0

Note that the recelver requires knowledge of the channel vectors {gq}to com-
pute the branch metrics.

Based on therecursion in (7.119) and the branch metric in (7.121), the well-
known Viterbi algorithm [342] can be used to implement the ML receiver by
searching through the Ng-state trellis for the most likely transmitted sequence
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x. This search process is cdled maximum likelihood sequence estimation
(MLSE). Here, we give a very brief outline of the Viterbi agorithm followed
by an example At epoch k, assume that the algorithm has stored Ng surviving

sequences x(g,c ) (paths through the trellis) adong with their associated path
metrics F(gk ) (distances from the received sequence) that terminate at State
g,(c), t =0, -,Ng — 1. The path metric is defined as

D)= (7.122)
{k}
where {1} is the sequence of branch metrics along the surviving path :*c(gff)).
After the vector Vi has been received, the Viterbi algorithm executes the
following steps for each state o), forj =0, -+, Ns — 1:

1 Compute the st of path metrics F(gfc) - gﬂl) = F(gff)) + p(gi” —
o)) for all possible paths through the trellis that terminate in state oY/,

2. Find T'(o{) ) = maxI'(o{ — ol),) where, again, the maximization is
over dl possible paths through the trellis that terminate in state g,&{il.

3. Store T'({") ) and its associated surviving sequence x(gk+l) Drop all
other paths.

In Step 1 above, u(QS) — 953;21) is the branch metric associated with the

transition g,(c) — g,(j ll and is computed according to the following variation of
(7.121)
D 2
u(el) — 95921) =Y kg — 90 azk(d) = Qk+1 Z ImaTe—m(0l))
d=1 m=1
) ‘ (7.123)
wheremk(gk’ - 9&21) isasymbol that isuniquely determined by the transition

() - g,(c’ll, and the L most recent symbols {xk_m(gl(:)) L _ aeuniquely
spemfled by the previous state g;”.

After dl states have been processed, the timeindex k is incremented and the
whole agorithm repeats. As implied in (7.119), the ML receiver waits until
the entire sequence {V 5, }32, has been received before making a decison. In
practice, such a long delay (maybe infinite) is intolerable and, therefore, a
decision about zx_¢ is usually madewhen Vy is received and processed. It
is well known that if @ > 5L, the performance degradation caused by the
resulting path metric truncation is negligible [342]. MLSE and the Viterbi
algorithm is best explained by example and one follows.
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Figure 7.14.  State diagram for binary signaling on a three-tap ISI channel.

-= input “-1"

input “1"

state
-1

11

Figure 7.15.  Trellis diagram for binary signaling on a three-tap ISI channel.

Example 74

Suppose that the binary sequence x, z, € {—1,+1}, is transmitted over a
three-tap static 1Sl channel with channel vector g = (1, 1, 1). In this case
there are four states, and the system can be described the sate diagram shown
in Fig. 7.14. Note that there are two branches entering and leaving each state.

In generd there are 2™ such branches.

The system state diagram can be used to construct the trellis diagram shown

inFig. 7.15, wheretheinitial zero stateisassumed tobe ol = (~1, —1). State
transitions with asolid line correspond to an input +1, while those with adashed

line correspond to an input —1.
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epoch
state 1 2 3 4 5 6 7 8
- 0.04 -3.65 -846 -4.87 -5.71 -11.96 -7.65 -1.34

0= -1-1 e X L AN Ko AN L N X

Figure 7.16. Cumulative path metrics and surviving sequences with the Viterbi algorithm.

Suppose that the data sequence x = (-1, 1, 1, -1, 1, 1, -1, —1,...)is
transmitted. Then the state sequence follows the shaded path in Fig. 7.15. The
noisaless recelved sequenceis v = (v, v1, v2, v3, v4,...)Where

Up = §0%n + g1Tn—1+ 92Tn—2
= Tp+ Tp-1+ Tn-2

Hence, for the data sequence x = (-1, 1, 1, -1, 1, 1, -1, —1,...)the
noiseless received sequenceisv = (-3, —1, 1, 1, 1, 1, 1, —1,...).
Suppose that the noisy received sequence is

v = (vo, v1, V2, U3, V4,...)
(—3.2, —1.1, 0.9, 0.1, 1.2, 1.5, 0.7, —1.3,...)

The Viterbi agorithm is initialized with I‘(g((f)) =0fori=0,---,Ng— 1L
The initial state is assumed to be o{” = (-1, —1). Executing the Viterbi
agorithm yields the result shown in Fig. 7.16, where the X’s on the branches
in the trellis denote dropped paths and the numbers in the trellis are the path
metrics corresponding to the surviving sequences. The path metrics are equal
to the square Euclidean distance between the surviving sequence (o) and
the corresponding received sequence v.

511 ADAPTIVE MLSE RECEIVER

The Viterbi agorithm requires knowledge of the channel vectors g, to
compute the branch metrics in (7.121) so that an adaptive channel estimator
is needed. Various channel estimators have been proposed in the literature
[62, 215, 98]. Usudly, a transversa digital filter with the LMS dgorithm is
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used for this purpose, because of its good performance, numerical stability,

and simplicity in implementation [163, 215]. Another possible adaptation
agorithm isthe Recursive Least Squares (RLS) or the Kalman algorithm [163].
The RLS algorithm has a very fast convergence rate as compared to the LMS
agorithm. However, it is very complicated to implement and it is sensitive
to roundoff noise that accumulates due to recursive computations which may
cause numerical instabilities in the algorithm [270]. It has also been reported
that the tracking properties of the LMS algorithm for the purpose of channel

estimation in afast varying environment are quite similar to those of the RLS
algorithm [98, 198, 304]. For these reasons the LMS agorithm is commonly
used during the tracking mode in adaptive ML SE receivers. During thetraining

mode, it is possible that the RLS agorithm could offer better performance than
the LMS algorithm.

A straightforward method for adaptive channel estimation with an MLSE
receiver is to use the final decisions a the output of the Viterbi agorithm
to update the channel estimator during the tracking mode. With the LMS
algorithm, the tap coefficients are updated according to

gia(k +1) = gia(k) + aeg-qatk—i—g, ¢ = 0,...,L
d = 1,...,D (1.124)

where « is the adaptation step size, and

L
€h—Qud = Ve-Q,d — 9 fia(k)Ek—i—q (7.125)
=0
is the error associated with branch d at epoch k. A major problem with this

channel estimator is that it lags behind the true channel vector by the decision
delay Q that is used in the Viterbi agorithm. To see this, we can write

L
Vk-Qd = Zgi,d(k - Q)Tk—i—@ +Mk-Qud (7.126)
=0
0 that
L
€k-Qd = D (gi,d(k -Q) - gi,d(k)) Th—i-Q T M-Qd -  (7.127)
=0

Hence, channel time variations over the decision delay Q will cause the terms
{9:.a(k — Q) — §; a(k)}£_, to be non-zero, and this will degrade the tracking
performance. The decision delay Q could be reduced but this will aso reduce
the reliability of the decisions #,_;_¢ that are used to update the channel
estimates in (7.124). Since decision errors will aso degrade the performance
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of the estimator, the overall performance improvement obtained by reducing Q
is often minimal.

One solution to this problem is to use per-survivor processing [296, 297,
276, 197], where each state has its own channel estimator that tracks the
channel. In this case, the tap coefficients are updated according to

Gialk +1) = gig(k) + aepadi_;, i = 0,...,L
d = 1,...,D (7.128)

where x is the surviving sequence associated with each state. Notice that the
individual channel estimators for each state use zero-delay symbols in their
adaptation algorithm and, therefore, good channel tracking performance is ex-
pected. These zero-delay symbols are uniquely defined by the State transitions
in the trellis diagram.

512 T/2-SPACED ML SE RECEIVER

Suppose that the matched filter output is sampled at rate 2/T and the T/2-
spaced samples are processed with a T/2-spaced noise whitening filter as
shown in Fig. 7.6. Once again, the channel can be modeled as a finite-state
machine with the states defined in (7.116). The Viterbi decoder searches for
the most likely path in the trellis based on the T/2-spaced received sequence

For each state transition g(]) - g§c+1 at epoch k, the samples v(2 and v2k+1
are used by the Viterbi algorithm to evaluate the branch metric?

2

@ _ @ (O (2)

v o) Vg — 9o Tr(ep’ — 9k+1 Z 9omTh—m(

T(oy — Qk+1) =

2
2
ng)—{-l — gV (ch) - 9£+1 Z gzm+1$k m(efﬁ))

m=1

+

(7.129)

52 DELAYED DECISION-FEEDBACK SEQUENCE
ESTIMATION

Unfortunately, the complexity of the MLSE receiver grows exponentially
with the channel memory length. When the channel memory length becomes
large, the MLSE receiver becomes impractical. One solution is to reduce the
receiver complexity by truncating the effective channel memory to p terms,
where p is an integer that can be varied from 0 to L. Thus, a suboptimum
decoder is obtained with complexity controlled by parameter u. Thisis the
basic principle of delayed decision-feedback sequence estimation (DDFSE).

2For notational smplicity we assume D = 1
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Let the z transform of the overall discrete-time white noise channel, G(2),
be represented as a rationa function 3(z)/¥(z), where 5(z) and ¥(z) are
polynomials. It is assumed that ¥(z) has degree no and ¥y = 1. If L is finite
then ¥(2) = 1. The polynomia G(z) can be written as

G(2) = Gu(z) + 2~ W G* (2) (7.130)
where

u .

Gulz) = Y giz™ (7.131)
=0
L—p—1 .

Gt(z) = Y giyunz™" . (7.132)
i=0

From (7.130), G*(z) isarationa function that can be written as 8*(z)/¥(z)
where 81 (z) isapolynomial of degree n; satisfying the equality

B (2) = [B(2) — Gu(2)T(2)]*H! . (7.133)

LetW(z) = G+ (2)X(z),where X (2) isthe z-transform of the input sequence.
Then

nopto e g _
wy = § 20 P Thei = Ly Yiwe—i, Li=co (7.134)
Yico Gitut1Tk— , L<ooorny =0
and
m
Uk =Y GiTk—i + Wr—p-1+ Tk - (7.135)

=0

From (7.134) and (7.135), the system state at epoch k can be decomposed into
the state

0 = (Th-1y -+ Thop) (7.136)
and apartial dtate
ke = Th—p—1s+++y Thp—ni—1, Wk—p—-2y «++y Wk—p—ny—-2 5 L = o0
k Th—p—1y «++y Tk—L , L < o0
(7.137)

There are N, = 2™ datesin (7.136).
The DDFSE receiver can be viewed as a combination of the Viterbi algorithm

and a decision feedback detector. For each state transition g‘,:(i) - g‘,ﬂ, the
DDFSE receiver stores N, estimates of the partial tates «; associated with

0. The DDFSE receiver uses the branch metric
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1(7) u{5)

u(1) (J)) ~ lyk — gozi (0 = Okil)

pr(oy ' = Opii

2

u .
~ Y gk (0fY) — dp_pa| . (7.138)

The estimate wx—,—1 Of wg—,-1 is obtained from the estimate of the partial
state using (7.134). For finite length channels, the DDFSE branch metric can
be written as

u(i) u(J))

pe(Qk = Okt — vk — goze (&l = 9’523)

2

L .
- Zgzmk (DY = 3 g(et™)] (7.139)

I=p+1

where xl(gk( )Y isthe I*» component of the surviving sequence x( “(')) Since
each path uses decision-feedback based on its own history, the DDFSE receiver
avoidsusing asingleunreliable decision for feedback. Hence, error propagation
with a DDFSE receiver is not a severe as with a DFE receiver. When p = 0
the DDFSE receiver is equivalent to Driscoll’s decoder [88] andwhen o = L
the DDFSE receiver is equivalent to the ML SE receiver.

Findly, snce only the u most recent symbols are represented by the Sate
in (7.136), it is important to have most of the signal energy contained in these
terms. Hence, it is very important that the noise whitening filter be sdected
S0 that the overdl channel G(z) has minimum phase. This requirement can
present some practica problems. For example, if one of the zerosiscloseto the
unit circle, then the non-causal noise whitening filter has a very long impulse
response and will be hard to approximate. Also, when the channel is time-
varying or unknown, the receiver cannot ensure that G(z) will have minimum
phase. Without G(2) having minimum phase, DDFSE does not work well.
This point will be repeated again in Chapter 8.

Example 7.5

Consider again the system in Example 7.4, where the received sequence is

v = ('UOa V1, V2, Vs, U4"--)
(-3.2, 1.1, 0.9, 0.1, 1.2, 1.5, 0.7, —1.3,...)

Recall that g() = (Tg_1, Tx—2) 0 there are 4 system sates. However, we
wish to apply DDFSE with the state g’,:(’) = zx_1, 1 = 0,1. Theinitid Sate

is assumed to F(ggo)) = —1. Since the channel has finite length, (7.139) gives
the branch metric

e i . Nk
we(oh® = b)) = [y - m (@ = o)) - wea(ef?) - 22(eL )]
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Figure 7.17.  Cumulative path metrics and surviving sequences with DDFSE.
Applying DDFSE with the Viterbi a gorithm gives the result shown in Fig. 7.17.

Once again, the X's on the branches in the trellis denote dropped paths and the
numbers in the trellis denote the path metrics.

53 REDUCED-STATE SEQUENCE ESTIMATION

For large signal constellations the number of states with DDFSE, 274, is
substantial even for small 1. One possible remedy is to reduce the number of
states by using Ungerboeck-like set partitioning principles. As described in
[109], for each element zx—, in g, a setpartitioning Q(n),1 < n < u < Lis
defined where the signal set is partitioned into J; subsets in a way of increasing
intrasubset minimum Euclidean distance®.

The subset in the partitioning Q(z) to which z,_; belongs is denoted by
ci(zk—;). The subset partitioning is constrained such that (i) is a finer
partition of Q(i+1), 1 <i<pu-1and J; > Jo ... > J,.Inthiscasethis
following subset-state can be defined

th = (ci(zie—1), ca(@g—2), .-, culTu—p)) - (7.140)

Note that the RSSE subset-state does not completely specify the p most recent
symbols {z_;}%,. Rather, the subset-state only specifies the subsets to which
these symbols belong.

The constraints on the subset partitioning ensure a properly defined subset-
trellis. Given the current subset-state t and the subset ¢;(zy) to which the
current symbol z;, belongs, the next subset-state ¢} , is uniquely determined.
Since ci(zx—:) can only assume J; possible values, there are TT¢, Ji subsat-
states which could be much less than 2. Note that if J1 < 2", there are
parallel transitions associated with each subset-transition. The number of

]1fJy =Ja =+ = Ju, = Mand p2 < L, then RSSE becomes DDFSE.
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the parald transitions is equa to the number of symbols in the corresponding
subset.

The Viterbi agorithm used to search the subset-trellis is the same one used
for MLSE except for a different branch metric and the possibility of parallel
transitions associated with the subset-transitions.* When there are parallel tran-
stions, the Viterbi algorithm chooses the pardle transition with the maximum
branch metric first® and then execute steps for the Viterbi algorithm as defined
in Section 5.1.

With RSSE, the branch metric in (7.121) is not uniquely determined by
the associated pair of subset-states. This is solved by introducing a decision
feedback mechanism for the branch metric calculation [109, 90]. The RSSE
branch metric for a particular parallel transition associated with the subset-

transition (4 — t49)) is

2
(D = 90y = g — goze (82D — £21)) Zg,x, @O 7.141)

where (tﬁ(i) - mk(t‘;ﬂf{) isthe source symbol corresponding to the particular
parallel transition, and:x, (t“’(” ) isthe Ith  component of the source symbol
sequence :‘c(tﬁ’(’)) that corresponds to the surviving path leading to the subset-

State tgj). Similar to DDFSE, each path uses decision-feedback based on its
own history.

6. ERROR PROBABILITY FOR MLSE ON IS
CHANNELS

Let x and x bethetransmitted and estimated symbol sequences, respectively.
For every pair x and %, the error sequence € = {¢; } can beformed by defining
€; = z; — ;. We arbitrarily assume that the bit error probability at epoch 7; is
of interest, so that €5, # 0 for all error sequences that are considered. For each
error sequence e, define the following useful error events.

&'(e): Thesequence x — € isthe maximum likelihood sequence.

£(€): The sequence x — € has alarger path metric than sequence x.

It is aso convenient to define the events

U €' (1.142)
ecqG

“With DDFSE there are no parallel transitions.
®|f the signal constellation has some symmetries, this step can be easily done by using a slicing operation
[109).
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and

U &) (7.143)
ecF

where G is the st of all possible error sequences havinge;;, #0and FF C G
IS the set of error sequences containing no more than L — 1 consecutive zeroes
amid nonzero elements.

Leto = {or} and @ = {4« } be the system state sequences corresponding to
the symbol sequences x and %, respectively. An error event occurs between
k1 and ko, of Iength ko — ky, if

Ok, = ékla Oky = @kza and 0j 7& @] for kl <.7 < kZ (7144)

where k; < 71 < k2, The symbol error probability at epoch j; is

P(j1) = P("L‘jl#ijl)
= P(&)

- ¥ 3 PE@WPE (7.145)

€€G xeX(€)

where X (¢€) is the set of symbol sequences that can have € as the error sequence.
For different €, the st X'(e) might be different. The third equation in (7.145)
is obtained by using the property that the events £’(e) are digoint for € € G.
Unfortunately, (7.145) does not admit an explicit expresson and, hence, upper
bounding techniques are needed for the performance evaluation. A union bound
on the error probability will be employed in our analysis.
To obtain a tighter union bound, we now prove that the symbol error proba-
bility at epoch j; is
Py(j1) = P(€r) . (7.146)

Consider the typica trellis diagram as shown in Fig. 7.18, where x denotes the
transmitted symbol sequence, and %(!) and %(2) denote two different symbol
sequences. It can be seen that the error sequence e(!) associated with %(1
and the error sequence €t associated with %(2) belong to sdts F and G \ F,
respectively. For every e € G\ F there always exists an (V) € F. If the
sequence x — €@ is the ML sequence, i.e, the event £ has occurred, then
the sequence x — €() has a larger path metric than the sequence x, i.e, the
event £ has occurred.  This means that £, implies Er. On the other hand,
ifet*) € F and the sequence x — €V has a larger path metric than sequence
x, then there exists a sequence € € G such that the sequence x — e is the ML
sequence.  Therefore, £ implies £, and (7.146) is proven.
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z(l)

Figure 7.18. A typical Error state trellis diagram

The union bound on (7.146) yields

Py(j1) < Y P(&(e)

€cF
= Y 3 PE@EXPKX) (7.147)
€EcF xcX(€)
or, equivalently,
Py(j1) < 3 wse) 3 PE()X)P(x) (7.148)
€EcE x€X(€)

where E € F isthe st of error sequences that have the first non-zero e ement
starting at time 31, and w;(€) is the number of symboal errors associated with the
error sequence e. To obtain (7.148), we have used the following observations;
) there are w,(€) places for the error sequence e to start such that €;, # 0,
and ii) the error probability P{&(e)|x} is independent of the place where the
error sequence e starts. If the transmitted symbol sequence is long enough,
then the symbol error probability P,(j;) is independent of the time index 7;
and, therefore, the time index will be omitted hereafter. Finally, for a given
transmitted symbol sequence x, the events {£(€)} for € € F in (7.147) might
ovelgp. The reason is that there may be multiple symbol sequences that
smultaneoudy have alarger path metric than the path metric of the transmitted
symbol sequence. When the system is operating at alow SNR, there are more
overlapping events £(e) and, hence, the union bound (7.147) becomes looser.
From the definition of event £(e), the union bound (7.148) becomes

P < > ws(e) Y, P(T(x—e€) >T(x)x)P(x) (7.149)
€CE x€X(€)
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where I'(x) is the path metric associated with the input sequence x. To obtain
the bit error probability, (7.149) can be easily modified as
B<iY wie 3 POx-e 2 Ix)xPE) (7.150)
n €EcE xEX(€)

where n is the number bits transmitted per unit time, and wj(€) is the number
of bit errors associated with the error sequence e. The probability

P(l'(x —€) > I'(x)|x) (7.151)

iscalled pairwise error probability.

We will see in the following two sections that the pairwise error probability
is independent of the transmitted symbol sequence x. Therefore, the union
bounds (7.149) and (7.150) simplify to

P, < > ws(e)P (T(x —€) > T'(x)|X(€)) P (X(€)) (7.152)
€cE
and
Po< 3 wp(e)P (F(x — ) 2 [ X(e) P (X(e))  (1.153)
€cE

respectively. Theexpressionsin (7.152) and (7.153) are easier to calculate than
those in (7.149) and (7.150), because not all of the symbol sequences have to
be considered in the calculation.

6.1 STATICISI CHANNELS

The pairwise error probability associated with the error event of length £ in
(7.144) is (see Problem 6.16)

2
P(l(x—¢€) >T'(x)|x)=Q ( 4?\] ) (7.154)
\ o
where
ki+e—1| L 2
A= D" > giee (7.155)
k=ky li=0

and A? is the squared Euclidean path distance. At high signal-to-noise ratios
the error event probability is approximately

d?.
Pe ~ NminQ ( M) (7156)
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where d2,;  istheminimum value of A2 and Ny, denotes the average number
of error events at distance dpmin.

The squared Euclidean path distance in (7.155) can be rewritten as

ki+£6—1
> a7 (7.157)
k=k;
where
Al = g"Eg (7.158)
is the squared branch distance and
E; = [(emn)k] (7.159)

isthe (L + 1) x (L + 1) branch distance matrix having elements (emn), =
€5 —m+1€k—n+1. Definetheerror vector ey = (€}, €5_1,...,€5_1)7. Itfollows
that Ex = exe; and, hence, E;, has rank one. Note that Exey = (e eg)ex
and, therefore, £ is an eigenvector of E, and the only eigenvalue of E; is
k) = TF , lex—il2. The path distance matrix of the length ¢ error event in

(7.144) is defined as
k,‘1+£ 1

2% E . (7.160)

k=k
Using (7.116) and (7.144), the elements of E are

emn = T¢(n —m) (7.161)

where

NV

ki+e—(L+1)~1i
ro(3) :{ L=k, €k€kti 8 : (7.162)

ri(=i)

It follows that (7.157) has the Hermitian form A? = g#¥Eg. Since A% > 0, E
is a positive definite matrix with all eigenvalues being real and positive. The
matrix E depends on the signal constellation and the length of the channel
L+1.

By using (7.37) and the normdization E[|z|?] = 1, the squared Eudlidean
path distance can be expressed in the form

H
AZ=2p8 L8 (7.163)
g7°g
The ratio of the Hermitian form g” E g to the inner product g” g is called the
Rayleigh quotient of the vector g and is denoted R(g) [163]. The eigenvaues
of E are equal to the Rayleigh quotient of the corresponding eigenvectors. The
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Rayleigh quotient of E satisfies Amin < R(g) < Amax- The minimum value of
R(g) occurs when g = vpin and the maximum value occurs when g = Vmax-
The eigenvalues of E are bounded by [163]

L
Amax < 3 |re())]  and  Amin > 7(0) — Zm : (7.164)

The condition number of E is defined as ¢(E) = Amax/ Amin-

6.2 FADING IS CHANNELS

For fading ISl channels with D-branch diversity reception and maximal
ratio combining, the pairwise error probability is still given by (7.154) but the
squared Euclidean path distance associated with an error event of length £ is
[300]

D
=Y A} (7.165)
where
ki+e-1 2
= > Zgzd Yek—i (7.166)
k= Ic1 i=0
The above expression can be written in the form
ki+8-1
= > gl (k)Exga(k) . (7.167)
k=k1

In genera, the covariancematrix ®¢,(0) definedin (7.39) isnot diagonal. A
non-diagonal @, (0) matrix leads to considerable analytical difficulty and loss
of insight. However, if ®,(0) is diagona, then a normalized channel vector
f4(k) can be defined such that ®¢,(0) = I.41. As aresult, (7.167) can be
rewritten as

k1 +£-1
A= D 1 (k) Ak afa(k) (7.168)
k=k;
where
Apg=SEZ (7.169)
and where
Ed = diag[ao,d, O1dy UL,d] (7.170)

With o4 =1E{|g:.41%). It follows that Ak g = ug quy ; Where ug,g = Zge, and,
hence, Ay 4 isarank one matrix and uyg g4 is an eigenvector of Ag 4. The only
nonzero eigenvalue of A gis Ay = 3;0 07 glex—il*, where o7y = 3E[|g; af]-
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For dowly time-variant channels it is reasonable to assume that g4(%) re-
mains constant over the length of the dominant error events, i.e., gq¢(k) = g4.
This assumption holds even for relatively large Doppler frequencies and error
event lengths. For example, if the channd exhibits 2-D isotropic scattering
and f,,T = 0.0025, then error events up to length 20 have ,Jo (27 fn |EIT) >
Jo(27 £, 10T") = 0.9984 ~ 1. By using the above assumption, (7.168) can be
written as

AL =fH A f, (7.171)
where
ki+£-1
Ay = Y Agg
k=k1
= 3,EX, . (7.172)

The matrix A4 is also positive definite with al its eigenvalues real and positive.
The dements of Ag aregivenby [(amn)la = om—1.¢d On—1.¢ re(n — m)where
re(t) isgiven by (7.162). The trace of thematrix Aq4 is

L+1 L
tr(Ag) = Z Xig =1e(0) Y oly = Ery(0) (7.173)
i=1 =0

wherethe \; 4, i = 1,..., L+ 1 arethe eigenvalues of A4. Thelast equality in
(7.173) is obtained by using (7.41) along with the normalization E[|zx[*] = 1.
Since A4 isHermitian, thereexigsa diagondization A4 = UyzA U suchthat
U, isaunitary matrix and Azis adiagona matrix consisting of the eigenvalues
of Ay. Let wg = UZ £, bethe corresponding diagonal transformation. Hence,

L+1
Al =wfAgwi =" Nidwidl (7.174)

i=1

where $E[wqwH] = 111 50 that the {w;,q} are independent zero-mean unit-
variance Gaussian random variables. Using (7.165) and (7.174) gives

D L+1

A= aiq (7.175)

d=1i=1

where @; ¢ = A; alw; 4. The o; 4 are chi-square distributed with 2 degrees of
freedom and, therefore, the characteristic function of A? is

D(L+1)

Tax(z) = ]

=1

1
1- ;42

(7.176)
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where@; ¢ = 2X; 4. Finally, the pairwise error probability is
P(I(x — €) > T(x)[x) = / T Q(VEs) far(e) da (7.177)
0

where fa2(z) is the probability density function of A%, Note that if some
of the eigenvalues A; 4 are the same, then there will be repeated poles in the
characteristic function in (7.176). This can be expected to be the case for
balanced diversity branches, and will aso be the case if the channel vector g
has equal strength taps. Consider the case where D-branch antenna diversity is
used and the channel taps are not of equal strength. Inthiscase, A = A, d =
1,..., D and the characteristic function in (7.176) has the form

L+1 1
Yarx) = 11 (T_—m
i=1 3
L+1 D
= Z Z a (7.178)
i=1 d=1 —za

where

1 dP-d _\D
Ajg = (D= d)\(<ap)P-4 {dzD—d (1 — 2a;) ‘Ifm(Z)}

z =1/
(7.179)
and a; = 2);. The pdf of A?is
L+1 D B
far(z) =5 % Ald gl /A (7.180)
i=1 d=1 )( i)
From (7.177) and (7.180), the exact pairwise error probability is
L+l D
Pr(x-9 2Lk = Y. 3 4 (5 )
=1 d=1
xdzl ( —l+m) <1+“i)nz7181)
5 .
m=0
where
Qo
.= : 7.182
M 1 o ( )

From (7.173), the @; 4 have the sum value constraint

L+1 L+1

S @a=2 \ia=2Er,0) . (7.183)
L 2
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Define S C RL+! asthe st of all (L 4 1)-component vectors {7 : 35!, =
2Ery(0)}. The set 5 is convex, since for any pair of vectors v,and ~,the
convex combination &; + (1 — 6)~; is contained in Sforany 0 < 6 < 1.
If the pairwise error probability is trested as a mapping from Sto R, then it
is a convex function of v and, hence, has a unique minimum. For example,
Fig. 7.19 shows the pairwise error probability for a three-tap channel (L = 2,
D = 1) with equa strength taps (y1 = 2 = 73). Note that the value of
~3 is determined uniquely by the values of y; and 7., and that is why a
three dimensiona graph is used. By using variational calculus, it is shown in
Appendix 6A that the pairwise error probability is minimized when the &; 4 are
al equal, i.e, Aig = A = r¢(0)E/(L + 1), resulting in the minimum pairwise
error probability

1o\ PN PEDL Ly L m) (14 p\™
Puin = | —— 3 " —

(7.184)

N/4N,
=, —1=2 7.1
= AT+ 34N, (7.185)

For agiven error event, the pairwise error probability is minimized when A4
is perfectly conditioned, i.e., c(A4) = 1. Recal that c(Ag4) = ¢ (Z4EXg) <
(c(B4))? ¢(E), where (¢(Z4))? represents the ratio of the maximum and min-
imum channel tap variances (o) max/(05)min- We have seen that E depends
only the signal constellation being used and the channel vector length L + 1.
However, A, has information about the signal congtellation and power distri-
bution of the fading 1Sl channel. It follows that ¢(A4) < ¢(E) with equality
if and only if the channel has equal strength taps. This means that any system
has the best performance when the fading ISl channel has equal strength taps.

6.3 COMPUTING THE UNION BOUND

Many algorithms have been suggested for evaluating the union bound on the
error probability. One technique isto obtain a union-Chernoff bound by finding
the transfer function of the error-state diagram and imposing a Chernoff upper
bound on the complementary error function appearing in (7.177). Thisapproach
has three draw backs i) the Chernoff bound is very loose when the channel
exhibits a deep fade, ii) the transfer function is difficult to obtain for large-state
systems, and iii) if the exact pairwise error probability is avallable, then the
transfer function approach cannot be used. To overcome these difficulties, a
method based on the error-state transition matrix can be used for calculating
the upper bound [7], but it demands a very large amount of computer memory.
Here we discuss another alternative that uses an error-state diagram with a

m=0
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Figure 7.19. Pairwise error probability for a three-tap fading ISI channel, from [158].

one-directional stack algorithm. Note that other types of algorithms could also
be used for this calculation [284].

6.31 ERROR-STATE DIAGRAM

To evaluate the upper bound, the error-state diagram must be defined. As-
sume asystemwith Ny error-states, Vo, Vi, -+ -, Vi, —1. By splitting the zero
date, an (Ny + 1)-node error-state diagram can be constructed such that the
initial and final nodes, Vp and V., , respectively, are zero-error states and the
intermediate nodes are non-zero error states. Let ¢;; denote the branch-weight
associated with the V; to V; transition, defined as follows:

ti; = Py 20 Zg (7.186)
where

n Z; and Z; are intermediate (dummy) variables.

» P;; is the fraction of correct symbols z such that the transition from V; to
V; ispossible.

= w;; isthe number of bit errors associated with the transition fromV; toV;.

m A;; isgiven by (7.169)°, but we emphasize that it is afunction of the V; to
V; transition.

®Here we assume equal diversity branches, i.e, £, = £, Vd, 0that Ax g = Ay, Vd.
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From the definition of ¢;; in (7.186), the weight of a particular path in the
error-state diagram is

. oony Ui .. A,"
H Pijzlz:{(w)} JZ2E((1,J)) g (7.187)
{(5:)}
where{(i, ])} denotesthe set of state transitions associated with the path under
condderation. Note that each path beginning at the initial node and ending at

the final node in the error-state diagram represents an error sequence € € E,
where the st E is defined in (7.148). From (7.187)

P(x(e)= [[ Py (7.188)
{(.5)}
wle) = Y ug (7.189)
{(i.9)}
and
A=) Ay . (7.190)
{(i.3)}

These values are required in the calculation of (7.152) or (7.153).

632 THE STACK ALGORITHM

The union bounds in (7.152) and (7.153) require the calculation of an infinite
series. In practice, the mathematical rigor must be sacrificed by truncating the
series at an appropriate point. The basic idea of the stack algorithm isto include
the R error sequences e € E that correspond to the R largest termsin (7.152) or
(7.153). Thevaue of Rischosen so that the rest of the terms in the union bound
areinggnificant. Alternatively, the union bound can be truncated by excluding
al paths that have a pairwise error probability Py less than athreshold Pr.

The stack agorithm maintains a stack with each path (entry) containing the
following information; terminal node, [T iy Pijs 2o q6iiv Yijo 2o (i1 Aijs

and the intermediate bit error probability P;. Here, Py iscaculated by

Pr= ][ Pj- > wij P{T(x—¢€) > '(x)|x} (7.191)
{(i.5)} {(.3)}

where P {I'(x — €) > I'(x)|x} is caculated by using (7.181) dong with the
eigenvalues associated with the matrix 3 ; jy) Aij-

The stack is ordered (from top-to- bottomS In order of decreasing intermediate
bit error probability £;. Theagorithm first checks if the top path has terminated
at the final node. If it has, then the algorithm outputs Pr which is one of the R
terms that will be included in the calculation of (7.152) or (7.153); otherwise,
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the top path is extended and the stack is reordered. Since the top path has the
largest Py, it is likely that the extensions of this path will correspond to one or

more of the R dominant terms that are of interest. All paths with the same Py
can be grouped together for easier sorting of the stack. The complete algorithm
is given in Fig. 7.20 and is described as follows.

1 Load the stack with theinitial node, set al the parameters equal to zero, and
input the threshold value Pr (described below) or R.

2. Determine if the top path terminates at the final node. If it does, then go to
Step 3; otherwise go to Step 4.

3. Output Py, and determine if the algorithm should be terminated. If yes,
then terminate the algorithm; otherwise delete the top path and go to Step
2.

4. Extend the top path and calculate [Ty )} Pij» 203050} Yig» 2oq(i)y Ais»
and Py for all of the extension paths.

5. Delete the top path.

6. Insert the new extension paths and rearrange the stack in the order of
decreasing intermediate bit error probability P;.

7. Goto Step 2.

64 EXAMPLES

Union bounds will now be evaluated and compared with computer simula-
tionsfor two example systems by using the above procedure. Inthe simulations,
o?, = 0% Vi, d. Thetap coefficients are generated by passing independent
complex white Gaussian noise through a digital Butterworth filter with a nor-
malized 3-dB cut off frequency equal to f7" = 8.333 x 1075 Hz, typical of an
HF channel [201]. All analytical results are obtained by setting the threshold
Pr = 1073 - Ppax, Where P,y iS the maximum term in the upper bound in
(7.153).

Example 7.6 BPSK Modulated System

A three-tap channel with BPSK modulation is analyzed in this example,
where zr € {—1,+1}. There are three different error symbolsinthiscasg, i.e,
ex € {0, £2}. The error-state diagram is shown in Fig. 7.21. Observe that the
error-state diagram is symmetrical in that there are always two paths having the
same et of parameters P{X'(¢)}, w(e), and A. Combining al such pairs of
paths together, results in the simplified error-state diagram shown in Fig. 7.22.
For equal strength taps, A;; = o2E;;, where E;; is given by (7.159). The




Equalization and Interference Cancellation 353

Initialization

r=0,sum=0,R,Pr
Y
NG
terminates at the
final node % }
sum=sum+p,
r=r+1

Extend the top entry

Y

Insert the new paths
& reorder the stack

-
-

Y

|Delete the top entrﬂ

|

Figure 7.20. The stack algorithm for computing the error probability union bound with MLSE,
from [300].

branch weights for the error-state diagram are defined in Table 6.1. Since E;;
is Hermitian, only the lower triangular elements of the matrix E;; are given.

Fig. 7.23 compares the union bound with simulation results. The received
branch bit energy-to-noise ratio 4., can be obtained from (7.41). For D=1,
the union bound is loose by about 2 dB for bit error probabilities less than
10~3. However, for D = 2, the union bound is tight to within 1 dB. This s
reasonable because the channel is unlikely to experience a deep fade on both
diversity branches where the union bound becomes loose. In general, the bound
istighter for larger 5. and D.

Example 7.7 QPSK Modulated System

This example considers QPSK on a two-tap channel model. The z are
complex taking on the values exp {j(w/4 £ k= /2)}, k =0, 1, 2, 3. There
areninedifferent error symbolsinthiscasg, i.e, e € {0, £v2, £5v2, £v2+
Jv/2}. Itisleft as an exercise to the reader that Fig. 7.24 represents a simplified
error state diagram.  The branches labeled with “2” represent two error-state
transitions. For example, the branch 612 represents the error-state transitions
€12 = £(Vv2,7v2) and €12 = £(v/2, —jv/2). Thetransition-gains are shown
inTable6.2, whereonly thelower triangul ar elements of E;; aregiven. Fig. 7.25
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Figure 7.21.
vO
by,
Figure 7.22.

Error-state diagram for the BPSK system, from [300].

by

22

(1)
20 b41 02

(2)

bAl

by by,
2-2
22/ 'V,

b33

bys

Simplified error-state diagram for the BPSK system, from [300].

compares the union bound with simulation results. For D =1, the difference
is about 4 dB. However, for D = 2 the difference isonly 15 dB.
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branch Py Usij e11 €21 €2 €31 €32 €33
bor 1.0 1.0 40 0.0 0.0 0.0 0.0 0.0
b1z 0.5 1.0 4.0 4.0 40 0.0 0.0 0.0
bis 0.5 1.0 4.0 4.0 4.0 0.0 0.0 0.0
bia 0.5 0.0 0.0 0.0 40 0.0 0.0 0.0
boo 05 1.0 40 4.0 40 4.0 4.0 40
bas 05 1.0 40 -4.0 40 -4.0 4.0 40
b 0.5 0.0 0.0 0.0 40 0.0 4.0 40
baz 0.5 1.0 4.0 40 4.0 -4.0 -4.0 4.0
bas 0.5 1.0 40 -4.0 40 40 -4.0 4.0
baq 05 0.0 0.0 0.0 40 0.0 -4.0 4.0
by 0.5 1.0 4.0 0.0 0.0 40 0.0 40
3%y 05 1.0 4.0 0.0 0.0 -4.0 0.0 4.0
bas 0.5 0.0 0.0 0.0 0.0 0.0 0.0 40

Table 7.1.  Branch weights of BPSK modulated system, from [300]

7. ERROR PROBABILITY FOR T/2-SPACED MLSE
RECEIVER

Referring to Fig. 7.6, let X(2), V(2), and V(2 () be the ztransforms
of the input sequence x, the T-spaced received sequence v and the T/2-
gpaced received sequence v(2), respectively.  The mappings from X(z) to
V(2) and from X(2) to V(@) (z) are one-to-one and both the T-spaced and
T/2-spaced MLSE receivers operate on noisy sequences that are corrupted
by noise samples with variance N,. Therefore, we only need to compare the
Euclidean distances between allowed sequences of channel outputsto determine
the relative performance of the T- and T/2-spaced receivers.

71  T-SPACED MLSE RECEIVER

From the definition of the error event in (7.144), the z-transform of the error
sequenceis

E(z) =€k, + ek1+1z"1 +...4+ ekZ_L_lzL_“'l (7.192)
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Figure 7.23. Comparison of union bounds with simulation results for BPSK on a three-equal-
tay T-spaced fading ISI channel, [300].

Figure 7.24.  Simplified error-state diagram for QPSK system, from [{300].



Equalization and Interference Cancellation 357

branch P, Ul €11 e21 €22
bor 1.0 1.0 2.0 + j0.0 0.0 + j0.0 0.0 + 50.0
boa 1.0 1.0 2.0 + 0.0 0.0 + 50.0 4.0 + j0.0
BV 0.5 1.0 2.0 4 j0.0 2.0 + 0.0 2.0 + j0.0
b 05 1.0 2.0 4 j0.0 —2.0 4 50.0 2.0 + 50.0
bsy 0.25 2.0 4.0 + j0.0 2.0 — j2.0 2.0 + j0.0
bs2 0.25 2.0 4.0 + j0.0 —2.0 + 2.0 2.0 + 0.0
bsy) 0.25 2.0 4.0 + j0.0 0.0 — j4.0 4.0 + 0.0
b 0.25 2.0 4.0 + j0.0 —4.0 + j0.0 4.0 + j0.0
bas 1.0 0.0 0.0 + 0.0 0.0 + 50.0 4.0 + j0.0
bas 1.0 0.0 0.0 + 50.0 0.0 4 50.0 4.0 + j0.0

Table 7.2.  Transition-gain examples of QPSK system, from [300]

where ex = zx — &x. The z-transform of the signa error sequence associated
with the error event is

gv(z) = (vkl - i}kl) + (vk1+1 - 0/€1+1)z—1 +...+ (Ukl—ﬁ—l - i}k1+£—1)2’_e+1
(7.193)

and we have
Eu(z) = E(2)G(z) . (7.194)

From (7.155), the squared Euclidean distance A? of the error event in (7.144)
is [127]

ki+e—1 2

L
A = 3 1S gier

k=ky li=0
[E.(2)E5(1/27) Jo
= [E()F(2)E*(1/2*) Jo (7.195)

where| - ]o is the coefficient of 2°.

72  T/2-SPACED MLSE RECEIVER

For the same error event described in (7.144), the corresponding z-transform
of the T/2-spaced error sequence is

5(2)(2) = 65(:21) + 65021)_{_12’_2 + ...+ 65622)_11_122@—“1) . (7.196)
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Figure 7.25. Comparison of union bound and simulation results for a QPSK on a two-equal-ray

T-spaced channel, from [300].

Notice that ¢ = z{? — ¥ is zero for even k. Therefore, €@ (z) =
E(2%). The correspondi ng z-transform of the T/2-spaced signal error sequence
associated with the error event in (7.144) is

EPD(2) = EP ()G (z) . (7.197)

From (7.155), the squared Euclidean distance of the error event in (7.144) is

) 2(k1+£-1) 2
O
k2k1 1=0

[EP(2)EP"(1/2") 1o
[E@(2)FD()ED7(1/2*) 1o
= [E)FD()E 1/ o - (7.198)

Note that polynomial £(22) £*(1/2*%) has the property that the odd powers
of z have zero coefficients. Therefore, the contributions to the coefficient
[ £(z2)FA) (2)E*(1/2*?) |o arise only from the coefficients of F(?)(z) as-
sociated with even powers of z  Note dso from (7.42) and (7.43) that the
coefficients fz(,gc) of F(2)(z) associated with even powers of z are equa to the
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coefficients f of F(z), ie., f2) = fi. Therefore,

(AD)" = [E£()FD(2)E*(1/2*%) |o = [E(R)F(2)E*(1/2") o = A? .
(7.199)
Consequently, the error probability performance of the T- and T/2-spaced
MLSE receivers are identical.
Example 7.8
Let

E(z) = e+ 6127 +egz?

FOG) = 32+ 184 7+ 107+ 77

Then
Pz) = faztfot+ e = fGa+ 17+ 77
ED(z) = e+ez et
Therefore,
2
[E@F@E (/)]0 = (leol® + e +lea? ) o
+eoei f1 + €165/-1
and

* 2
[ED@FD()ED(1/2) ) = (leo +]e1f +|eal ) 1§
+eoei fSD + ey fY

Hence, A? = (A®)2,

7.3 PRACTICAL T/2-SPACED MLSE RECEIVER

Thereceivers in Figs. 7.3 and 7.6 use afilter that is matched to the received
pulse h*(—t). Since this filter requires knowledge of the unknown channel
impulse response, it is impractical. One solution is to implement an ‘ided’
low-pass filter with a cutoff frequency of LT and sample the output at rate 2/T.
The noise samples at the output of this filter will be uncorrelated and, therefore,
the T/2-spaced ML SE receiver can be implemented. Vachula and Hill [332]
showed that this receiver is optimum; however, it has some drawbacks. First,
it is not suitable for bandwidth efficient systems that are affected by adjacent
channel interference such as the North American 1S54 and Japanese PDC
systems, because the cutoff frequency of the low-pass filter will extend signifi-
cantly into the adjacent band. Second, the ideal low-pass filter is nonrealizable
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Figure 7.26. Block diagram of system that implements a filter matched to h,(t) followed by
a T'/2-spaced noise whitening filter. The structure of the noise whitening filter depends only on
the pulse hq(2).

and difficult to approximate. One solution is to use a receiver filter that is
matched to the transmitted pulse h,(t) as suggested by Hamied and Stiiber
[159]. Chugg and Polydoros have suggested a similar approach [53]. If the
received pulse h(t) is time-limited, then such front-end processing is optimal
only if the channel rays themselves are T/2 spaced. However, if the transmitted

signals are strictly bandlimited with at most 100% excess bandwidth, then rate
2/T sampling satisfies the sampling theorem and the T/2-spaced samples will

provide sufficient statistics as we now show.

Let H?(2), C®)(2), and H®?(z) bethe z-transforms of the T/2-spaced
discrete-time signals corresponding to h,(t), c(t), and h(t), respectively. The
z-transform of the autocorrelation function of the noise samples at the output of
the receivefilter b (—¢) is N,y (z) where F{2 (2) = HE (2) (HE (1/27))"
Using the factorization

R () = 6 ()6 (I/Z*))* (7.200)

the T/2-spaced noise sequence can be whitened by using a filter with transfer

function 1/(G§f)(1/z*))*. The resulting system is shown in Fig. 7.26. We

now show that the receiversin Figs. 7.6 and 7.26 yield identical performance.
The z-transform of the overall T/2-spaced discrete-time channel that in-
cludes the noise-whitening filter is

GA() = HO()CD () (HP /) /(6P 0/)
= CO)GP(2) . (7.201)

On the other hand, referring to the conventional system shown in Fig. 7.6, we
have
H®(2) = H?(z) CP(2) (7.202)

and

F?(z) :H§2>(z)(H,g?)u/z*))*c(?)(z)(0(2)(1/z*))* . (7.203)
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Let

() (cD(/z)) = 6P (2)(6P(1/2")) (7.204)
be a factorization of C®(z)(C®(1/2*))" such that (G (1/2*)) " has min-
imum phase. Using (7.200), (7.203) and (7.204) yields '

F@(z) = 6P (2) (Gﬁf)(l/z*))*Gg?)(z)(Gg2>(1 /29)" . (1205
The transfer function of the noise-whitening filter must be chosen as

1/ (6P /) (6@/)") (7.206)

Therefore, the overall transfer function at the output of the noise whitening
filter is
GA(z) = 6P (2)GP (2) . (7.207)

The equivalent response Géﬁ) (e7“) in (7.201) has the same amplitude as
G2 (&%) but different phase. Also

c2=) (6@ /=) = FO() . (7.208)

Therefore, the Euclidean distance between sequences of channel outputs for
the T-spaced and T/2-spaced systems are the same. It follows that the system
shown in Fig. 7.26 has maximum likelihood performance. The main advantage
of the system in Fig. 7.26 is that the noise-whitening filter does not depend on
the unknown channel and has a fixed structure. The channel estimation can
be performed after the noise-whitening filter and the Viterbi algorithm can be
implemented using the metric in (7.129). Although the number of computations
needed in the T/2-spaced MLSE receiver is twice that of a T-spaced receiver,
the latter can not be implemented for unknown channels. Moreover, aT-spaced
ML SE receiver has poor performance when it is implemented with a matched
filter that is derived from an inaccurate channel estimate [252].

74  TIMING PHASE SENSITIVITY

The conventional MLSE receiver based on T-spaced sampling at the output
of the matched filter suffers from sensitivity to the sampler timing phase [274].
We now show that a T/2-spaced MLSE receiver is insensitive to the sampler
timing phase.

For agiven atiming offset t;, the sampled impulse response at the output of
the matched filter is represented by the vector £\, where ) = f(kT" £ to)

and T' = T/2. Notethat f2), # (f2,,)" in this case. The DTFT of £ is

Ft(o2) (e7¥) = F@)(ew)etiwmo (7.209)



362

where g = to/T". If the sampler phase is known, then a discrete-time filter
with response e*7«™ gfter the sampler will give the symmetric signal £ at
its output. However, as we now show, there is no need to correct the phase.

The power spectrum of the noise a the output of the matched filter is
independent of the timing offset ¢y and is given by

S (f) = NoFO(?) . (7.210)
Since the DTFT of the noise-whitening filter is
1/(GP(1/2))*|,ze0 = 1/(GP (£/))? (7.211)
and we have
FA (@) = GA(ev) (P () = |G (¥))? (7.212)

itfollowsfrom (7.210) that the noise is white at the output of the noise-whitening
filter. The DTFT of the message signa at the output of the noise-whitening
filter is

G2 (e?) = GO (eIw)etiwm (7.213)
and we have
3192 Z 1922 =5 / 1G® (%) 2dw (7.214)
This means that
GP ()G (1/2*) = FO(z) (7.215)

Therefore, the distances between allowed sequences of channel outputs with the
T/2-spaced MLSE receiver is insensitive to the sampler phase et7“™. Since
thenoiseremainswhitethe performanceisa so insensitive to the sampler phase.

8. MIMO MLSE RECEIVERS

In this section, we derive the optimum and suboptimum MLSE receivers for
co-channel demodulation of digital signals corrupted by intersymbol interfer-
ence (1SI). By modeling the overall system as a discrete-time multiple-input
multiple-output (MIMO) channel, the optimum MIMO MLSE receiver is de-
rived. By following the same arguments used for single-input single-output
(SISO) channels, a T/2-spaced MIMO MLSE receiver is shown to have the
same performance as the T-spaced receiver, but with insensitivity to timing
phase errors. The optimality of apractical T/2-spaced receiver is shown, that
consists of afilter that is matched to the transmitted pulse, followed by a rate-
2/T sampler, a T/2-spaced noise whitening filter and a Viterbi algorithm. The
optimum MIMO ML SE receiver requires complete knowledge of al co-channel
signals. In many cases, thisisimpractical or even infeasible. For such cases,
we discuss an interference rejection combining MLSE (IRC-MLSE) receiver.
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81 SYSTEM AND CHANNEL MODEL

Condder a system where the signas from K co-channel signas are re-
ceived by J antenna elements. This system can be modeed by a multiple-input
multiple-output (MIMO) channel, where the channel inputs are the symbol
seguences from the K co-channel users and the channel outputs are the com-
bination of the sgnds that are received from the co-channel users at each of
the J recaiver antenna elements. The problem is similar to COMA multiuser
detection. However, while each user in a CDMA system uses a unique spread-
ing sequence, the K co-channe transmitters in a TDMA system al use the
same pulse shaping filter hq(t). The impulse response of the channel between
the kth user and the jth antenna dement is denoted by ¢(*:7)(t), where we
have assumed that the channels can be modeled as time-invariant linear filters.
The case of time varying channels will be considered later. While the channel
introduces fading and time disperson into the recelved signas, these same
effects alow the co-channel signals to be distinguished at the receiver, since
the received pulses h(k9)(t) = g7 (t) ® ho(t) aredl distinct.

The received signal at the jth antenna element is

K
=3 S ePrED (¢ — T — 1) +70)(1) (7.216)
k=1 ¢

where 7k, (0 < 7 < T') is the random transmission delay due to asynchronous
users and 7\7)(¢) is additive white Gaussan noise (AWGN) assumed to be
independent on the dlfferent antenna branches. For our purpose, the channel
g%*3)(t) is moddled by £*9) arriving rays o that the impulse response has the
form

LK) .
g® () = 3 alkieitt (1 — 1 (k) (7.217)

n=1

where o) ¢n ) and 769 are the amplitude, phase, and delay of the nth

arriving ray from the kth transmitter at thejth antennaelement. The parameters
affd) d>('° ) ,and 7569 vary with time, but the explicit time dependency is not
shown here since these parameters vary dowly compared to the baud duration.
It is safe to assume that the channel impulse responses gt (t), k =

, K are uncorrdlated for fixed j; however, the ¢gt&9)(¢t), 7 = 1,...J

for flxed k are usually correlated, especidly on the reverse link of acellular
system where the signals arrive at the base station with anarrow angle of arrival

Spread.
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82 JOINT MAXIMUM LIKELIHOOD SEQUENCE
ESTIMATION

Thejoint maximum likelihood sequence estimation (ML SE) receiver pro-
cesses the total received vector

B(t) = (FV (), 7D ),....7 (1)
to generate the ML estimate of the information sequence
x = (xV)x® ., x(K))
where x%) = {:c } To derive the structure of the joint ML receiver, we

follow the same approach used in Section 2.1. Let {y,(¢)}denote a complete
set of orthonormal basis functions defined over the interval (0,T). Then

Z 7 ) + 29 (2) (7.218)
where
K
=3 S 2Rk 4 7{) (7.219)
k=1 ¢
where
(k.j k)
G /0 R (¢ — 0T — ) (£)dt (7.220)
A = / 700 (1)t (£)dt (7.221)
Define the received vector
=G F@ LK)
where #0) = {rn }. Since the noise components 7 7Y associated with the J
antenna elements are uncorrelated zero-mean complex Gaussian random vari-
ableswith variance %E[lnn )l | = N,. the received vector  has the multivariate

Gaussian density

N—-1 1 1 J
p(Elx,H) = [] s—exp -5

n=0 % j=1

2

F0) _ E S o pkd)

k=1 ¢

(7.222)
The optimum receiver chooses x to maximize p(w|x, H) or, equivalently, the

metric
J K
S-S % 2Pk
£

=0 j=1 k=1

N— 2

—

(7.223)

3
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Since Y225 Y0y 17912 isindependent of x, maximizing (7.223) is equivalent
to maximizing

J K N-1
) = 3 {ame{ > 3l zfmw}
j=1 k=1 ¢ n=0
K K ,
DI I I Z BiED K ) } (7.224)
k=1k'=1 ¢ ¢ n=0
To proceed further, define
(kJ) A =k
y5) 2 lim 3 unle
n=0
00 . .
= / wD ()R (t — 0T — 7)dt (7.225)
—0
(Ick A = (k)1 (K \5)*
f 7.7 = Ivll‘r}noo z hnei])hnela]

giving
; = (k) (k.j)
px) = > 2Re{2 R ,a}
Jj=1 k=1
K K K () (kK i
S IDID I )xwfg,_’,w}. (7.2
k=1k'=1 ¢ ¢

It follows that the ML recelver processes the {yﬁ’“’” } and { fﬁk‘k"”} to deter-
mine the most likely sequence. The integral in (7.225) represents the output
of the kth matched filter a the jth antenna element and the 7{** ) are the
ISl coefficients for the jth antenna element. It follows that the ML receiver
employs a bank of K matched filters at each of the J antenna elements and
combines together all JK matched filter outputs to generate the ML estimate
of the transmitted sequence. From (7.225) and (7.226), we note that the ML
receiver requires knowledge of the {h(*:7)(¢)} and the {7 }.
The noise samples at the output of the matched filter A%:9)"(t) are

y80) = k) (o7 = / ADORED (b — 0T — 1)t (7.228)
which from (7.226) have autocorrelation function

vy

, 1 . :
k) (n) = 2E [Véii) lg J) ] = N, flkkd) (7.229)
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This leads to the overall discrete-time model

ygl” ZZ (lc’)f(lc k.3) (k,J
k'=1 n
If we define
v = @M
xe = (ef,....2p")
WO = (0, )

then (7.230) has the convenient matrix form

) = ZXg_anij) + ng) .
n

(7.230)

(7.231)
(1.232)
(7.233)
(7.234)

(7.235)

The above development leads to the overall system model shown in Fig. 7.27.
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Figure 7.27.

83 DISCRETE-TIME MIMO CHANNEL MODEL
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Analogousto thediscrete-time model for digital signaling onasingleinput —
single output (SISO) 1Sl channel, the MIMO ISl channel can a so be described
by acollection of Jparalel discrete-time white noise channel models. A matrix
noise whitening filter is used to whiten the noise samples at the outputs of the
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bank of matched filters for each antenna element. Suppose that the channel
impulseresponse A7) (¢) has length L&, i.e., A5 (t) = 0 for t < Oand
t > L%3)7. Then the channel matrix filter for the jth antenna element can be
defined as [93]
Fi(z)= Y F@.™ (7.236)
n——L]
where L; = max; L%, This is a straight forward extension of the conven-
fiondl SISO 1Sl channel where F(z) = YEZL, .| faz™™. An asynchronous
MIMO channel is described by a matrix filter and the range of summation in
(7.236) must be expanded from (-L; + 1, L; — 1) to (—L;, L;) in order to
account for the random user delays. For an idedl channel (with no 1SI) the
channel matrix filter in (7.236) is
N
FOGz)= S FPz (7.237)
n=—N
where NT is the length of the transmitted pulse, i.e,, hy(¢t) = 0 fort < 0 and
t > NT. For asynchronous idea MIMO channel

N-1
FOGE) = Y F (7.238)
n=—N+1
By using (7.226), it can be shown that the ISI coefficients have the symmetric
property
iRk - g k) (7.239)

and, therefore, FY) = F(_JBLH where H denotes Hermitian transposition.
Hence, FU)(z) has the symmetric form

FO(z) = J)”(1/ . (7.240)
It follows that the channel matrix filter F()(z) can be factored as
FO(z) = GW(z)GW" (1/2%) . (7.241)

Example 7.9
Congder atwo user system with asingle recelver antenna. Since J = 1, we
can omit the index (7). Let L = 1 and F(z) be

F(2) = Fiz4+Fy+Fiz}

1 0.48 + 0.482~1
0.48 + 0.482 1

0 0 1 048 0 0487 _,
[0.48 0}”[0.48 1 ]+[o 0 ]z '
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The matrix spectral factorization of F(z)has the form
F(z) = GY(1/2")G(2)
= [Go+G12)" [Go+ Grz7!]
Fpand F; can be represented by

Fy = GgGo + G{{Gq
F, = GG, ,
where Gy is lower triangular and F; is upper triangular with zero diagonal.

Inturn, G; must be upper triangular with zero diagond. This results in the
spectral factorization

Fl=) = Hgtgs 0(.)8]+[8 0(')6}2*}}1[[8:2 0(.)8]+[8 066}[1]

The matrix noise whitening filter [G#(1/2*)]"" is anticausal and stable with
an infinite length.

-1
H 31— 1 08 06
(67 (1/z")] {O.Gz 0.8 ]
_ 1 [ 0.8 ——0.6J
T 0.64-0.36z | —0.6z 0.8

In practice the filter [G¥ (1/2*)]™" can be approximated as a finite length filter
with sufficient delay. Finaly, the overall discrete-time white noise matrix
channel has transfer function

G(z) = [ (0):2 0(.)8 ] [ 8 066 ]Z_l

Asanalternative, itispossibleto choose [G (z)] ™' asthematrix noisewhitening
filter. Inthis case the matrix noise whitening filter is stable and causal. Thisfact
makes no difference in the performance of an MIMO ML SE receiver. However,
it is important to choose the matrix noise whitening filter as [G#(1/z*)17!
for some reduced complexity co-channel receivers such as those that employ
reduced-state sequence estimation (RSSE) [110], delayed decision feedback
sequence estimation (DDFSE) [90], or symbol-by-symbol co-channel receivers
that employ decision feedback MIMO equalization.

If the sequence #()(z) isinput to the matrix noise whitening filter, the output
is
vid(z) = G (2)x(z) + n1)(2) (7.242)
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where nU)(z) is white Gaussian noise with power spectral density

Spuiinw (f) = Nol . (7.243)
In the time domain L,
v = S xe-nGY + % (7.244)
n=0
where
v = M) iy (7.245)
L S LA (7.246)

The optimum receiver consists of a bank of K matched filters at the output of
each antenna element, followed by a baud-rate sampler and a K x K matrix
noise whitening filter. With J-branch diversity reception, the overdl matrix
channel consisting of the transmit filters, channels, matched filters, samplers,
and matrix noise whitening filters, can be modeled as a parallel collection of
J T-spaced matrix filters with independent white noise sequences as shown
in Fig. 7.28. To determine the number of states in the overal channel model,
wefirst define Ly, = max,; L7 as the length of the channel memory for the

kth input. Then there are 2 Lic1 + gtates, where 2"is the size of the signal
congdlation.

Xi X1 X2 X1
— T T _u_; ——= T
G? G? G? G no

Figure 7.28.  Discrete-time white noise MIMO channel model.

Similar to the receiver derived by Ungerboeck [328], it is possible to im-
plement the ML receiver by directly operating on the sequences {y§J )} a the
outputs of the matched filters, thus eiminating the need for the matrix noise
whitening filters. The metric for Ungerboeck’s recelver can be obtained from
(7.227).
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84 THE VITERBI ALGORITHM

Suppose that m symbols from each of the K transmitters have been trans-
mitted over the channel. Let V, = (v, {2, ..., v%)), where v =

@M. w7y denote the collection of vectors at the outputs of the matrix

noise whitening filters on each of the J antenna branches at epoch n. After

receiving the output sequence {V,,} -, the ML receiver decides in favor of the

sequence of input vectors {x, }- that maximizes the log-likelihood function
logp(Vm, cee ,Vllxm, P ,X1)

(1) K)

= log p(Vm(ms,ll), cey T (2 (2) ol 20 )

yYm—Ly? m,...,.’ltm_L2;.. v rm—Lyk

+10gp(Vm_1,...,V1|xm_1,...,x1) (7247)

The first term on the right hand side of (7.247) is the branch metric used
in the Viterbi agorithm. The discrete-time white noise matrix channel mode
leads to the conditional density function
L @ (2) - oK)

. (K) )
T LT Ly s Ty L

log p(lemS}L), R,

yYm—-Lir%vm oo

1 1 J ‘ L ‘
= (aN,)KT P {*ﬁ SV -3 xm_nG;”u?} (1.248)
° % j=1 n=0

where L = max;, L. Note that some elements in the matrix GY may be zero
ifLy # L, k=1,..., K inwhich case the branch metric computation can be
simplified. The density in (7.248) leads to the branch metric

J L
== S = LxmnGPN 0249
j=1 n=0

85 PAIRWISE ERROR PROBABILITY

Let x and x be the transmitted and estimated symbol sequences, respectively,
and define the error sequence e = x — x. The pairwise error probability is the
probability that the receiver decides in favor of sequence x when seguence x
was transmitted, equal to

P(I'(x —€) > I'(x)|x) = P(T'(x) > I'(x)) (7.250)

where I'(x) = 3, um 1S the path metric associated with the input sequence x
with the branch metric u,,, defined in (7.249). From (7.249),
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=1

J
P(I'(x —€) > I(x)|x) = P( ZJZemn )+ )

< Zillnm ||2>

m]:

J L
st (e )

J L
<= Z z I Z em—nGglj)HQ) . (7.251)

j=1 n=0
Define

L
AT = 33 UIS eGP (7.252)
m n=0
X = sze{zem_nc;ﬁf)n%) } (7.253)
1 n=0

It can be shown that x is a zero-mean Gaussian random variable with variance
4N,A?. Therefore, the pairwise error probability becomes

A2
PT(x—€) >T(x)|x)=Q ( 4N0) : (7.254)

86 T/2-SPACED MIMO MLSE RECEIVER

Suppose that the matched filter outputs y(¥+7)(t) are sampled at the correct
timing phase but with rate 2/T. In this case, the discrete-time channel from
the kth input to the jth output can be described by a T/2-spaced transversal

filter with coefficients f{**9) = f(er/2) and F**) = FE#I)" \yhere the
tilde denotes rate 2/T sampling. Since the timing phase is correct, we have
ftfk"“"j) = féj”“”"). It follows that the overall discrete-time matrix channel
filter, denoted by F)(z) has the factorization

FO)(z) = GW ()G (1/2*) . (1.255)
As with baud-rate sampling, the T/2-spaced correlated noise samples can be
whitened by using a stable anticausal matrix noise whitening filter with the

-~ . -1
transfer function [G(J)H(l/z*)] . The output of the matrix noise whitening

filter is ‘ - ;
79 (2) = GO (2)x(2) + 3D (2) (7.256)
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or in thetime domain

w0 er GY + 7y (7.257)

Where {m‘ } is a T/2-spaced white noise sequence with power spectrum
= N,I, The sequence {x,} is the corresponding T/2-spaced input
syrr?boI sequence and is given by

- X , T even
%, = { 0”/2 n odd (7.258)

The overall system and equivalent discrete-time white noise models are shown
in Figs. 7.29 and 7.30, respectively.

K0
b} ] ] vid
FS— ha(t) é“)(t) e T r R (-t+10) ——ﬁ)—ll——
i) 2T
2) (29)
x =e ) o 0 T - B-te) = 2y’T -
/ 1
=20)
K VKD
ik ha(t) () T« et W ETE ) ——IQ,'———
UT
()

Figure 7.29.  Overall MIMO system model with T'/2-spaced sampling.

Note that the vector samples v v% and v Vze +1 correspond to the 4th received
baud, where

v = ZXe G 4+ 7l (7.259)
n=0
‘ Lj-1
VW = Z Xe-n G+ A, - (7.260)

n=0
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X X X2 Xi2we

— T2 T/2‘1r— - = T/2]
G? G? G? G(zigmn l 0
:‘:&:&3 - ::(%.)3&_53 vo

Figure 7.30.  Overall discrete-time white noise MIMO channel model with 7"/2-spaced sampling.

With T/2-spaced fractional sampling there are two samples per baud and the
branch metric becomes

J . L ~ .
pm = =3 {nvgi,l — 3 X GY)|1?

L »
+ 99, - me_nGQJHHZ} . (7.261)

n=0

Once again, if Ly, # L,k = 1,..., K then some of the ééjn) may be zero. No-
tice that T/2-spaced fractional sampling doubles the number of computations
in forming the branch metrics as compared to T-spaced sampling.

8.6.1 ERROR PROBABILITY

We now generalize theresult for SISO channels, and show that the T-spaced
and T/2-spaced MIMO MLSE receivers have identical performance. For T-
spaced sampling, define

E(z) = > €z™" (7.262)

EP(z) = S v (7.263)
Then

EV)(z) = E(2)GY)(2) (7.264)

and
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For T/2-spaced sampling, define

Since é,, = Xy

Therefore

Zillgfn nGP|? (7.265)
ol e
> [EV@EP /2]
j=1
]2[ " (/2B /2]
i[ FO)(2)B* (1/2")] (7.266)
E(z) = &z . (7.267)
— %y, is zero for even I:wehave E(z) = E(22). Also,
EY)(2) = B(2)GY)(z) (7.268)
> XJ: I i}én—mé,ﬁj 12 (7.269)
ol
ZJ; [EQ (2B (1/2)]
iz
é[ﬁ:(z)d ()G (128" (1/27)]
]i [BEFO B (1/27)],
il[mz JFO (B (1/2)] (7.270)
iz

where | - o is the coefficient of 2. Since the odd powers of E(22)E*(1/2*")
are zero and Fy = Fy wehave A? = A% Therefore, the T-spaced and
T/2-spaced receivers have identical bit error probability performance.

8.6.2 TIMING PHASE SENSITIVITY

The T-spaced MIMO MLSE receiver must have knowledge of the set of
delays {rx} <, to generate the branch metrics. One of the greatest advantages
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of a T/2-spaced MIMO MLSE receiver is its insensitivity to timing phase.
Section 7. showed this property for SISO channels and here we generalize the
result to MIMO channels.

Suppose that the timing phase offset for the kth sampler and the jth antenna
branch is (%)) seconds. The T/2-spaced sampled impulse response a the
output of the matched filter A(%:7)™ (—¢) is fe(’jk 9 = fekG) (e £ k),
where T' = T'/2. Due to the timi ng phase offset, the IS coefficients are not
symmetric, i.e, f&*F) # FERI" Define the matrices

~7(1y) — [ﬂ‘k’kl,j)]KxK (7.271)
BY, = [7%5] (7.272)

The discrete-time Fourier transform (DTFT) of ﬁﬁf)t is

) = 3 B
n=-—2L;

I TV R0) () (1.273)
where et79 T = (e HjortD etjwr ])) and (k1) = ¢(k.j) /T

Since the noise is ci rcularly wmmetrlc the psd of the noise at the output of
the jth matched filter is independent of the timing offset t and is given by

Sy(]‘)y(]) (f) = NoF(j)(ejw) (7.274)
The DTFT of the matrix noise whitening filter is
oy - q-1
(G (1/z )] =[GV (e) (1.275)
and we have o o
FU(ev) = G () GW)" (e1v) | (7.276)

Hence, the noise at the output of the matrix noise whitening filter is white.
Since the input data sequence is white, the DTFT of the message vector at the
output of the noise whitening filter is

ééj)(ej‘”) - eiij“)é(J')(eJ'w) (7.277)
and we have
~ iy o~ NH ~ (1) = (1} 1 T ~ H
2GPGY" =3 GG =5 [ GO(E)GD (¢

(7.278)



376

This implies that
»

GO )GY" (1/2%) = FU)(2) | (7.279)
It follows that the distances between allowed sequences of channel outputs with

the T/2-spaced ML SE receiver is not sensitive to the sampler phase e« T,
Since the noise remains white, the error rate performance is insensitive to the
sampler phase. Finally, we note that (7.278) does not hold for the T-spaced

receiver due to aliasing of the signal spectrum.

8.6.3 PRACTICAL RECEIVER

Section 7. showed that the optimal front-end processing for a SSO IS
channel can be redlized by a receiver filter that is matched to the transmitted
pulse h,(t) followed by arate-2/T sampler and a T/2-spaced noise whitening
filter. Here we generalize this concept to MIMO ISl channels. For a MIMO
system where al input signals have the same form, a significant complexity
reduction is realized by using this receiver. No longer is a matched filter bank
required a each antenna element. As shown in Fig. 7.31, the receiver simply
consists of a single matched filter for each antenna element followed by arate-
2/T sampler and a T/2-spaced noise whitening filter. Although the T-spaced
samples a the output of thefilter h%(—¢) are white, the T/2-spaced samples
are not and, therefore, the noise whitening filter is necessary. However, the
structure of the noise whitening filter is completely known because it depends
on the known filter h}(—t).

1) ]
SI‘ l‘lld%t) T
X [x@ . al go
E—xs— RO T2 Ha(-t) —»IQ—— [Ex(1z9)] —ﬁu
2T

Figure 7.31.  Practical MIMO system with T'/2-spaced sampling.

We now establish that the systems showninFigs. 7.29 and 7.31 yield identical
performance. Assuming that rate-2/T sampling satisfies the sampling theorem,
the two systems can be completely represented by their T/2-spaced discrete-
time signals. This is achieved, for example, by using raised cosine pulse
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shaping with less than 100% excess bandwidth. Define

cW(t) = (ID(),...,FD ()T (7.280)
hO () = (hM(),..., AED ()T (7.281)

Leth,(z), &(z), and h(z) be the z-transforms of the T/2-spaced sample signals
corresponding to hq(t), and c(t) and h(t), respectively. The ztransform of the
autocorrelation function of the noise samples at the output of the receive filter
X (—t) is N, Fy(2) where Fy(2) = hqe(2)h%(1/2*). Using the factorization

Fu(z) = gn(2)gn(1/2") (7.282)

the T/2-spaced noise sequence at the output of the matched filter A% (—t) can be
whitened by using afilter having the transfer function [g} (1/2*)]~! asshown
in Fig. 7.31. Note that the noise whitening filter is not amatrix filter, but just a
scaar filter.

The z-transform of the overall T/2-spaced discrete-time channel inFig. 7.31
that includes the noise-whitening filter is

Beq(2) = ha(2)8(2)h(1/2%)/g1(1/2%)
&(2)gn(2) -

= ¢&(2)gn(z (7.283)
Referring to the conventional system shown in Fig. 7.29, we have
h(z) = ha(2)é(z) (7.284)
and
F(2) = ha(2)&(2) (ha(1/2")c(1/2"))" = ha(2)E(2)&" (1/2*)h;(1/2")
(7.285)
Let
&(2)&"(1/2*) = Ge(2)GE (1/2%) (7.286)

be afactorization of thematrix &(z)&# (1/z*) suchthat G# (1/z*) hasminimum
phase. Combining (7.282), (7.285) and (7.286) gives

F(2) = §a(2)GE(2)GE(1/2)gh(1/2") . (7.287)

The transfer function of the matrix noise-whitening filter is chosen as
[GE(/2Mg(1/24)] - (7.288)
Therefore, the overdl transfer function at the output of the matrix noise whiten-

ing filter is _
G(2) = §u(2)Ge(z) . (7.289)
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Finally, we note that
&eq(2)80,(1/2") = F(2) = G(2)G" (1/27) . (7.290)

Therefore, the Euclidean distance between sequences of channel outputs for
the system in Fig. 7.31 is the same as those for the T/2-spaced MLSE re-
ceiver in Fig. 7.29. Consequently, the system shown in Fig. 7.31 achieves
ML performance. The main advantage of the system in Fig. 7.31 is that the
noise-whitening filter does not depend on the unknown channel and has a fixed
structure. Of course, the implementation of the noise whitening filter will still
require substantial complexity.

The receiver shown in Fig. 7.31 has a scalar output, while the receiver in
Fig. 7.29 has a vector output and, furthermore, géq),n is a vector while G( Dis
amatrix. Asaresult, the branch metric used in the Viterbi algorithm needs to
be modified accordingly. From (7.261)

2

U2m Z Xm— "geq 2n

J
MHm = Z
i=1

-1

”§m+1 Z Xm— ng((eq)2n+1

n=>0

n (7.291)

Although the T/2-spaced receiver is optimum, there are severa key issues
that must be resolved before it can be implemented. First, the receiver must be

trained to derive an initial estimate of the chance vectors {geq n}. This synchro-
nization and training problem is particularly challenging for an asynchronous
TDMA cellular system where the training sequences are not coincident. With
an asynchronous system different elements of the channel matrices are trained
at dlfferent times. Second, the receiver must be able to track the channel vectors
{geqn} during data demodulation. Perhaps a per-survivor processing approach
such as the one suggested in Section 5.1.1 could be used.

8.7 INTERFERENCE REJECTION COMBINING
MLSE

In many cases, the structure of the CCl is often unknown. This is true for
example with licensed cellular systems that use different common air interfaces
in the same band. For example, AMPS, 1S-54/136, and CDPD users all share
the same band. Here we deriveaMIMO ML SE recaiver, cdled theinterference
rejection combining MLSE (IRC-MLSE) receiver, for such conditions.

Once again, we assume that the receiver filter on each antenna element is
matched to the transmitted pulse and followed by rate 2/T sampling. Since
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the CCI has an unknown form, a matched filter is only required for the desired
sgna. The overdl pulse response consisting of the transmit filter, channel,
and receiver filter is fU)(t) = (L9 (t) * p(t), where p(t) = hq(t) * hx(—t)is
the overall response of the transmit and receive filters. The vector of matched
filter outputs from the J antenna elements is

L
=Y mpf(t — £T) + z(t) (7.292)
£=0
where
yt) = @@,y )"
() = (fO0,.... /D))"
z(t) = (0@),..., @) (7.293)

and where LT is the length of the pulse fU)(¢). The vector z(t) is the
impairment at the output of the matched filter due to the K co-channel signals
plus AWGN, and has the form

K
= ig(t) +v(t) (7.294)
k=1

where

() = (i0)(8),...,i0 (£)7
vit) = (W@),.... s enT . (7.295)

The matched filter outputs are sampled at rate 2/T and passed to a noise
whitening filter. The noise whitening filter is sub-optimum in the presence
of CCl, since the CCl a the input to the receiver filter can be viewed as
colored noise. However, the noise whitening filter ensures maximum likelihood
performance in the absence of CCl. The noise whitening filter is obtained
by using the same procedure leading to the overall T/2-spaced discrete-time
channel with the transfer function defined in (7.283). It follows that the overal
channel consisting of the transmit filter, channel, and receiver filter, and T/2-
spaced sampler can be modeled as a T/2-spaced tapped delay line with tap
coefficients

gD =@Y,...,3%))
where L, T is the length of the pulse h,(t). Define

Vo GIhT (7.296)
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Then the vectors vy, and vox41 @ the output of the noise whitening filter
corresponding to the kth received baud are

Ly
Vo = Z z(k — £)go¢ + Mgk (7.297)
=0
Ln-1
Vokrsr = 3 (k= Oaerr + Bokra (7.298)
=0

To derive a feasible receiver structure, we now assume that the sampled
impairment vector fi at the output of the noise whitening filter is a vector of J
correlated complex Gaussian random variables having thejoint pdf

3 1 1 o 1.
p(hy) = @) Ry &P {—§n,{’R,C 1nk} (7.299)

where |Ry| is the determinant of Ry and
1
Ry = 5B [ﬁkﬁf ] . (7.300)

Assuming an ML SE-like algorithm, the branch metric should be related to the
likelihood of the impairment vector. At epoch k, the samples vor and Vag41
are used by the Viterbi algorithm to evaluate the branch metric

pe = [Vor — b)) RS [Fap — 0
HVars1 — 1) TR [Voksr — 83441 (730D)
where
2L, 2Lp-1
Uy = (k- )@ W= > (k- OFaun -
=0 =0

Notice that the metric calculation requires the correlation matrix Ry and its
inverse, and the subchannel impul se responses

g' = (80,82.--,821,) (7.302)

g = (B8 Borp-1) - (7.303)

Computing the inverse of Ry can be computationally intensive for large J,
the number of computations required being proportiona to J2. However, when
J = 2 (two receiver antenna elements) the inverse can be obtained by using
direct matrix inversion (DMI), i.e, the inverse of the matrix Rygis

adj(Rk) _ 1 Tkoo —’r‘k12

'Rk| TkirThas — Tki2Tkor L “Thar  Tkny

R;!= (7.304)
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Divison by the determinant |Ry]| is unnecessary provided that Ry remains
constant over the decision delay in the Viterbi algorithm, since the determinant
just scales dl the path metrics. In this case, the Viterbi algorithm can use the
simplified branch metric

pe = [Vor — ] adj(Rox) [V — 0]
+[Vakr1 — 83517 adjRoks1) [Vak+1 — G3ep1] - (7.305)

which only requires multiplications and additions.

Finally, a metric combining MLSE (MC-MLSE) receiver is one that zeroes
the off diagona eements of the matrix R,. The metric combining recaiver is
equivalent to maximal ratio combining when the channel is affected by additive
white Gaussian noise.

838 EXAMPLES

The performance of the JMLSE, IRC-MLSE and MC-ML SE receivers dis-
cussed in the previous sections is now compared and contrasted. For this
purpose, and EDGE (Enhanced Data for GSM Evolution) burst format is as-
sumed. The EGDE burst format is the same as the GSM burst format described
in Fig. 1.2. However, instead of the GMSK modulation used in GSM, EDGE
uses 8-PSK modulaion with square-root raised cosne pulse shaping with a
roll-off factor of 8 = 0.5. For illustrative purposes, a T-spaced two equal ray
model is assumed for the desired signal. The interference impairment consists
of a sngle flat faded EDGE interferer. In al cases, the recever front-end
consists of a receiver filter that is matched to the transmitted pulse followed
by arae 2/T sampler and a noise whitening filter. The JMLSE receiver has
512 states, as defined by 2 symbols for the desired signal and 1 symbol for the
co-channel interferer. The MC/IRC-MLSE receivers have 64 states, as defined
by 2 symbols for the desired signal. Each simulation run consists of 3000
frames of 142 8-PSK symbols.

Fig. 7.32 shows the E;/N, performance of the three recavers for a fixed
C/I = 30 dB. The JMLSE receiver is the optimum receiver in the maximum
likelihood sense and achieves the best possible performance in AWGN. The
MC-MLSE receiver is aso optimum for AWGN channels, but exhibits some
degradation at higher E,/N, due to the co-channdl interference that is present.
The IRC-MLSE recaiver give the worst Ej /N, performance.

Fig. 7.33 shows the C/I performance of the three receivers for E, /N, =
30 dB. Observe that the MC-MLSE receiver gives the worst performance, while
the JMLSE receiver and IRC-MLSE receivers offer huge C/l performance
gains. The best performance is realized with the IRC-MLSE receiver. Hence,
the IRC-MLSE recaiver sacrifices a smdl amount of £ /N, performance for a
large gain in C/l performance.
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Figure 7.32. Relative E;/N, performance of the J-MLSE, MC-MLSE and IRC-MLSE re-
ceivers; C/I = 30 dB.

Itis curious that the IRC-ML SE receiver outperforms the JMLSE receiver.
First the JMLSE receiver that we have implemented, does not have a sufficient
number of receiver Sates due to pulse truncation effects. Hence, there is some
residual intersymbol interference that can be significant at low C/I. Second, the
overdl signa congtellation produced by the combination of the desired signa
and the co-channel signal may degenerate such that the constellation points
overlap. Inthiscase, errors can occur even for large Ej, /N, values.

APPENDIX 7.A: Derivation of Equation (7.184)

Assume that (7.176) has M different poles 1, 2, ...,vm. Then the
pairwise error probability isequal to

M1 1 AN
— S N 1--2 ) -7.A.1
P(v) ;{<2 2V1+w)jH#( %) @ )

Define the function-¢(v) = X, v — C = 0, where C is a constant. The
method of Lagrange multipliers suggests that

P 39 _oi=1 ... M (7-1.A.2)
oy O
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Figure 7.33. Relative C/I performance of the J-MLSE, MC-MLSE and IRC-MLSE receivers;
E,/N, = 30 dB.

for any real number A. It can be shown by induction that

R )l M (N

#k JFik
211 ANE
S ECE N2 ()
#Zk { Yi 2 2V1+y Jgk Yi
1 1 ( w)'l
- ~uy (7-1.A.3)
(47;/2 (1 +'yk)3/2> Jgk Vi

By solving (7-7.A.2) and observing the symmetry of P(+) and the derivative
(7-7.A.3) with respect to the permutations of =y, it is apparent that the minimum
of P(-y) is achieved wheney;, = y0 = ... = .

Problems
71 Assume that areceived signal is given by

o0

y(t) = 3 wif(t—iT)

1=—00
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where z, = +1, and f(t) is athe minimum bandwidth pulse satisfying
Nyquist’s criterion for zero 1Sl i.e,

(T |fl<1jeT

F‘f)‘{o fI>1/2T
and .
f(t) = —S”‘,ff/; )

There are two problems associated with this pulse shape. Oneisthe problem
of realizing a pulse having the rectangular spectral characteristic F(f) given
above. The other problem arises from the fact that the tailsin f (t) decay as
1/t. Consequently, a sampling timing error results in an infinite series of
ISI components. Such a series is not absolutely summable and, hence, the
sum of the resulting interference does not converge.

Assumethat f(t) = Ofor |t| > NT,where N is a positive integer. In spite
of the restriction that the channel is band-limited, this assumption holds in
al practical communication systems.

a) Duetoadighttiming error, thereceived signal issampled at t = kT+t,
where tp < T. Calculate the response for ¢t = kT + to. Separate the
response into two components, the desired term and the ISI term.

b) Assume that the polarities of z; are such that every term in the 1Sl is
positive, i.e.,, worst case 1Sl. Under this assumption show that the 1S
termis

2
ISI= —sm(1rto/T Z W .

and, therefore, ISI - 0o ass N = oo.
72 Starting with
o = / h* (1)h(r + KT)dr

show that .
F(e™IT) = Fy (f) .

7.3, Suppose that the impulse response of an overall channel consisting of the
transmit filter, channel, and receive filter, is

1 a|f|5f£
F(f):{ R £ <If1 < fu

a) Find the overall impulseresponsef (t).
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b) Isit possible to transmit data without 1S1?

¢) How do the magnitudes of the tails of the overall impulse response
decay with large values of t?

d) Suppose that binary signaling is used with this pulse shape 0 that the
noiseless signa at the output of the receive filter is

y(t) = ¥ @ f(t —nT)

where z,, € {—1,+1}. What is the maximum possible magnitude that
y(t) can achieve?

74. Show that the ISl coefficients {f,} may be expressed in terms of the
channel vector coefficients {g,} as

L—n
fn:Zg/:gk+n n=0,1,2,...,L .
k=0

75. Suppose that BPSK is used on astatic IS channel. The complex envelope
has the form

=4S aehalt—kT)
k=—-00

where z € {—1,+1} and h,(t) is the amplitude shaping pulse. The non-

return-to-zeropulse hq(t) = up(t) is used and the impulse response of the
channdl is

9(t) = god(t) — g16(t — 7)
where go and g; are complex numbersand 0 < 7 < T'.

a) Find the received pulse h(t).

b) What is the filter matched to h(t)?

¢ What are the ISl coefficients {f;}?

7.6. Supposethat BPSK signaling isused on astatic ISI channel having impulse
response
g(t) =6(t) +0.16(t — T)

The receiver employs afilter that is matched to the transmitted pulse hq(t),
and the sampled outputs of the matched filter are

Yn = Tngo + Z TkGn—k + Tn
k#n
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where z, € {—1,4+1}. Decisions ae made on the {y,} without any
equalization.

a) What is the variance of noise term 7n,?
b) What are the values of the {gn}?

€) What is the probability of error in terms of the average received bit-
energy-to-noise ratio?

7.7. A typical receiver for digital signaling on an IS channel consists of a
matched filter followed by an equalizer. The matched filter is designed
to minimize the effect of random noise, while the equalizer is designed to
minimize the effect of intersymbol interference. By using mathematical
arguments, show that i) the matched filter tends to accentuate the effect of
[SI, and ii) the equalizer tends to accentuate the effect of random noise.

78 Consider an ISl channel, where f, = O0for |n| > 1. Suppose that the
receiver uses afilter matched to the received pulse h(t) = h,(t) * g(t), and
the T-spaced samples at the output of the matched filter, {yx}, are filtered
as shown in Fig. 7.A.1. The values of go and g; are chosen to satisfy

90> + lg1l* = fo
991 = N
Find an expression for the filter output v, in terms of gg, 91, k, zx_1, and
the noise component at the output of the digital filter, 7.

{y} {ve}
‘ T (X)

Figure 7.A.1.  Digital filter for Problem 7.8.

79. The z-transform of the channel vector g of a communication system is
equal to

G(z)=01+10z"' —0.1272 .
A binary sequence x is transmitted, where =, =€ {—1,+1}. The received
samples at the output of the noise whitening filter are
2

Up = Z 9kZTn—k + Nn
k=0



Equalization and Interference Cancellation 387

where {n,,} is awhite Gaussian noise sequence with variance o2 = N,

a) Evauate the probability of error if the demodulator ignores ISI.
b) Design a 3-tap zero-forcing equalizer for this system.
€) What is the response {uv } for the input sequence

{oe} = (-1)*, k=0,1,2,3 7

What is the response at the output of the equalizer?
d) Evaluate the probability of error for the equalized channel.

7.10. Suppose that a system is characterized by the received pulse
h(t) = V2ae™ %, 0<t<oo.

A receiver implements a filter matched to h(t) and generates T-spaced
samples at the output of the filter. Note that the matched filter is actually
noncausal.

a) Find the 1Sl co-efficients f;.

b) What is the transfer function of the noise whitening filter that yields a
system having an overall minimum phase response?
¢) Findthetransfer function of the equivalent zero-forcing equalizer C’(z).

d) Find the noise power at the output of the zero-forcing equalizer, and
find the condition when the noise power becomes infinite.

7.11. Consider M-PAM on a static 1SI channel, where the receiver employs

a filter that is matched to the received pulse. The sampled outputs of the
matched filter are

Yn = Tnfo + Z Tkfnk +vn
k#n
where the source symbols are fromthe set {£1, 3, ..., (M —1)}.De-

cisions are made on the {y,, } without any equalization by using athreshold
detector. The ¢th ISl pattern can be written as

= Topfni
k#n

and D(¢) is maximum when sgn(z, %) = sgn(fn—x) and each of the x4
takes on the maximum signaling level, i.e,, z,x = (M — 1)dfor M even.
The maximum distortion is defined as

max= Z]fn .

n;éO
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a) Discuss and compare error performance M-ary signaing (M > 2)with
binary signaling (M = 2), using Dnax 8S a parameter.

b) Suppose that the channel has ISl coefficients

fi = 00, |i|>3

fa = f2=01
fi = f-1=-02
fo = 1.0.

Plot the probability of error against the signal-to-noiseratio and compare
withtheidea channel case, i.e, fo = dr0. Show your resultsfor M = 2
and 4.

712. Consider alinear MSE equalizer and suppose that the tap gain vector ¢
satisfies
C = Cgp + Ce

where ¢, isthe tap gain error vector. Show that the mean sguare error that
is achieved with the tap gain vector c is

J = Jmin + CZMUCE .

713 The matrix M, hasaneigenvalue Ax and eigenvector xy if
XMy = Apxg k=1,...,N .
Prove that the eigenvectors are orthogond, i.e.,

T
x,-xj = 51’]’

714. Show that the relationship between the output SNR and Jmin for an
infinite-tap mean-square error linear equalizer is

Yoo = 1- Jmin

oo Jmin

where the subscript co on «y indicates that the equalizer has an infinite
number of taps. Note that this relationship between ~o and Jpin holds
when there is residual intersymbol interference in addition to the noise.

715, In this question, we will show in steps that

VeJ =2cTM, - 2vH |
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Define
Mv = MvR +jMv1
¢ = cg+jcr
Vr = Vgp +jvz1

a) By using the Hermitian property M, = M¥ show that

M,, = M], and M,, = -M_, .

b) Show that
VegRe{vie*} = va
Ve, Re{vEc} = —vfl

Vepe!'Mye* = 2¢EM,, —2¢FM,,
Ve, cIMye* = 2¢IM,, + 2¢EM,,

where Vy is the gradient with respect to vector x.

¢) If we define the gradient of a real-valued function with respect to a
complex vector ¢ as
vc = VCR + jvcl

show that

VcRe{vic} = v

VeelIMyer = 2¢7M, .

7.16. Show that the pairwise error probability for digital signding on an ISl
channel is given by (7.154).

717. Consider thetransmission of the binary sequence x, z, € {1, +1}over
the equivalent discrete-time white noise channel model shown in Fig. 7.A.2.
The received sequence is

v = .T0zg+m
vy = .70x1 — .60z + 72
v = .T0z9 — .60z1 + 13

vg = .T0zp — .60zK_1 + Mk
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a) Draw the state diagram for this system.
b) Draw the trellis diagram.
¢) Suppose that the received sequence is
{v;}%., = {1.0, —1.5, 0.0, 1.5, 0.0, —1.5, 1.0}

Show the surviving paths and their associated path metrics after v has
been received.

{x}

G(} 0.70 -0.60

O

n.}

Figure 7.A.2.  Discrete-time white noise channel model for Problem 6.17.

7.18. Suppose that BPSK signaling is used on a frequency selective fading
channel. The discrete-time system consisting of the transmit filter, channel,
receiver filter, and baud-rate sampler can be described by the polynomial

The samples at the output of the receiver filter are processed by a noise

whitening filter such that the overal discrete-time white noise channel

model G(z) has minimum phase.

a) Find G(2).

b) Draw the state diagram and the trellis diagram for the discrete-time
white noise channel model.

) A block of 10 symbols x = {z;}}_,istransmitted over the channel and
it is known that zg = —1. Assumethat z; = 0,4 < 0 and the suppose
that the sampled sequence at the output of the matched filter is
y = (¥0,¥1,Y2,¥3, - Yo)

= (1/2,1/4,-3/4,3/4,-3/4,-1/4,3/4,-3/4,-1/4,-1/4)
What sequence x was most likely transmitted?



Chapter 8

ERROR CONTROL CODING

Channel coding and interleaving techniques have long been recognized as an
effective technique for combating the deleterious effects of noise, interference,
jamming, fading, and other channel impairments. The basic idea of channel
coding is to introduce controlled redundancy into the transmitted signals that
is exploited at the receiver to correct channel induced errors by means of for-
ward error correction. Channel coding can also be used for error detection in
schemes that employ automatic repeat request (ARQ) strategies. ARQ strate-
gies must have a feedback channel to relay the retransmission requests from
the receiver back to the transmitter when errors are detected. ARQ schemes
require buffering at the transmitter and/or receiver and, therefore, are suitable
for data applications but are not suitable for delay sensitive voice applications.
Hybrid ARQ schemes use both error correction and error detection; the code
is used to correct the most likely error patterns, and to detect the more infre-
quently occurring error patterns. Upon detection of errors a retransmission is
requested.

There are many different types of error correcting codes, but historically they
have been classified into block codes and convolutional codes. To generate a
codeword of an (n, k) block code, ablock of k data bits is appended by n — &
redundant parity bits that are algebraicaly related to the k data bits, thereby
producing a codeword consisting of n code bits. Theratio R. = k/niscaled
the code rate, where 0 < R, < 1. Convolutiona codes, on the other hand, are
generated by the discrete-time convolution of the input data sequence with the
impulse response of the encoder. The memory of the encoder is measured by
the duration of the impulse response. While block encoder operates on k-bit
blocks of data bits, a convolutional encoder accepts a continuous sequence of
input data bits.
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Both block codes and convolutional codes find potential applications mobile
radio systems. Some second generation digital cellular standards (e.g., GSM,
IS-54) use convolutiona codes, while others (eg., PDC) use block codes.
Although hard decision block decoders are easy to implement, there exist some
very simple soft decision decoding algorithms (e.g., the Viterbi algorithm) for
convolutional codes. As aresult convolutional codes are often preferred over
block codes.

In the early application of coding to digital communications, the modulator
and coder were treated a separate entities. Hence, a block code or a convo-
lutional code was employed to obtain a coding gain a the cost of bandwidth
expansion or data rate. Although this may be a feasible approach for power
limited channels where bandwidth resources are plentiful, it is undesirable and
sometimes not even possible for bandwidth limited applications such as cellular
radio. If no sacrifices of data rate or bandwidth can be made, then schemes
that separate the operations of coding and modulation require a very powerful
code just to break even with an uncoded system. In 1974, Massey [219] sug-
gested that the performance of a coded digital communication system could be
improved by treating coding and modulation as a single entity. Ungerboeck,
later developed the basic principles of trellis-coded modulation (TCM) [330]
and identified classes of trellis codes that provide substantial coding gains on
bandwidth limited additive white Gaussian noise (AWGN) channels.

TCM schemes combine the operations of coding and modulation and can be
viewed as a generalization of convolutional codes. While convolutional codes
attempt to maximize the minimum Hamming distance between alowed code
symbol sequences, trellis-codes attempt to maximize the Euclidean distance
between alowed code symbol sequences. By jointly designing the encoder
and modulator Ungerboeck showed that, for an AWGN channel, coding gains
of 3-6 dB could be obtained relative to an uncoded system by using trellis
codes with 4-128 encoder states, without sacrificing bandwidth or data rate.
This property makes TCM very attractive for cellular radio applications where
high spectral efficiency is needed due to limited bandwidth resources and good
power efficiency is needed to extend battery life in portable radios. TCM
experienced an almost immediate and widespread application into high-speed
power-efficient and bandwidth-efficient digital modems. In 1984, a variant
of the Ungerboeck 8-state 2-D trellis code was adopted by CCITT for both
14.4 kb/s |eased-line modems and the 9.6 kb/s switched-network modems [38].
In 1985, a TCM-based modem operating at 19.2 kb/s was introduced by Codex
[331].

Ungerboeck’s work [330] captured the attention of the coding community
and laid the foundation for intensified research. Calderbank and Mazo in-
troduced an analytic description of trellis codes [43]. They showed how to
realize the two operations (coding and mapping) in Ungerboeck’s codes by
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using a single-step procedure. Calderbank and Sloane [44], and We [352],
proposed multi-dimensional trellis codes. Spaces with larger dimensionality
are dtractive, because the signals are spaced at larger Euclidean distances [38].
Caderbank and Sloan [44], and Forney [128], made the observation that the
sgna constellation should be regarded as afinite set of points taken from an in-
finite lattice, and the partitioning of the constellation into subsets corresponds
to the partitioning of the lattice into a sub-lattice and its cosets. They then
developed anew class of codes, called cosat codes, based on this principle,

Many studies have examined the performance of TCM on interleaved flat
fading channels [82, 83, 94, 45]. Divsalar and Simon [83, 84] constructed trellis
codes that are effective for interleaved flat Ricean and Rayleigh fading channels.
Interleaving randomizes the channel with respect to the transmitted symbol
sequence and has the effect of reducing the channel memory. Consequently,
interleaving improves the performance of codes that have been designed for
memoryless channels. Moreover, trellis codes that are designed for flat fading
channels exhibit time diversity when combined with interleaving of sufficient
depth. 1t wasreportedin [45] that interleaving with reasonably long interleaving
depthsisamost asgood asided infiniteinterleaving. Thedesign of trelliscodes
for interleaved flat fading channels is not guided by the minimum Euclidean
distance used for AWGN channels, but rather by the minimum product squared
Euclidean distance and the minimum built-in time diversity between any two
alowed code symbol sequences. Wel [353] introduced an additional design
parameter called the minimum decoding depth, and proposed a st of efficient
codes for interleaved flat Rayleigh fading channels.

Many studies have aso considered the effect of intersymbol interference
(19) on the performance of trellis codes that have been designed for AWGN
channels [319, 363, 88, 107]. The coded performance on static ISI channels
may be significantly degraded compared to that on | SI-free channels. Receivers
for trellis-coded modulation on gatic 1S channels typicaly use a linear for-
ward equalizer followed by a soft decision Viterbi decoder. For channels with
severe |Sl, amore appropriate approach is to use a decision feedback equalizer
(DFE) in front of the TCM decoder to avoid the problems of noise enhance-
ment. However, the feedback section of the DFE requires that decisions be
available with zero delay. Since the zero-delay decisions are unreliable, the
performance improvement by using the DFE is marginal [49]. It ispossible that
the performance can be improved if equaization and decoding is performed in
ajoint manner by using maximum likelihood sequence estimation (MLSE) or
some other form of sequence estimator. However, the complexity of an MLSE
receiver grows exponentially with the number of encoder states and the length
of the channel vector.

In 1993, Berrou et al., introduced parallel concatenated convolutional codes
(PCCCs), cdled Turbo coding [36]. When used in conjunction with an iter-
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ative decoding scheme, PCCCs achieve near Shannon limit performance on
both the AWGN channel and the interleaved flat fading channel. Simulations
of a rate-1/2 Turbo code have shown a bit error probability of 1075 at an
E,/N, = 0.5 dB, whichisonly 0.5 dB from the Shannon limit! Although, the
performance of Turbo codes is remarkable at low E,/N,, their performance a
high Ey/N, is unimpressive. There is a perceivable change in the dope of the
bit error rate (BER) curves, which has been loosely termed an “error floor.” In
1997, Benedetto et d., showed that iterative decoding of seridly concatenated
interleaved convolutiona codes (SCCCs) can provide large coding gains with-
out the problem of an error floor [288]. In general, SCCCs outperform PCCCs
at high E,/N,, whereas the opposite is true for low Ey/N,.

The remainder of the chapter is organized as follows. Section 1. gives
an introduction to block codes. Sections 2. and 3. introduce convolutional
codes and trellis codes. This is followed by a consideration of the design and
performance analysis of trellis codes for various types of channels that are found
in mobile radio applications. Theseinclude the AWGN channels in Section 4.,
interleaved flat fading channels in Section 5., and non-interleaved fading ISl
channels in Section 6.. The evaluation of error probability upper bounds is
important for performance prediction and Section 6.4 presents a technique for
union bounding the error probability of TCM on a fading ISl channel; flat
fading channels and static 1SI channels can be treated as special cases. Finally,
section 7. provides an introductory treatment of Turbo coding.

1 BLOCK CODES

11  BINARY BLOCK CODES

A binary block encoder accepts alength-k input vector a = (a1, ao,. .., ax),
where a; € {0,1}, and generates a length-n codeword ¢ = (¢, cg,-..,cn),
where ¢; € {0,1}, through the linear mapping ¢ = aG, where G = [gij]kxn
isak x n matrix caled the generator matrix. The matrix G has full row
rank k, and the code C is generated by taking al linear combinations of the
rows of the matrix G, where field operations are performed by using modulo-2
arithmetic. The coderateis R, = k/n and there are 2% codewords. The whole
task of designing ablock code is to find the generator matrices that yield codes
that are both powerful and easy to decode.

For any block code with generator matrix G, there exists an (n — k) x n
parity check matrix H = [h;;](n_gyxn SUch that GH' = Oy (n_k). The
matrix H has full row rank » — £ and is orthogona to al codewords, i.e.,
cH” = 0,,_;. The matrix H is the generator matrix of a dual code C7,
consisting of 27~* codewords. The parity check matrix of CT is the matrix G.

A systematic block code is one having a parity check matrix of the form
G = [Ixxx|P] where P isak x (n — k) matrix. For a systematic block
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code, the first k coordinates of each codeword are equa to the k-bit input
vector a, while the last n — k coordinates are the parity check bits. By using
elementary row operations, the generator matrix of any linear block code can
be put into systematic form. A systematic block code has the parity check
matrix H = (I, _pyxm-r)| — PT). For asystematic block code, GH” =
[Pk [P Lntyxin-)T = =P + P = Opyn—p)-

Example 8.1 The parity check matrix
of an (n, K} Hamming code consists of al non-zero binary (n — k)-tuples. For
example, the systematic (7,4) Hamming code has the parity check matrix

1011100
H=|1110010];. (8.1)
0111001

which consists of al non-zero binary 3-tuples. The generator matrix of the
(7,4) systematic Hamming code is

1000110

0100011
G=loo10111 ®82)

0001101

The 16 codewords of the (7,4) Hamming code are generated by taking all
linear combinations of the rows of G using modulo-2 arithmetic.

111  MINIMUM DISTANCE

Let d(c, c2) denote the Hamming distance between the codewords ¢jand
2., equa to the number of coordinates in which they differ. For linear block
codes, d(c1,c2) = w(c; + ¢2), where w(c; + c2) isthe weight of ¢; + c3,
equal to the number of non-zero coordinates of we; + c¢2. The free Hamming
distance, dse, Of alinear block code is the minimum number of coordinates
in which any two codewords differ. For a linear code, the sum of any two
codewords c; + c2 is another codeword. Hence, the free Hamming distance is

dfree = glicr;d(01,c2) (8.3)
= i 0 4
rcr;élgd(c, ) (8.4)

= i . 8.5
rcn¢1(r)1w(c) (8.5)

Therefore, dgee 1S €qual to the weight of the minimum weight non-zero code-
word.

To derive an upper bound on dy;, recall that any linear block code can be
put into systematic form, G = [P|I; x| where P is a k x (n — k) matrix. It
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is certainly the case the number of non-zero elements in any row of P cannot
exceed n — k. Hence, the number of non-zero elementsin any row of G cannot
exceedn — k+ 1 Sincedl rowsof G are valid codewords,

diree <n—k+1 (8.6)

aresult known as the Singleton bound.. A code that has dgee = n — &k + 11iS
caled amaximum distance separable (MDS) code.

An example of a simple block code that meets the Singleton bound is the
binary repetition code

0 —-)C():(0,0,...,O)n
1 —e=(,1,...,1),

Inthis case, dfee = d(co,c1) = n — k + 1. The repetition code is the only
MDS binary code. The non-binary Reed-Solomon codes are also MDS codes.

112 SYNDROMES

Suppose that the codeword c is transmitted and the vector y = c + e
is received, where e is defined as the error vector. The syndrome of the
received vector y is defined as

s=yHT . @®.7)

Ifs = 0, then y is a codeword; conversely if s # 0,then an error must have
occurred. Note that if y is a codeword, then s = 0. Hence, s = 0 does
not mean that no errors have occurred. They arejust undetectable. Since for
a linear code the sum of any two codewords is another codeword, it follows
that the number of undetectable error patterns is equal to 25 — 1, the number
of non-zero codewords. The syndrome only depends upon the error vector
because

s=yH? =cH? + eH” =0+ eH” = eHT . (8.8)
Ingenera, s = eHT isasystemof n — k equations in n variables. Hence, for

any given syndrome s, there are 2% solutions for e. However, the most likely
error pattern e is the one that has minimum Hamming weight.

113 ERRORDETECTION

A linear block code can detect al error patterns of dg.ee — 1 OF fewer error. If
e # 0 isacodeword, then no errors are detected. Thereare 2% — Tundetectable
error patterns, but thereare 2™ — 1 possible non-zero error patterns. Hence, the
number of detectable error patterns is

M —_1-(2F-1) =22k
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Usually, 2¥ — 1 is a small fraction of 2" — 2%, For the (7,4) Hamming code
considered in Example 8.1, there are 2* — 1 = 15 undetectable error patterns
and 27 — 2* = 112 detectable error patterns.

114  WEIGHT DISTRIBUTION

Consider ablock code C and let A; be the number of codewords of weight i.
The set { Ay, A1, ..., A4, } iscdled the weight digtribution of C. The weight
distribution can be expressed as aweight enumerator polynomial

A(z) = Ap2l + A1zt + -+ A2 . (8.9)
For the (7,4) Hamming code in Example 8.1,
A():17A2:07A3:71A4=7aA5=0aA6=0aA7=]- .

Hence,
Alz) =1+78 + 724 + 27 .

115 PROBABILITY OF UNDETECTED ERROR
The probability of undetected error is

P.(U) = P(eisanonzerocodeword)
= Y AP(w(e) =1) (8.10)
=1

The error probability P{w(e) = ¢) depends on the coding channel, defined as
that portion of the communication system that is seen by the coding system.
The simplest coding channel is the binary symmetric channe (BSC), where

Plyi#c)=p=1-Plyi=c) . (8.11)

For aBSC, P(w(e) = 1) = p*(1 — p)™~* and, hence,
P (U) =) Ap'(1-p)"* . (8.12)
i=1

The (7,4) Hamming code in Example 8.1 has an undetected error probability
of

P.(U) =701 —p)* + Tp* (1 —p)* +p" . (8.13)

For araw channel error rate of p = 1072, we have P.(U) = 7 x 10~8. Hence,
the undetected error rate can be very small even for afairly simple block code.
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116 ERROR CORRECTION
A linear block code can correct al error patterns of t or fewer errors, where

t < Léﬂ—e‘ij (8.14)

- 2
and |z] isthe largest integer contained in x. A code is usually capable of
correcting many error patterns of t + 1 or more errors. Infact, upto 2" *error

patterns may be corrected, which is equd to the number of syndromes.
For aBSC, the probability of codeword error is

P(E) < 1—P(torfewer errors)

t
= 1-3 (’Z)pi(l —p)ni (8.15)

i=0

117 STANDARD ARRAY DECODING

One conceptually simple method for decoding any linear block codes is
gandard array decoding. The standard array of an (n, k) linear block code
is constructed as follows:

1 Write out all 2¥ codewords in arow starting with co = 0.

2. From theremaining 2" — 2% n-tuples, select an error pattern ez of weight 1
and place it under cy. Under each codeword put ¢; +eq,i =1,...,2F —1.

3. Sdect aminimum weight error pattern e; from the remaining unused n-
tuples and place it under ¢g = 0. Under each codeword put c; + e3,1 =
1,...,2k —1.

4. Repeat Step 3 until al n-tuples have been used.

Note that every n-tuple appears once and only once in the standard array.
Example 8.2
Consider the (4,2) code with generator matrix

1100
G‘[0101]

The standard array is

e; 0000 1100 0101 1001
ep 0001 1101 0100 1000
ez 0010 1110 0111 1011
ey 0011 1111 0110 1010
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The standard array consists of 2"~* digoint rows of 2% dements. These
rows are called cosets and the ith row has the elements

E={ei,ei+01,...,ei+C2k_1} .

Thefirst element, e;, is caled the coset leader. The standard array aso consists
of 2% digoint columns. The jth column has the dements

D]‘ = {Cj,0j+ez,...,Cj+e2n—k} .

To correct errors, the following procedure is used. When'y is received, find
y in the standard array. If y isin row i and column j, then the coset leader from
row 4, e;, isthe most likely error pattern to have occurred and y is decoded into
y +e; = c;. A code is capable of correcting all error patterns that are coset
leaders. If the error pattern is not a coset leader then erroneous decoding will
result.

118 SYNDROME DECODING

Syndrome decoding relies on the fact that all 2% n-tuples in the same coset
of the standard array have the same syndrome. This is because the syndrome
only depends on the coset leeder as shown in (8.8). To peform syndrome
decoding

1. Compute the syndrome's = yHT.
2. Locate the coset leader e, where e,HT = s.
3. Decodeyintoy + ey = €.

This technique can be used for any linear block code. The calculation in Step 2
can be done by using a simple look-up table. However, for lage n — kit
becomes impractical because 2™~* syndromesand 2"~ * error patterns must be
stored.

2. CONVOLUTIONAL CODES
21 ENCODER DESCRIPTION

The encoder for arate-1/n binary convolutiona code can be viewed as a
finite-state machine (FSM) that consists of an v-stage binary shift register with
connections to n modulo-2 adders, and a multiplexer that converts the adder
outputs to serial codewords. The congraint length of a convolutional code is
defined as the number of shifts through the FSM over which a single input data
bit can affect the encoder output. For an encoder having a v-stage shift register,
the constraint length isequal to K = v + 1. A very smplerate-1/2, constraint
length-3, binary convolutional encoder is shown in Fig. 8.1.
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(2
b)

Figure 8.1.  Binary convolutional encoder; R. = 1/2, K = 3.

Figure 8.2.  Binary convolutional encoder; R, = 2/3, K = 2.

The above concept can be generalized to rate-k/n binary convolutional
code by using k shift registers, n modulo-2 adders, aong with input and
output multiplexers. For arate-k/n code, the k-bit information vector a, =
(agl), con ,aﬁk)) is input to the encoder at epoch £ to generate the n-bit code
vector b, = (bgl), ey bfZ")). If K; denotes the constraint length of the ith shift
regigter, then the overdl congtraint length is defined as K = max; K;.Fig. 8.2
shows asmple rate-2/3, congtraint length-2 convolutional encoder.

A convolutional encoder can be described by the set of impulse responses,
(g}, where g is thejjth output sequence b¥) that results from the ith input
sequence a®) = (1,0, 0,0, ...). Theimpulse responses can have aduration of

at most K and have the form g = (g%’ ,gi(,jl), e ,gff;){_l). Sometimes the

{gl(-j)} arecaled generator sequences. For theencoder in Fig. 8.1

gV =(,1,1) g? =(,0,1) (8.16)
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and for the encoder in Fig. 8.2

g = 1,1, g%=01,e¥=0,1
g’ = 0,1), g?=0,0, g2=0,0) . 8.17)

It follows that the jth output, bgj), corresponding to the ith input sequence

a(® is the discrete convolution bY?) = a® @g!”),where @denotes modulo-2
convolution. The time domain convolutions can be conveniently replaced by
polynomial multiplications in a D-transform domain according to

b (D) = 2 (D)g{ (D) ®.18)

where o
a(l)(D) — z a’i,ka (819)

k=0

is the ith input data polynomial,
b (D) = 3~ o) D (8.20)
k=0
is the jth output polynomia corresponding to the ith input, and
. K_I .
g (D)= Y ¢¥) D (8.21)
k=0
is the associated generator polynomial. It follows that the jth output sequence
IS
koo ko ,
b (D) =3 b (D) =Y a®(D)g? (D) . (822)
i=1

i=1

The above expresson leads to the matrix form
[69(D),...,b™(D)]

= [aV(D),...,a®(D)] : : (8.23)

where

GD)=| : (8.24)



402
is the generator matrix of the code. For the encoder in Fig. 8.1

G(D) = [1+ D+ D? 1+ D? (8.25)
while for the encoder in Fig. 8.2

[l-i—D D 1+D]

G(D)=| p 1 1

(8.26)

After multiplexing the outputs, the final codeword has the polynomia repre-
sentation

n

b(D) =Y Db (D™) . (8.27)
j=1
Systematic convolutional codes are those where first k encoder output se-
quences, b(1), ... b*) areequal tothek encoder input sequencesa(®’, ..., al®),

22  STATE AND TRELLISDIAGRAMS, AND WEIGHT
DISTRIBUTION

Since the convolutional encoder isaFSM, its operation can be described by
a date-diagram and trellis diagram in a manner very similar to the trestment
of IS channels in Chapter 7. The state of the encoder is defined by the shift
register contents. For arate-k/n code, the ith shift register contains v; previous
information bits. The gate of the encoder at epoch £is defined as

ge= (a2, 0l i ia, o d, ) 8.28)
There are atotd of N = 2T encoder dtates, where vy 2 ¥ | yisdefined
as the total encoder memory. For arate-I/n code, the encoder state at epoch
¢ ISSlmply gy = (a‘l—h e )al—u)'

Figs. 8.3 and 84 show the state diagrams for codes in Figs. 8.1 and 8.2,
respectively. The states are labeled using theconvention ¢(®,4 = 0,...,vr—1,
where ¢ represents the encoder state (cq, . . . , cur—1) COrresponding to the
integer i = 3-"T5" ¢;27. In general, for arate-k/n code there are 2* branches
entering and leaving each state. The branches in the state diagram are labeled
with the convention a/b = (a.a@, ... a®) /(6D @ . .| b™). For
example, the state transition o) — o(® in Fig. 8.3 has the label 1/01. This
means that the input a = 1 to the encoder in Fig. 8.1 with state ¢{!) = (01)
givestheoutput b = (01) and transitions the encoder to sate o(® = (11).

Convolutional codes are linear codes, meaning that the sum of any two
codewords is another codeword and the al-zeroes sequence is a codeword. It
follows that the weight distribution and other distance properties of a convo-
lutional code can be obtained from the state diagram. Consider, for example,
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Figure 8.3.  State diagram for the binary convolutional encoder in Fig. 8.1.

10/010 01/111

Figure 8.4.  State diagram for the binary convolutional encoder in Fig. 8.2.

the encoder in Fig. 8.1 aong with its state diagram in Fig. 8.3. Since the
self-loop at the zero state o(% corresponds to the all-zeroes codeword, we can
split the zero state o(®) into two nodes, representing the input and output of the
state diagram. This leads to the modified state diagram shown in Fig. 8.5.
The branches in the modified state diagram have labds of the form DN L,
wherei isthe number of 1'sin the encoder output sequence corresponding to a
particular state trangtion, and j is the number of input 1's into the encoder for
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Figure 8.5. Maodified state diagram for the binary convolutional encoder in Fig. 8.1.

that transition. Every branch is labeled with the letter L, and the exponent of
L isunity because each branch has length one.

The distance properties of a convolutional code can be obtained by com-
puting the transfer function T(D, N, L) of the modified state diagram. Any
appropriate technique can be used to obtain the transfer function, such as Ma
son's formula [218]. For the example shown in Fig. 85, the transfer function
is

D°NIL3

1—- DNL(L +1)

= DSL3N + D®N2L*Y(L +1) + D'N3L5(L + 1)°
oo+ DFFSNEHLLAS (L 4 1)k 4 (8.29)

T(D,N,L) =

The term DS NE+1LA+3( 1, 4 1)k appearing in the transfer function means
there are 2% paths at Hamming distance k + 5 from the all-zeroes path, caused
by k + 1 input ones. Of these 2* paths, (£) havelength k + n + 3.

Sometimes the transfer function can be simplified if we are only interested in
extracting certain distance properties of the convolutional code. For example,
the weight distribution of the code can be obtained by setting N = 1and L =1
in the transfer function. For the particular transfer function in (8.29) this leads
to

D5
1-2D
= DS54+2D8 44D + ... 4 2*D5HF 4 ... (8.30]]

T(D) =

meaning that there are 2* codewords at Hamming distance 5 + k from the all-
zeroes codeword. Notice that no non-zero codeword exists with a Hamming
distance less than 5 from the all-zeroes codeword. For the code in Fig. 8.1, we
seethat dgee = 5 from (8.30). The free Hamming distance can aso be seen by
inspecting the trellis diagram in Fig. 8.6. The branches in the trellis diagram
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state

Figure 8.6.  Trellis diagram for the binary convolutional encoder in Fig. 8.1.

are labeled with the encoder output bits that correspond to the various state
transitions.

Convolutional codes are designed to have the largest possible dgree fOr a
given code rate and total encoder memory. Tabulation of convolutional codes
that are optima in this sense can be found in many references, e.g., Proakis
[270], Lin and Costello [199], and Clark and Cain [63].

2.3 RECURSVE SYSTEMATIC CONVOLUTIONAL
(RSC) CODES

Forney [126] and Costello [70] showed that it is possible to construct a
recursive systematic convolutional (RSC) encoder from every rate R, = 1/n
feed-forward non-systematic convolutional encoder, such that the weight dis-
tributions of the codes are identical. Consider arate-1/n code with generator
polynomials g, (D),...,gn,(D). The output sequences are described by the
polynomials

b)(D) =a(D)g(D), j=1,...,n. (8.31)

To obtain a systematic code, we need to have b{(!)(D) = a(D). To do this,
suppose that both sides of (8.31) are divided by gt!) (D), so that

- bv(D

b)(D) g%)—; = a(D) (8.32)
) )

= () _ bY(D) g’ (D) .

b (D) = S(D) ~ ) O(D)’ i=2,...,n . (833)
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Sometimes the g{#) (D) are called thefeed-forward polynomials, while g{) (D)
is called the feed-back polynomial. Define anew input sequence a(D)as

a(D) 2 ﬁ)z))—) (8.34)

0 that
b(D) = a(D)gV(D) (8.35)
bY(D) = aD)g¥(D), j=2,...,n. (8.36)

Observe that the transformation between a(D) and a(D)in (8.34) is that
of a recursive digital filter with modulo-2 operations. This transformation
simply reorders the input sequences a(D). Since the input sequences consist
of all possible binary sequences, the filtered sequences a(D)aso consist of all
possible binary sequences. Hence, the set of coded sequences b(D)isthe same
as the set of coded sequences b(D) and thus the non-systematic and systematic
codes have the same weight distribution functions. However, the input weight
distributions for the two codes are completely different as we will see.

Example 8.3
Consider, for example, the rate-1/2 encoder in Fig. 8.1 with generators
g(D) =1+ D+ D? (8.37)
g?(D) =1+ D? (8.38)

By following the above described procedure a RSC code is obtained with
generators
V(D) = 1
g?(D) 1+ D?

5(2) = =
g7(D) g)(D) 1+ D+ D?

The RSC is shown in Fig. 8.7

Similar to their feed-forward counterparts, the weight distribution and other
distance properties of RSC codes can be obtained by constructing their corre-
sponding modified state diagram and computing the transfer function
T(D, N, L). The RSC encoder in Fig. 87 has transfer function

DSN3L3 — DSN4L* + DSN?2L*
T(D,N,L) = 1-DNL-DNL? - D2[3 + D2N2[3 (8:39)
= DSN3I3 + DSN2L* + DSNYLS +...  (8.40)

By setting N = 1 and L = 1, we obtain the weight distribution of the code,
T(D), which is identical to the weight distribution of the corresponding feed-
forward non-systematic encoder in (8.30). However, by comparing the first
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x Yik

Figure 8.7. Recursive systematic convolutional (RSC) encoder derived from the feed-forward
non-systematic encoder in Fig. 8.1.

few terms in their respective transfer functions in (8.29) and (840) it can
be observed that the input weight distributions are completely different. In
particular, codewords can be generated by weight-1 input sequences for the
feed-forward non-systematic encoder, while the RSC requires input sequences
having at least weight-2 to generate codewords. In fact, any finite weight
codeword for the RSC code in Fig 8.7 is generated by an input polynomial
a(D) that is divisible by 1 + D + D*. We will see later that these properties
arecrucia for Turbo codes.

Findly, both the feed-forward non-systematic and RSC codes are time in-
variant. This means that if the input sequence a(D) produces codeword b(D),
then the input sequence D'a(D) produces the codeword . D'6(D). Note that
the codewords b(D) and D*b(D) have the same weight.

3. TRELLISCODED MODULATION

31 ENCODER DESCRIPTION

Conventional convolutional codes realize acoding gain at the expense of data
rate or bandwidth. Although, such coding schemes are attractive for power-
limited applications, they are not suitable for bandwidth-limited applications.
Ungerboeck showed that acoding gain can be achieved without sacrificing data
rate or bandwidth by using arate-m/(m +r) convolutional encoder, and map-
ping the coded bits onto signal points {zy } through atechnique called mapping
by st partitioning [330]. This combination of coding and modulation, caled
trellis coded modulation (TCM), has three basic features,

1 Anexpanded signal constellation isusedthat islarger than the one necessary
for uncoded modulation at the same datarate. The additional signa points
alow redundancy to be inserted without sacrificing data rate or bandwidth.
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Figure 8.8.  Ungerboeck trellis encoder.

2. The expanded signal constellation is partitioned such that the intra-subset
minimum squared Euclidean distance is maximized at each step in the
partition chain.

3. Convolutional encoding and signal mapping is used so that only certain
sequences of signal points are alowed.

Fig. 8.8 shows the basic encoder structure for Ungerboeck’s trellis codes.
The n-bit information vector a; = (a;‘), sy a;’”) is transmitted a epoch k.
At each epoch, m < n information bits are encoded into m + r code bits by
using arate-m/ (m+r) linear convolutional encoder. The m+r code bits select
one of 2™*7 subsets of a 2" *"-point signal constellation. The uncoded n— m
information bits select one of the 2"~ signal points within the selected subset.
Thisprincipleisbest explained by example, and Fig. 8.9 shows a4-state 8-PSK
Ungerboeck trellis code. The equivaent uncoded system is4-PSK which hasa
bit rate of 2 bits/symbol. The 4-state 8-PSK code uses arate-1/2 convolutional
code aong with one uncoded bit to sdect sgna points in an expanded 8-PSK
signal constellation. Note that the overal rate is still 2 bits/symbol. Fig. 8.10
shows an 8-date 8-PSK Ungerboeck trellis code. The equivaent uncoded
system is again 4-PSK with 2 bits/symbol. The 8-state 8-PSK code uses a
rate-2/3 convolutiona code to select one of the points in an expanded 8-PSK
signal constellation so that the overall rate is again 2 bits/symbol.

32 MAPPING BY SET PARTITIONING

The critical step in the design of Ungerboeck’s codes is the method of
mapping the outputs of the convolutional encoder to points in the expanded
signa congtellation. Fig. 8.11 shows how the 8-PSK signd congtdlation is
partitioned into subsets such that the intra-subset minimum squared Euclidean
distance is maximized for each step in the partition chain. In the 8PSK
signal constellation there are 8 signal points equally spaced around a circle
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Figure 8.9. Encoder and signal mapping for the 4-state 8-PSK Ungerboeck trellis code.
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Figure 8.10. Encoder and signal mapping for the 8-state 8-PSK Ungerboeck trellis code.

of unit radius. Notice that the minimum Euclidean distance between signa
points in the 8-PSK signal constellation is Ay = 0.765, while the minimum
Euclidean distances between signa pointsinthefirst and second level partitions
ae A, = v/2 and A, = 2, respectively. The minimum Euclidean distance
increases at each level of partitioning.

The advantages of using TCM can most easily be seen by considering
the trellis diagram. For both the 4-state and 8-gtate 8-PSK trellis codes the
equivalent uncoded system is 4-PSK. The trellis diagram for uncoded 4-PSK
is shown in Fig. 8.12. The trellis only has one state and there are 4 paralle
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Figure 8.11.  Set partitioning for an 8-PSK signal constellation.

trangtions between the states. The subsets Dy, Do, Dy, and Dg are used as
the signa points. The label Dy, D2, D4, Dg means that the branches in the
trellis diagram are labeled from top to bottom with signal points taken from
the sats Dy, Do, D4, Dg. The minimum Euclidean distance between any two
paths through the trellis is dmin = v/2.

The trellis diagram for the 4-state 8-PSK code is shown in Fig. 8.13. Each
branch in the 4-state trellis is labeled with one of the four subsets Cy, Cy, Co,
and C3. Again, thelabel C;C; associated with a state means that the branches
in the trellis diagram originating from that state are labeled from top to bottom
with the subsets C; and C;. As shown in Fig. 8.11, each subset C; contains
two signa points. Thus, each branch in the trellis diagram actually contains
two pardld transitions. For example branches with the labe Cj have two
parale transitions that are labeled with the signa points 0 and 4. For the
4-state 8-PSK code, it is possble that two coded sequences could differ by
just asingle pardld transition and, hence, their minimum Euclidean distance is
d = 2. Also, any two signal paths that diverge from a state and remerge with the
same state after more that one transition have a minimum Euclidean distance
ofd = y/A? + A% + A? = 2.141. For example, the closest non-paralel code
sequence to the all-zeroes sequence x = (0, 0,0) isthe sequence x = (2, 1,2)
at distance d = 2.141. Hence, the minimum Euclidean distance of the code
over al paralel and non-parallel pairs of sequences for the 4-state 8-PSK code
is dmin = 2

At high signal-to-noise ratio (SNR), the bit error rate performance on an
AWGN channel is dominated by the minimum Euclidean distance error events.
The pairwise error probability between two coded sequences x and x separated
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Figure 8.12.  Trellis diagram for uncoded 4-PSK.
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Figure 8.13.  Trellis diagram for 4-state 8-PSK Ungerboeck trellis code.

by Euclidean distance dp;n iS

2
P(x—> %) =Q ( Z“‘%) (8.41)

The asymptotic coding gain is defined by [38]

(dl?nin,coded /Ea.v,coded )

G, = 10log;, dB (8.42)

(dr2nin,uncoded/Eav,uncoded)

where E,, isthe average energy per symbol in the signal constellation. For the
4-state 8-PSK code, the asymptotic coding gainis G, = 3 dB.

The concept of mapping by set partitioning was developed by Ungerboeck
as a method for maximizing the minimum Euclidean distance of a code and
optimize the performance on an AWGN channel. Ungerboeck’s construction
of the optimum 4-state 8-PSK code was based on the following heuristic rules
[331];

1 Padld transitions (when they occur) are assigned signa points having the
maximum Euclidean distance between them.

2. Thetransition starting or ending in any state is assigned the subsets (Cy, Cs)
or (C4, Cs) which have a maximum distance between them.

3. All signal points are used in the trellis diagram with equal frequency.
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Figure 8.14. Trellis diagram for 8-state 8-PSK Ungerboeck trellis code. The dashed lines
show two minimum distance paths.

It is clear that the performance of the 4-state 8-PSK code is limited by
the parallel transitions. Larger asymptotic coding gains can be obtained by
introducing more code states so that the parallel transitions are eliminated. For
example, the above design rules can be applied to the 8-state 8-PSK code to
obtain the code trellis shown in Fig. 8.14. Inthis case, the minimum Euclidean
distance is dmin = /A% + AZ + A? = 2.141. This yields an asymptotic
coding gain of 3.6 dB over uncoded 4-PSK.

4. CODED PERFORMANCE ON AWGN CHANNELS

Viterbi originally exploited the trellis structure of convolutional codes and
developed the Viterbi algorithm for ML decoding of convolutiona codes [341].
Given the similarity between the trellis structures of ISl channels, convolutional
codes, and trellis codes (e.g., compare Figs. 7.15, 8.6 and 8.13), it is not
surprising that the union bounding techniques that were developed to evauate
the error probability of digital signaling on ISl channels with an MLSE receiver
in Chapter 7.6 can also be applied, with some modification, to evauate the error
probability of convolutional and trellis codes with an MLSE receiver.

Todeveloptheunion bound, let a = {ay } denote the transmitted information
sequence. For any other sequence a # a, define the corresponding error
sequence ase = {ex} = a® &, where @ denotes modulo-2 addition. Sincethe
bit error probability at epoch j; is of interest, e;, # 0for all error sequences.
An error event occurs between ky and kg of length ko — ky, if ok, = &%,
and o, = 6,, but o; # &, for k; < j < ko, where k; < j; < kp,and
o = {ox} and & = {J} are the system ate sequences associaed with a
and a, respectively. Let E be the set of error sequences corresponding to all
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possible error events a epoch j;. Then, the average bit error probability is
bounded by

R<s Y wfe) TP P(Tase) 2T

ecE a

a) (8.43)

where I'(a) is the path metric of a, andwy(e) is the number of bit errors
asciaed with e The factor 1/n appears in front of the first summation,
because n information bits are transmitted per epoch (or per branch inthetrellis
diagram). The second summation is over al possble information sequences,
because each sequence a can have e as the error sequence. This is necessary for
trellis codes because the signal mapping and, hence, the codes are nonlinear.
Another way of writing the bound on the bit error probability in (8.43) is

Py< Y > wy(x, %)P(x)P(x = %) (8.44)
xeC x€C

where C is the st of al coded symbol sequences, w;(x, %) is the number of bit
errors that occur when the sequence x is transmitted and the sequence x # x
is chosen by the decoder, P(X) is the apriori probability of transmitting x, and
P(x — %) is the pairwise error probability.

For convolutional codes the upper bound in (843) smplifies because the
codes are linear, meaning that the sum of any two codewords is another code-
word and that dl-zeroes sequence is acodeword [ 199]. Because of this property,
we can assume that a = 0, 0 that the union bound becomes

R<p Y w@P(Ie)2ro) (8.45)

ecE

Note that we divide by k rather than n in front of the summation, because a
convolutional code transmits k bits per epoch whereas atrellis code transmits

n bits per epoch.

41 UNION BOUND FOR CONVOLUTIONAL CODES

Evaluation of the error probability upper bound for trellis codes is compli-
caed by the fact that trellis codes are nonlinear and, therefore, al possble
correct sequences must be considered when computing the upper bound. We
will defer treatment of the coded error probability upper bound for trellis codes
until Section 6.4, where we will consider the more general case of TCM on
afading 1Sl channel. In this section we will show how the error probability
upper bound can be computed for convolutional codes with Viterbi decoding.

For convolutional codes the st E in (8.45) consists of dl sequences that
begin and end at the zero-state in the state diagram. The enumeration of these



414

sequences (or codewords) along with their associated Hamming distances, in-
formation weights, and lengths, was obtained earlier by computing the transfer
function, T(D, N, L), of the augmented dae diagram. When a particular in-
correct path through the trellis is sdected over the al-zeroes path at a given
node in the trellis, the corresponding number of bits errors, wy(e), isgiven by
the exponent of N in the transfer function. Multiplying ws(e)by the pairwise
error probability P (T(e ) > ['(0)) for that path and dividing by the number
of input bits per branch, k, gives the bit error rate for that path. Summing over
the set of all possible incorrect sequences E yields a union bound on the bit
error probability.

In generd, the transfer function T(D, N) for a convolutiona code has the

form
o0

T(D,N)= Y aqD'N/@ (8.46)
d=dfree
where f(d) is the exponent of N asafunction of d. For the example in (8.29),
ag = 2475 and f(d) = d — 4. Differentiating T(D, N) with respect to N and
setting N = 1 gives

dT(D,N ad
—Ez_zv__)iN:l = ) aqf(d)D? (8.47)
d=dfree
Once again, for the example in (8.29) this leads to
dT(D,N =~ i
—((W)l,vzl = 3 2%%d-4)D*. (8.48)
d=dfree

The pairwise error probability in (8.45) depends on the type of modulation,
detection, and decoding that is employed. The code bits are mapped onto
symbols taken from a signal constellation, and transmitted over the channel.
The sampled output of the receiver matched filter at epoch k is

Yk = Tk + N (8.49)

where zy, is one of the M low-pass points in the signal constellation and
is a zero-mean complex-valued Gaussan random variable with variance N,
For convolutional codes, two types of decoding can be used, hard decison
decoding and soft decison decoding. Soft decison decoders do not make
symbol by symbol decisions on the received symbols, rather, the decoder

operaes directly on the sequence of matched filter outputs y. For an AWGN

channel, the ML SE receiver searches for the symbol sequence x that is closest
in Euclidean distance to the received sequence y. Following the same argument

used in Chapter 5.2, the ML SE receiver decides in favor of the sequence xthat
maximizes the metric

p(x) = —ly — x| . (8.50)



Error Control Coding 415

The sequence % corresponds to a unique sequence a that is the final estimate
of the transmitted information sequence a

In genera, the pairwise error probability for an AWGN channdl that is
associated with an error event of length £ beginning at epoch 1 is

A2
R0 =Q |\ 1w (8.51)
where
k1+£+1
A = S & (8.52)
k=k1
8 = |zg — & (8.53)

and X = {zx} and % = {Z;} are the symbol sequences corresponding to the
information sequences a and &, respectively. The parameter 67 is the squared
branch Euclidean distance associated with branch &, and A? is the squared
path Euclidean distance associated with the error event. Clearly, the pairwise
error probability depends on the particular mapping between the encoder output
bits and the points in the signal constellation. Suppose for example that code
bits are mapped onto a BPSK signa constellation. Then the pairwise error
probability between the two codewords b and b that differ in d positions is

Py(d) = Q(v/2R.d) (8.54)

where -y, is the received bit energy-to-noise ratio®. Therefore, the union bound
on bit error probability becomes

1 o0
& Z adf (d)Pa(d) . (8.55)

d=dfree

P, <

Note that we have explicitly shown the pairwise error probability to be afunc-
tion of the Hamming distance between the codewords in (8.54). However, it is
very important to realize that this property does not apply to al convolution-
aly encoded systems. For example, suppose that the outputs of the rate-2/3
convolutional encoder in Fig. 8.2 are mapped onto symbols from an 8-PSK
signa congtellation. In this case, the pairwise error probability depends not
only on the Hamming distance between codewords, but aso upon the particular
mapping between the 8-PSK symbols and the encoder outputs.

Hard decision decoders make symbol by symbol decisions on the received
sequence of matched filter outputs y = {yx} to yied the received symbol

The received symbol energy-to-noise ratio isys = Revs
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sequence x. A minimum distance decoder decides in favor of the symbol
sequence x that is closest in Hamming distance to the received symbol sequence
x. Again, the pairwise error probability depends on the particular mapping
between the encoder outputs and the points in the signal constellation. If BPSK
signaling is used, for example, then the pairwise error probability between two
codewords b and b a Hamming distance d is

Py(d) = { Zk (d+1) 2( ) P)d_k d odd
ko1 (DPFA=p)F 4+ 5(f)p 21 -p)?,  deven
(8.56)
where
p = Q(V2Rcv) (8.57)

is the probability of symbol error. Once again, the pairwise error probability
for BPSK is afunction of the Hamming distance between the codewords.

The union bound in (8.55) can be simplified by imposing a Chernoff bound
(see Appendix A) on the pairwise error probability. First consider the case of
soft decision decoding. Suppose that sequence x is transmitted and y is the
received sequence. Then the pairwise error probability between sequences x
and x with an ML receiver can be Chernoff bounded by

Px—%) = P(ly-xI*<ly-x?)
Eexp {A (ly I’ ~ lly = %I") } Ix] . (88)

Substituting y = x + n, taking the expectation over the Gaussian random
vector i, and simplifying gives

IA

P(x = %) < exp {—Alx — x|2(1 = X2N,)} (8.59)
The tightest upper bound is obtained with A* = 1/(4N,)yielding
_ <2
P(x — %) < exp { “"To"”} . (8.60)

Finally, if the signal constellation is normalized so that E[|z;|?] = 1, then the
Chernoff bound can be written in the form

P(x > %) gexp{—%ﬂx—fcﬂg} (8.61)

where 7, is the received symbol energy-to-noise ratio.
For the case of BPSK signaling on an AWGN channel, the Chernoff bound
on the pairwise error probability becomes

Py(d) < e”Redmo (8.62)
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Likewise, if BPSK signaling is used with hard decision decoding, then the
pairwise error probability has the Chernoff bound

Py(d) < [4p(1 — p)]*? . (8.63)

Notice that the Hamming distance d appears in the exponent of the pairwise
error probability. The resulting upper bound on bit error probability is caled a
union-Chernoff bound and has the simple form

1dT(D,N)

P <=

1 p— 8.64
S I N=1,D=Z (8.64)

where
7 — { 4p(1 — p), hard decision decoding (8.65)

e fem | soft decision decoding

At high SNR, the performance is dominated by the error events with min-
imum Hamming distance. Since the minimum distance error events are not
necessarily mutually exclusive, the bit error probability at high SNR is approx-
imately

1

Py, = Eadﬁeef(dfree)P2(dfree)

< %adf,eef(dfree)zdﬁee . (8.06)
The above procedure for upper bounding the error probability is called the
transfer function approach, because it relies upon the transfer function of
the state diagram. The transfer function approach, however, has its limita-
tions. Firgt, if the number of encoder states is large, then obtaining the transfer
function T(D, N) quickly becomes intractable. Second, if the pairwise error
probability is not just a function of the Hamming distance between allowable
code sequences, then the branch labeling in the augmented state diagram must
be done differently and the Chernoff bound cannot be employed. These prob-
lems can be overcome by a using a different approach to compute the upper
bound, such as the stack algorithm presented in Section 6.4.

5.  CODED PERFORMANCE ON INTERLEAVED FLAT
FADING CHANNELS

Fig. 8.15 is a block diagram of a coded communication system operating
on an interleaved flat fading channel. The information sequence a is encoded
and mapped onto a signal set to generate the symbol sequence x by using
either convolutional coding or trellis coded modulation. The symbol sequence
is then interleaved (or scrambled), and the resulting sequence xis filtered for
spectral shaping and transmitted over the channel. The receiver employs afilter
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Figure 8.15.  Digital communication on an interleaved flat fading channel.

that is matched to the transmitted pulse and symbol- or T-spaced samples are
taken at the output of the matched filter. With hard decison decoding, these
outputs are applied to adecision device and deinterleaved to yield the received
code sequence b. With soft decision decoding, the received samples y are
deinterleaved to generate the sequence y which is then input to the Viterbi
decoder.
The channel is characterized by flat Ricean fading, so that the sampled output
of the matched filter is
Uk = Gy + Tk (8.67)

where the pdf of dy is

2¢(1 + K) (K + 1)x2} ( K(K + 1))
o(z) = 2 ~K -7 V| 22—~
pa(z) Q, P { Q, T,
(8.68)

where Q, = E[az]. The 7j; are independent zero-mean complex Gaussian
random variables with variance .N,.

The interleaver serves to reduce the correlation between the fades expe-
rienced by successive source symbols that are transmitted over the channel.
There are a variety of interleaver structures [63], and the interleaver that we
consider here is a block interleaver. A block interleaver can be regarded as
a buffer with J rows and M columns, where J represents the interleaving
depth and M represents the interleaving span. The length of the interleaver
is JM symbols. Source symbols are fed into the buffer in successive rows
and transmitted out of the buffer in columns. The deinterleaver performs the
reverse operation. In practise, the interleaver depth J should be chosen so that
successive source symbols, which are actually transmitted J symbol durations
apart, are independently faded. In a2-D isotropic scattering environment, the
fades experienced at two different locations separated by a half wavelength
are approximately uncorrelated. If the signals are received by a mobile station
(MS) traveling with a speed of v km/h relative to the base station (BS), then
the spatial distance associated with one symbol duration T is equa to vT.
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Therefore, we should have JvT > 0.5, where \is the carrier wavelength.
For example, a carrier frequency of 900 MHz yields

R
J > 0.6; (symbols) (8.69)

where R is the signaling rate (symbols/s), v is the vehicle speed (km/h) and
J is in units of symbols. Observe that the required interleaving depth is
inversely proportional to the speed and, therefore, ow moving MSs require
largeinterleaving depths. For R = 24 ks/sand v = 30 km/h, J = 478 symbols.

The basic objective of any interleaver is to at least separate any Lp + 1
successive source symbols as far apart as possible, where Lp is the decoding
depth. Hence, M should be at least equal to Ln + 1yielding an interleaving
delay of

tyg = 0.6

(L—D;_—l—) (seconds) . (8.70)

For example, with Ly = 13 symbols and a MS spead of 30 km/h, the inter-
leaving delay should be at least 280 ms. This delay is quite large, especialy
for voice applications, and the problem is exasperated by lower MS speeds.
One possible solution isto design codes that minimize the decoding depth, L p.
The other solution is to use better interleaving techniques so that the effective
interleaving length is longer than the actual interleaving length JM.

For analytical purposes, an infinite interleaving depth is often assumed 0
that the deinterleaved sequence {ayx} is a sequence of independent random
variables. In this case the conditional density of y has the product from

p(yle - x) = [ plyloxar) - (8.71)
k

Suppose that sequence x istransmitted and the vector y = a-x+n isreceived.
An ML receiver having perfect knowledge of a chooses the sequence x that
maximizes the metric

px) = —lly —a-x|? . (8.72)

The pairwise error probability between the sequences x and % hasthe Chernoff
bound

P(x — %) gexp{—”a'—(;‘]\;—’:‘M} . (8.73)

Once again, if we assume the normalization E[|z|?] = 1 then the Chernoff
bound becomes

P(x — ) Sexp{—%”a-(x—fc)”z} . (8.74)
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Averaging (8.74) over the probability density function in (8.68) gives [82]

1+ K ij|xi—:f:i|2
P{x — x) < _ exp{ — _
( )_gl‘f—K-l—jfmi—.’fti'? p{ 1+K+j4ilz‘i—.%i'2
(8.75)

where ¥; = E[o?|E/N, is the average received symbol energy-to-noise ratio,
and A = {i|z; # ;}. Atsufficiently high 7, (8.75) simplifies to

. 4(1 + K) oK

P(x - x) < 5 (8.76)
icA Yslzi — &4

It follows that the bound in (8.43) will be dominated by the error event path
having the smallest number of elements in set A. Divsalar and Simon [82, 83]
called this path the shortest error event path and defined its length as Lmin.
Based on previous arguments, the bit error probability can be approximated as

~-K Linin
C(m—K)e—> 3> K 8.77)

P, —
Vs

1

where C is a constant that depends on the distance structure of the code.
Observe that P, varies inversely with (Fs)%=in, yielding a diversity effect of
order Lmin. Wel [353] called Lpin the minimum built-in time diversity
(MTD). The MTD dominates the performance of TCM on an interleaved flat
fading channel, and the maximization of the MTD is the major design criterion
for TCM on interleaved flat fading channels.

The pairwise error probability in (8.75) can be written in the form

—Ja g2

Px—x) < e 4 (8.78)
where
£ = Z (:L‘i—f,‘i'ZK N (E)_lln 1+ K+ jflz‘i—i'ifz
S+ K+ Lz — g 4 1+ K
= Y d}+dj (8.79)
i€A

Two specia cases are associated with (8.79), K = oo and K = 0. For K = oo
(no fading),
d3; = lz; — iz‘(Q, d% =0 (8.80)

and, therefore, d? becomes the sum of the squared Euclidean distances over
the error event path. Maximizing 42 under this condition is the TCM design
criterion for AWGN channels.
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For K = 0 (Rayleigh fading),

¥\~ 7
42, =0, d2; = (f) In (1 + —flzi - :iz-|2) . (8.81)
For reasonably large SNR, d? is the sum of the logarithms of the squared
Euclidean distances, each weighted by #,. In this case, the pairwise error
probability is given by

_ -1
P(x - %) < (H :Zf"’i - gz«i|2> (8.82)
t€EA
which is inversely proportiona to the product of the squared Euclidean dis-
tances along the error event path. The minimum product squared Euclidean

distance (MPSD) between any two valid sequences,

min [ |e; — 2 (8.83)
XX jea
is another design parameter for Rayleigh fading channels. For values of K
between 0 and oo, the equivalent squared Euclidean distance of (8.79) becomes
amixture of the two limiting cases given above.

If interleaving is not used, then the assumption that the fading is independent
from symbol to symbol is no longer valid. If the fading is ow enough to be
considered constant over the duration of the minimum distance error event path,
then for coherent detection with a Gaussian metric the bit error probability at
high SNR is, approximately,

Py~ CiE [exp {—%dfmn}] (8.84)
where C1 is a constant, v, = o* E/N, is the received symbol energy-to-noise
ratio, d2,;, is the minimum Euclidean distance of the code, and the averaging
is over the density in (8.68). Taking this average gives

2 Fs|m. _ 4|2
P, ~C 12+§ — 2exp{— Kdmm24|.’17_, Zi| _ 2}
1+K+dmin4|xi—.’ﬂi| 1—+—K+dminj41|1‘i——mi|
(8.85)
which can be approximated at large 7, by
Py 401#6-" : (8.86)
min’Ys

Obsarve that without interleaving, B, is asymptoticaly inverse linear with 7,
independent of thetrellis code. If follows that interleaving isrequired to achieve
diversity with TCM on a flat fading channel.
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51 DESIGN RULESFOR TCM ON FLAT FADING
CHANNELS

According to the previous section, when TCM is used on Ricean fading
channel with interleaving/deinterleaving, the design of the code for optimum
performance is guided by the minimum built-in time diversity (MTD) of the
code. For Rayleigh fading channels, the design of the code is aso guided by
the minimum product squared distance (MPSD) of the code. The minimum
Euclidean distance, which is the principal design criterion for trellis coded
modulation AWGN channels, plays a less significant role on Ricean fading
channels as the K factor decreases, and no role for Rayleigh fading channels
(K = 0). A third design criterion is to minimize the decoding depth of the
code.

The design of trellis codes for interleaved flat fading channels is based on
Ungerboeck’ s principle of mapping by set partitioning, but now the partitioning
isdoneto maximizethe MTD and MPSD of thecode. Thiscan be accomplished
by maximizing the intra-subset MTD and MPSD, but it should be pointed out
that large MTD and MPSD can be sometimes achieved even if the partitioning
isdone to maximize the minimum Euclidean distance asin Ungerboeck’ s codes
for AWGN channels.

In generdl, the following guiddines are followed when designing trellis
codes for interleaved flat fading channels;

1. All signas occur with equal frequency and with regularity and symmetry.

2. Transitions originating from the even and odd numbered states are assigned
signalsfrom the first and second subsets, respectively, of thefirst partitioning
level.

3. Whenever possible, the transitionsjoining in the same state receive signals
from either the first or second subset of the first partitioning level.

4. Pardlé transitions receive signals from the same subset of the finest parti-
tioning level.

5. The gtate transitions originating from each current state and going to even-
numbered next states are assigned signals from subsets whose inter-subset
MTD and MPSD are maximized. The same applies for the transition
originating from each current state and going to odd-numbered next states.

The first four rules are similar to those suggested by Ungerboeck [330], but
now the subsets used may be different. The fifth rule is used to reduce the
decoding depth of the code. Wei [353] developed severa codes based on
minimizing the decoding depth of a code. He defined two minimum decoding
depths (MDD1, MDD?2) to characterize a code. MDD1+1 is defined as the
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length (in symbols) of the longest vaid sequence of signa points, say xi,
which originates from the same state as another vaid sequence x and merges
into the same last state as x and whose Hamming distance from x is the same as
the MTD of the code. Note that the performance of acode is mainly governed
by the pairs of sequences which determine the MTD of the code. Each such

pair of sequences differ in at most MDD1+1 successive symbols. The farther
these symbols are separated, the better the performance of the code. Hence, to

benefit from the MTD of the code, the interleaver should separate the symbols
in each sequence of MDD1+1 input symbols as far as possible.

MDD?2 is defined as the length of the longest unmerged valid sequence of
signal points, say x2, which originates from the same state as another valid
squence, say X, and whose Hamming distance from x is not greater than the
MTD of the code. In case the Hamming distance between the two sequences
isequal to the MTD of the code, the squared product distance between the two
sequences must be less than the MPSD of the code. Since MDD2 is grester
than MDD, the decoding depth should be a least equal to MDD2 to redlize
the MTD and MPSD of acode. It suffices if the decoding depth isfew symbols
longer than MDD2. Findly, to benefit from both the MTD and MPSD of a
code, the interleaver should separate the symbol in each sequence of MDD2+1
input symbols as far as possible.

511 MULTIDIMENSIONAL TCM

Recall that the length of the shortest error event with conventional trellis
codes (one symbol per trellis branch) is equal to the number of branches
aong that error event path. If the trellis code has pardlel transitions, then
MTD = 1 Unfortunately, parald transitions are inevitable when the sze of
the signal constellation exceeds the number of states. In this case, the bit error
probability for Rayleigh fading channels has an inverse linear dependency on
the bit energy-to-noise ratio. To solve this problem, multidimensional TCM
techniques can be used.

Multidimensional TCM uses signal spaces having alarger dimensionality so
as to increase the minimum Euclidean distance between signal points. Another
feature of multidimensiona trellis codes is noticed when comparing the coding
gain of these codes to 1- or 2-D codes. When the size of the signal constellation
is doubled with respect to uncoded modulation, the average signal energy may
aso increase. For example, doubling the size of a 2-D M-QAM constellation
implies a 3 dB increase in average signa energy. However, if this increase
in average signa energy can be avoided, then the TCM coding gain would be
greater. This 3 dB codt falls to 1.5 dB when four dimensions are used, and to
0.75 dB when eight dimensions are used [38]. Multidimensional TCM is also
attractive for fading channels. 4-D TCM schemes are specia because they can
be implemented in radio communications without any increase in bandwidth,
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by transmitting on the same carrier frequency with two spatially orthogona
electric field polarizations [38].

A 2N-D congtellation is formed by first selecting a constituent 2-D con-
stellation and then concatenating N such constellations together in the time
domain. If the size of the 2N-D constellation is larger than needed, then some
of the less desirable points are deleted [353]. The resulting constellation is
then partitioned into a chain of increasingly large numbers of subsets. The
partitioning is performed first to maximize the intra-subset MTD, and then to
maximize the MPSD between any pair of 2N-D signal points within the same
subset having that MTD.

When N > 1, an MTD of at least two is easily achieved for each subset in
the finest partition. Fig. 8.16 shows a 32-point 4-D 8-PSK congdlation that is
partitioned into 8-subsets. The 4-D constellation is formed by concatenating a
pair of 2-D 8-PSK constellations in the time domain and deleting those points
having the form (even,odd),(odd,even). The intra-subset MTD within each of
the finest partitions is 2 with an intra-subset MPSD of 4. Fig. 817 shows a
rate-2/3, 4-D, 4-state, 8-PK trellis code with 2 bits/'symbol. Thebits b1, be, b3
are used to select one of the 8 subsets in Fig. 8.16 and bits b4, bs are used to
sdlect one of the four 4-D elements within each subset. The MTD and MPSD
of the code are the same as the intra-subset MTD and MPSD and, hence, are
maximized for the partitioning in Fig. 8.16.

Fig. 8.17 aso shows the trellis diagram of the code, along with examples of
the longest sequences which determine the values of MDD1, and MDD2. Note
that MDD1 and MDD2 are measured in units of 2-D symbols. Since there are
paralel transitions of length 2 symbols, MDD1 = 1 To find MDD2, suppose
that the all zeroes sequence is the reference sequence. Note that the 2-D s
quence{l, 5, 0, 0, O} associated with the4-D sequence {(1,5), (0,0), (0,2)}
has a time diversity of 2 (which is egual to the MTD) and an MPSD of
d?(0,1) xd?(0,5) = 0.5857 x 3.414 < 4 and, hence, MDD2=5. Wei [353] in-
vestigated different multi-dimensional codes. He found that multi-dimensional
TCM requires longer decoding depths than 2-D TCM. This longer decoding
depth has proven to be very detrimental and, therefore, Wei considered only
4-D codes.

512 MULTIPLETCM (MTCM)

Multiple TCM is implemented by using a rate-b/s encoder, where the en-
coder outputs are mapped onto k M-ary symbols in each transmission interval,
as shown in Fig. 8.18. The s encoder output symbols are divided into k groups
of m = log, M symbols each, in this case s = klog, M. Another method is
to divide the s binary symbols into k groups of m; symbols where each group
now corresponds to asignal constellation of different size A;. If m; = log, M;
for theith group, then s = 3°%_, m;. Notice that k = 1 corresponds to conven-
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Figure 8.16.  Partition of the 32-point 4-D 8-PSK constellation into 8 subsets.
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Figure 8.17.  4-D 4-state 8-PSK rate-2/3 trellis code with 2 bits/symbol.

tional Ungerboeck trellis codes. MTCM codes can be designed with parallel
transitions, while still achieving an asymptotic bit error probability on fading
channels that decays faster than an inverse linear function of ;.
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Figure 8.18. MTCM encoder.
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Figure 8.19.  Code trellis for the rate-4/5 4-state 8-PSK MTCM trellis code.

Fig. 8.19 showsthe code trellis for the rate-4/6, 4-state, 8-PSK MTCM code
reported in [84]. The signal point sets are obtained using the above method and
they are the same as those used in the 4-D code and shown in Fig. 8.16. There
are 16 paths emanating from each node and, hence, there are four parallel paths
between nodes. This code has the same MTD and MPSD as the previous 4-D
code. However, MDD1 = 5 and MDD2 = 5 and, therefore, the previous 4-D
code remains a better choice since MDD is smaller.

513 2-D TRELLISCODES

It is surprising that Ungerboeck’s 2-D 8-state and 16-state 8-PK trellis
codes that were originally designed for AWGN channels, remain good for
interleaved flat fading channels. In fact, Ungerboeck’s 2-D, rate-2/3, 8-dtate
8-PXK trellis code shown in Fig. 8.20, has an MTD of two (the thick lines)
and the corresponding product squared Euclidean distance is 8 which is better
than the previous codes. Note that the shortest error event is not necessarily the
minimum distance error event. In Fig. 8.20, the minimum squared Euclidean
distance is 4.585, corresponding to an error event of length 3 (the dashed
path). Note also that MDD1 = 3 and MDD2 = 3. It is obvious that the st
partitioning for this code was intended to maximize the minimum squared
Euclidean distance. Finaly, we note that good 2-D TCM codes for interleaved
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D,D,D,D, o
D,DsD, D,
D, D, DD,
DD, D, D,
D,DyD,D,
D, D, D, D;
DyD,D,D,
D,D,D;D,

Figure 8.20.  Trellis diagram for Ungerboeck’s rate-2/3, 8-state, 8-PSK trellis code.

flat fading channels will not have parallel transitions and the connectivity
between the states will be as low as possible.

6. CODED PERFORMANCE ON IS CHANNELS

Fig. 821 shows a model for digital signaling on a non-interleaved fading
ISI channel. Chapter 7.3.1 showed that the overdl channel with D-branch
diversity can be replaced with the model in Fig. 7.5, consisting of D (L + 1)-
tap transversal filters, the outputs of which are corrupted by AWGN samples
{n¢ }w1tha ¢ = = N, Vk, d. For TCM, this |leads to the equivalent discrete-time

modd shown in Fig. 822, Asdiscussed in Chapter 7.3.1.1, the tap gains are
modeled as uncorrelated complex Gaussian processes, and with 2-D isotropic
scattering the tap gain vector ga(k) = (go.a(k), g1.a(k), - - »g1.4(k))” has
covariance matrix ®g,(m) = Jo(27 framT) B where Jo( - ) is the zero-order
Bessdl function of the first kind and £, is the maximum Doppler frequency, and
34= diag[oo,d, Olds--- ’UL,d] and Uf,d = %E[lgi,d|z]- Here, we assume the
9i,4(k) have zero-mean so that the magnitudes |g;,4 ()| are Rayleigh distributed.
Assuming that the branches are balanced, the average received branch bit
energy-to-noise ratio is

5, = E(|lzel%] S0 Ellgi,al?]
¢ 2nN,

(8.87)

where n is the number of bits per symbol.
As discussed earlier, the rate-m/(m + r) linear convolutional encoder con-
tains m shift registers and is characterized by a set of generator polynomials
g?, 1<i< m, 1<j<m+r Thelength of the ith shift register is v; and
the total number of memory elements in the encoder isvr = >_7%, v;. Since
both the trellis encoder and ISl channd are finite state machines, it follows
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Figure 8.21.  Digital communication on a non-interleaved fading ISI channel.
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Figure 822. TCM-coded system with an equivalent discrete-time white noise channel model,
from [303].

that the combined trellis encoder and ISl channel is adso afinite state machine
having super-states
st = (04 Thty- -y Thor) - (8.88)

Thereare Ng = 272"k = 2¥s super-statesand o is the encoder state defined
in (8.28). An equivalent definition of the super-state is [50]

ng) = (Ok-Ljk_1,---,85_L)
(1) (1) ) . :
= (ak—17""ak—u1—L 1 ,agf)l,--- ,afﬂm_L ,
agf_l{—l): T aagf-}:l); e ;ai;n_)l) o ,ai;n_)L) : (889)

The overall system also has state and trellis diagram descriptions. With MLSE,
the Viterbi algorithm searches for the most likely path in the super-trellis based
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on the sequence of recelved samples v at the output of the matched filter. An
error event of length £ = ko — k; occurs between epochs k; and ko in the
super-trellis if the actual super-state s, and the estimated super-state 8, satisfy

Sky = Skys Sky = Sk, and sp # 8k, k1 < k< ky . (8.90)

Associated with every error event in the super-trellisis apairwise error probabil -
ity P(x — x), representing the probability that the recelver chooses sequence
% when x is transmitted.

6.1 TCM ON STATIC ISI CHANNELS

As shown in Chapter 7.6.1, the pairwise error probability is a function of
the path distance matrix E defined in (7.160). The matrix E depends only
on the trellis code and the length of the channel L + 1 Equations (7.163)
and (eigenbound) provide a guideline for designing trellis codes for static 1S
channels. The design criterion should be to maximize Amin for the dominant
error event. If the dominant error event has length ¢, then this criterion implies
that min{r,(0)} is maximized, where r,(0) is the squared Euclidean distance
between two allowable sequences of length ¢ in the super-trellis. The other
design criterion should be to minimize the condition number ¢(E). The matrix
E is perfectly conditioned, or ¢(E) = 1, only when ry(i) = 0,4 # 0. In this
case E has the form r4(0)I1 41, where| istheidentity matrix. AWGN channels
of theformg =e;, i € {0, ..., L} represent the eigenvectors of this matrix.

If the dominant error event of a trellis code has a perfectly conditioned
path distance matrix E, then the asymptotic performance of the code is the
same for any channel vector g, including the AWGN channel. An interesting
phenomenon occurs when the dominant error event associated with a trellis
code does not have a perfectly conditioned path distance matrix. In this case
the asymptotic performance of the trellis code over the channel described by
the vector g = vmax IS better than its asymptotic performance on an AWGN
channel! The code has the worst performance on the channel described by the
VECIOr § = Vmin.

6.2 TCM ON NONINTERLEAVED FADING 1S
CHANNELS

As mentioned before, ¢(E) = 1 if and only if ry(i) = 0, ¢ # 0. It
is impossible to obtain a code where ¢(E) = 1 for al eror events. The
Cross terms r(z),7 # 0 in the path distance matrix E of any error event will
degrade the performance. The next section shows an example where the cross
terms cause an error event with a smaller »¢(0) to have a lower pairwise error
probability than another error event having a larger r,(0). Itisvery difficult
to control the cross terms of the dominant error events and, therefore, a less
stringent criterion would be useful for predicting the performance of a trellis
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code. We now show that if the squared Euclidean distance min{r,(0)} does
not increase linearly with ¢, then atrellis code will not have good performance
on a non-interleaved fading 1S channel. We require the following definition

and two properties to develop this criterion.

Definition: Define Q(ky, k1 + 1) as the st of al distinct pairs of sequences
in the code-trellis that originate from the same state a epoch k; and merge into
the same state at epoch k1 + 4. Each pair of sequences in set Q(k1, k1 + 1) may
also merge into the same state between epochs k; and k; + iand possibly stay
merged for at most L — 1 branches in the code-trellis and then diverge, thus
forming one or more error events in the code-trellis.

Property 8.1 If an error event of length i having a squared Euclidean
distance d? occurs in the code-trellis, then an error event of length £ = L + 4
having a squared Euclidean distance r7,;(0) = d? occurs in the super-trellis.
Conversdly, if an error event occurs in the super-trellis between epochs k; and
kq, havinglength k; — ky = L + 4 and a corresponding squared path distance
r1+i(0), then there exists a pair of sequences (x1,x2) € Q(k1, k1 + ¢) in the
code-trellis having a squared Euclidean distance equal to 71,+4(0).

Proof: Using the definition of the error event in the super-trellis in (8.90), and
using the two equivalent forms of the super-state (8.88) and (8.89), it follows
directly that an error event in the code-trellis ok, = 6k,, ok, +i = Gk, +i-and
op o fork; <k <k;+i implies that s, = §k1, Sky+i+L = '§k1+i+L’ and
sg # 8 forky < k < ky +1+ L. It also follows that ¢, = 0, k > k1 + ¢ and,
hence, r1,4+:(0) = d*

Conversely, suppose that an error event occurs in the super-trellis between
epochs k; and k1 + L + 4. It follows directly from (8.90), and the fact that
zi = fi(ok,ax) and o1 = fo(ok,a), that there exists a pair of sequences
in the code-trellis {x1,x3) that originate from the same date a epoch k3, i.e.,
ex, 7 0, and merge into the same dtate at epoch k; + 4, i.e., €k, 4+i—1 # 0. The
two seguences may merge into the same state between epochs &; and &, +,say
at epoch k1 +m (m < ¢) and possibly stay merged for at most L — 1 branches,
otherwise, s, +L+m = 8k, +L+m and the length of error event is shorter than
L + i. Hence, (x1,x2) € §2(k1, k1 +¢). It dso follows from (7.162) that the
squared Euclidean distance between x; and xzisequal t0 rr44(0).

Property 82 Let d2;, () denote the squared minimum distance of al error
events in the code-trellis of length i. Then min {r.4:(0)} < @2, (4).

Proof: An error event in the super-trellis between epochs ky and ki + L + 4
and the corresponding pair of sequences (x;, x2)may result from either asingle
error event in the code-trellis between epochs k; and k1 + 1, 0r multiple error
events of shorter lengths, eg., i error events of length one (parald transitions)
or, in general, m error events of lengths j1, . . ., jm. Note that m can take any
value between one and i. Also, for any m, the lengths ji, ..., j,» Can assume
different values with the constraint Y j, <7 and (x;,%x2) € Q(ky, k1 +1).1t
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follows that
min{r;+;(0)} = mln{ dem Im) } < d%,.(0) (8.91)

where the minimization goes over al m <4 and all jy, .. ., j,, With the above
constraint. If there exists a single error event of length i in the code-trellis, then
the theorem is immediate. Also, if there are no error events of length i in the
code-trellis then, by definition, dp,in (i) = oo and the above inequdlity in (8.91)
is satisfied.

If wetreat the uncoded system as atrellis-coded system with asingle stateand
parallel transitions, then, for two-tap channels min{r;, ,(0)} = id%,.(0), i =
1,2,..., whered?,;  (0) istheminimum squared Euclidean distancein the signal
constellatlon of the uncoded system. The important point isthat r1,+:(0)for the
uncoded system grows linearly with the length of the error event. Properties 8.2
and 8.2 suggest that if atrellis code has a dense distance spectrum [284], then
the set of min{r,(0)}, ¢ > Lwill aso have adense spectrum. Therefore, if the
minimum squared Euclidean distance of a trellis code does not grow linearly
with the length of the error events, then the uncoded system is expected to
outperform the trellis-coded system for a non-interleaved fading 1S channel.

6.3 EXAMPLES

This section illustrates the above concepts by focusing on the 4-state 8-PSK
and the 8-state 8-PSK Ungerboeck codes [330]. The corresponding uncoded
system is 4-PSK. We have seen earlier that the 8-state code is suitable for
interleaved flat fading channels, having MTD = 2 and MPSD = 8. Two IS
channels are considered i) a two-tap, T-space, static 1Sl channel and, ii) a
two-tap, T-spaced, Rayleigh fading ISl channel.

6.3.1 STATIC ISI CHANNELS
For atwo-tap static IS channdl, the path distance matrix is

_ [ re(0)  Te(1)
E“(rm) Te(0)> ' (8.52)

Tables 8.1, 8.2, and 8.3, tabulate the values associated with matrix E for all
error events of up to length 8 for the uncoded system and the two coded
systems. Notice that the minimum squared Euclidean distance is 72(0) = 2.00
for the uncoded system, r2(0) = 4.00 for the 4-state trellis code, and r4(0) =
r5(0) = 4.59 for the 8-state trellis code. Also, the matrix E associated with
the minimum distance error event is perfectly conditioned for both the uncoded
system and the 4-state trellis code, but not for the 8-state trellis code.

We now consider the coded performance for seven different channels with
impulse responses listed in Table 84. Channels G, Al, and A2 were chosen



¢ min{r.(0)} [re(1)] A1 A2 w(x, %) P(x = %)

2 2.00 0.00 2.00 2.00 1 0.1705E-01
3 4.00 2.00 6.00 2.00 2 0.6786E-02
4 6.00 4.00 10.00 2.00 3 0.4238E-02
5 8.00 6.00 14.00 2.00 4 0.3081E-02
6 10.00 8.00 18.00 2.00 5 0.2420E-02
7 12.00 10.00 22.00 2.00 6 0.1993E-02
8 14.00 12.00 26.00 2.00 7 0.1694E-02

Table 8.1. Error events in the super-trellis for uncoded 4-PSK system over a two-tap channel

¢ min{r.(0)} re(1)] A Az w(x, %) P(x — %)
2 4.00 0.00 4.00 4.00 1 0.5528E-02
3 8.00 4.00 12.00 4.00 2 0.2033E-02
4 4.59 2.16 6.75 2.42 2 0.5261E-02
5 5.17 272 7.89 2.46 4 0.3831E-02
6 5.17 2.16 7.34 3.01 3 0.3790E-02
7 5.76 2.72 8.47 3.04 5 0.3173E-02
8 5.76 2.00 7.76 3.76 3 0.3227E-02

Table 8.2.  Error events in the super-trellis for 4-state 8-PSK code over a two-tap channel

¢ min{r.(0)} |re(1)] A1 A2 w(x, X) P(x — %)

3 6.00 2.83 8.83 3.17 1 0.3301E-02
4 4.59 2.16 6.75 2.42 3 0.5106E-02
5 4.59 1.08 5.67 3.50 3 0.4556E-02
6 5.17 2.16 7.34 3.01 6 0.4094E-02
7 5.17 1.08 6.25 4.09 6 0.3654E-02
8 5.17 1.08 6.25 4.09 4 0.3654E-02

Table 8.3.  Error events in the super-trellis for 8-state 8-PSK code over a two-tap channel

arbitrarily and have the best spectra characteristics. Channels Bl and B2
are equa to the eigenvectors associated with the minimum and maximum
eigenvalues, respectively, for one of the length 3 and 4 error events in the
uncoded system, and one of the error events of length 4 in the 8-state trellis
code. Channels Cl and C2 are equa to the eigenvectors associated with the
maximum and minimum eigenvalues, respectively, for some of the minimum
distance error events that are associated with the 8-state trellis code.
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Channel go N

G 0.9747 0.223

Al 0.866 0.500

A2 0.500 0.866

Bi -0.7071 0.7071

B2 0.7071 0.7071

Cl 0.7071 -0.65333+j0.2705
C2 0.7071 0.65333-j0.2705

Table 8.4.  Static ISI channels used to evaluate the performance of trellis codes.

Simulation results for the uncoded 4-PSK system, the 4-state trellis code,
and the 8-state trellis code are shown in Figs. 8.23, 8.24, and 8.25, respectively.
Although channel C2 has an in-band spectral null, making it perhaps the most
difficult channel to equalize, the performance of uncoded 4-PSK on this channel
iS better than that on channels Bl and B2. The 4-state trellis code performs
better on channels Bl and B2 than on channels CI and C2, although channel
B1 has a band-edge null while channel B1 does not. The 8-state trellis code
performs better on channel Cl than C2. This makes sense because channel Cl
is the eigenvector associated with A, for one of the dominant error events of
the 8-statecode. Ingeneral, Tables8.1, 8.2, and 8.3 show that the coded systems
have a larger Amin than the uncoded systems. Therefore, it is reasonable that
the coded systems have better performance than the uncoded system, although
c(E) for the dominant error event is greater for the 8-state code.

6.3.2 MULTIPATH FADING IS CHANNELS
Consider a 2-tap fading ISI channel with matrix

2
_ _ 007‘2(0) 00017"12(1))
A‘szEd‘(ooalrzu) o2r4(0) (8.93)

and corresponding eigenvalues

E
Ao = ”(0)5 5 re(0)? (02 — 02)? + 40202|re(1)2 (8.94)

where E = Z{“:(, o2, It is obvious that \; = ), implies that oy = o
and re(1) = 0. For the case when<oy = o1, the eigenvalues are given by
L[re(0) £ |re(1)]].

Fig 8.26 plots the pairwise error probability of the 8-state code against the
normalized energy in the first tap for different values of 7,(0) and |re(1)| as
described in Table 8.3. Notice that the pairwise error probability is minimized
for equal energy taps. Fig. 8.26 aso shows how the pairwise error probability
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Figure 8.23.  Performance of uncoded 4-PSK over static ISI channels.
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Figure 8.24.  Performance of 4-state 8-PSK TCM over static ISI channels.

decreases with an increase in the squared Euclidean distance, r,(0). Finally,
Fig. 8.26 shows the effect of the eigenvalue spread. For example, the pairwise
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Figure 8.25.  Performance of 8-state 8-PSK TCM over static ISI channels.

error probability associated with the error event having r¢(0) = 5.76 and
[re(1)| = 1.08 (c = 1.46) is better than that with r3(0) = 6.00 and |r3(1)| =
2.83 (c = 2.79), athough the squared Euclidean distance is larger for the latter.

Fig. 8.27 plots the bit error probability of the uncoded 4-PSK system, and
the 4- and 8-state 8-PSK trellis codes on a two-tap, T-spaced, fading channel
with g = o1. The performance is completely reversed from that on an AWGN
channel. The uncoded system outperforms either trellis-coded system and,
moreover, the 4-state trellis code outperforms the 8-state trellis code.  This
behavior is consistent with the parameters listed in Tables 8.1, 8.2 and 8.3.
Although the uncoded system has a smaller squared Euclidean distance, r4(0)
for the uncoded systems grows faster with the length of the error events than
either the 4- or 8-state trellis codes. By comparing the parameters of the 4- and
8-state trellis codes in Tables 8.2 and 8.3, respectively, it is not surprising that
the 4-state trellis code outperforms the 8-state trellis code.

Asafinal example, consider the simple rate-1/2, 2-state, 4-PSK trellis code
shown in Fig 8.28. The equivalent uncoded system is BPSK having a mini-
mum squared Euclidean distance growth given by the values {d2,,(i)/E} =
{4.0, 80, 12.0, 160, 20.0, 24.0, 280, ... }. Table 85 lists the parameters
of the code. Note that the code has a minimum squared Euclidean distance that
grows linearly with the length of the error event but at a slower rate than that
of the uncoded system. Fig. 8.29 shows the performance of the code. Unlike
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Figure 8.26. Pairwise error probability for several error events for the 8-state 8-PSK trellis
code at 4. = 10 dB. See Table 8.3 for corresponding eigenvalues.

the Ungerboeck codes, the code at least offers slightly better performance than
the equivalent uncoded system despite its simplicity.

64 EVALUATION OF UNION BOUNDS FOR TCM

The pair-state gpproach is one method for evauating the error probability
upper bound for TCM on intersymbol interference (1S) channels [85, 37].
Unfortunately, there are (Ns)? pair-states, where N is the number of super-
states. A simpler method that uses the transfer function of an .Ng-state error
diagram has been proposed for linear filter channels [204]. Both of these
techniques require a Chernoff bound on the pairwise error probability which
can be loose, especialy for fading channels.?> Here we describe a method
for evaluating the union bound that uses an error-state diagram and a one-
directional stack algorithm. The proposed method does not require the transfer
function and, therefore, i) an exact expression for the pairwise error probability
can be used yielding a tighter upper bound, and ii) the method is useful for
large-state systems.

*The union bound may also be loose for fading channels,
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Figure 8.27.  Performance over a two-tap, T-spaced, fading ISI channel; oo = o1.

The bit error probability for TCM on an IS channel has the bound in (8.43),
where E is the set of error sequences that correspond to al error events in the
super-trellis at epoch j;. For astatic ISl channel, the pairwise error probability
is given by (7.154) with the squared Euclidean path distance in (7.157). By
following the same procedure as in Chapter 7.6.3, the parameters needed to
evauate the upper bound for a static 1S channel are the probability P{a},
the number of bit errors w(e), and the squared Euclidean path distance A2
Likewise, for a fading IS channel with equal diversity branches, the exact
pairwise error probability is given by (7.181), and the parameters needed to
evaluate the union bound are P{a}, ws(e),and the matrix A = Ag4, where Ay
is defined in (7.172).

The overall system has super states s fori = 0, -+, Ng — 1, where s\ is
definedin (8.89). Definetheerror sateasv, = s\’ @sl’’ for somei andj. An
error-state diagram can be constructed such that the initial and final nodes in the
error-state diagram are zero-error states and each intermediate node represents
a distinct non-zero error-state. A directed line from v; to v, indicates an
allowable error-satetrangition (v,, v,,). There is one-to-one correspondence
between the st E in (8.43) and the set of paths from the initial to final node in
the error-state diagram.
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Figure 8.28.  Simple rate-1/2, 2-state, 4-PSK trellis code.
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Table 8.5. Error events in the code-trellis for the rate-1/2, 2-state, 4-PSK code in Fig. 8.28;
Negq is the number of error events of length i having a squared Euclidean distance of d2;,.(1).

To evauate the union bound (8.43), we define an appropriate transition-gain
for each transition in the error-state diagram as follows. Given an error-state
transition (v;, vi), each branch froms(” tosy) | inthe overall trellis diagram is
assigned the appropriate branch distance (or branch distance matrix), Cy,, (4, 7)
and number of bit errors wuy,(4,7). This assignment can be conveniently
described by an Ng x Ng transitionmatrix By, = [bim (7, 7)] with elements

Z{m Z, Cim (07 (z) to st transition possible
b ) k+1 P 8.95
m(3,5) = { 0 , otherw1se ( )

Note that w;, in (8.95) does not depend on the branch from s ) to S le,but
only on the error-state transition (v, vy,,).

Consider the following simple example, consisting of a two-state 4-PAM
trellis code with a two-tap channel (L = 1). The encoder has generators
g = (1,0)andg(® = (0,1), andthe signa mappingisz; = 4ax+2ax_1—3.
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Figure 8.29. Performance of the rate-1/2, 2-state, 4-PSK trellis code on a two-equal-ray T'-
spaced fading ISI channel.

Fig. 8.30 shows the error-state diagram. As an example of how to obtain
By, consider the error sequence {ex = 1, exy1 = 1, exyo = 1, exy3 =
0, ex+4 = 0} in Fig. 831. The error sequence corresponds to the path
{vg, v2, v3, vs, vi, v4} in the error-state diagram. Fig. 8.31 shows the
super-trellis, along with the symbol error ey for k; < k < k1 +4. Notethat al
branches merging at the same node in Fig. 8.31 have the same symbol error e.
Given the pair (ex—1, €x), the squared branch distance A2 can be calculated
by using (7.158) and (7.159), and the matrix Ay in (7.169) can be calculated
from the branch distance matrix E;, in (7.159)*. For example, consider a static
ISl channel with go = 1 and ¢; = 1. The transition-gains By and B33 are,

respectively,

zZy¥ 0 z¥ o
Z;% 0 Z3% 0
0 236 o 2z

Bo2 = Z; -

%In general, the squared branch distance and branch distance matrix are calculated using
(k—L €k—L+1s " ") €k)-
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Figure 8.30. Error-state diagram for 2-state, 4-PAM, TCM on a two-tap ISI channel.

and
z3*% 0 Z3¢ o
z$t 0 73 0

B33 =2 - 0 70 o z8 (8.97)
0 zi6 o ziv
Likewise, for atwo-tap fading 1S channel, the transition gain Bz is
Z;:w 0 Z;:w 0
Z 02 O Z 02 0
Bo=21-| 74 Ao 5 Ao (8.98)
0 zpe 0 Zpo
where
Ap=X% { l(f g } . (8.99)

For the error-statetransition (v, vm), the distance polynomial [284] as-

sociated with the node s§:> is the sum of the ith-row elements of the matrix
1/2™ - By, Where we have assumed that the information vector ay is trans-
mitted with equal probability 1/2". If the sum of row elements is the same
for every row, then the matrix is row-uniform [204]. If the matrix By, is
row-uniform for all error-state transitions, then thetrellis code has the uniform
property. For AWGN channels, many trellis codes including the Ungerboeck
codes have the uniform property, meaning that the error probability can beeva-
uated by just considering the set of information sequences that originate from

aparticular state, say sgi). However, for IS channels the uniform property is
lost and all possible information sequences must be considered. For example,
the matrix B33 does not have the row-uniform property in our example sys-
tem, athough the trellis-code is uniform for AWGN channels. Nevertheless,
some symmetry properties of the trellis code and trellis structure can still be
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Figure 8.31.  Super-trellis showing symbol errors for the error sequence {ex, = 1, ex,4+1 =
1? Eky+2 = ]-s Ek14+3 = U\ Eky+4 = 0}

exploited to simplify the performance analysis. Considering again the error
sequence {ek =1, e+1 =1, egy2 =1, ex+3 =0, €44 = 0} in Flg 8.31,
the following observations can be made:

Observation 8.1:.  Only half of the sequences originating from each dtate si‘l)
must be considered, because there is always a pair of correct sequences having
the same probability P{a}, number of bit errors ws(e), and path distance
(or path distance matrix), eg., the information sequences aand a & e. This
symmetry property exists for every TCM system.

Observation 82:. Only the information sequences originating from states
s{® and s{? must be considered, because for each information sequence origi-

nating from the state s (or s{) there always exists an information sequence
originating from the date sg) (or sffl)) having the same set of parameters.
Thistype of symmetry usually exists but depends on the particular trellis code.
The agorithm discussed below explaits this type of symmetry by combining
together all paths attached to the same node that have the same set of parameters.

The stack algorithm maintains an ordered stack where each entry represents
one or more paths in the error-state diagram and contains the following informa-
tion: terminal node, terminal state sy, the number of branches H, 3~ 1) %im.
S A2 (or ¥(.my Aum), and the intermediate bit error probability Pr. The
st {(I, m)} isthe st of error-state transitions associated with the path under
consideration. P is calculated according to

2
(tm

1 1

Pp=c. T
! n Ng-.2nH

Ui+ P { Tad®e) > T(ag)

a } (8.100)

{(tm)}
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Figure 8.32.  The stack algorithm.

where P{T'(a@e) >T(a)l|a} is computed by using the squared path dis-
tance 3 ((1.m)y Af, for astatic 1Sl channel and the matrix 3¢ )y Aum for
afading ISI channel. The stack is ordered according to decreasing P;. For a
path from the initial to final node, we have P {a} = 1/(Ns - 2™¥), wy(e) =
Y ((tmy) Wm- and P{T(a®e) > I(a)|a} = P{T(a®e) >T(a)la}.
A key feature of the stack algorithm is that paths having the same terminal node,
terminal state sy, number of branches .H, 3= m)} %im» and 3¢ m)y A} (or
> {(1,m)} Aum) ae combined together, because from that point on they can be
treated as a single path. These combinations reduce the computation required
to evaluate the upper bound as discussed in Observation 8.2. The number
of paths represented by a stack entry is caled the path multiplicity, M. The
detailed stack algorithm is shown in Fig. 8.32 an operates much the same as
the stack algorithm described in Section 6.6.3.
Example 8.4
Consider a system that uses the 4-state 8-PSK Ungerboeck trellis code in
Fig. 8.33 on a two-tap multipath-fading channel. In the simulations, the tap
coefficients {g; 4} are generated by passing independent complex white Gaus-
sian noise through a digital Butterworth filter having a 3-dB cut-off frequency
equal to 0.4 Hz. The transmission rate is assumed to be 2400 symbols/sec and
0® = 1E[|giq|*) = 1 fordl i and d. Once again, the analytical results are
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Figure 8.33.  Encoder and signal mapping for the 4-state 8-PSK Ungerboeck code.

obtained by setting the threshold Py = 1073 - Ppay, Where Ppax isthe largest
term in the upper bound. For TCM on multipath-fading channels, the aver-
age received bit energy-to-noise ratio per diversity branch is given by (8.87).
Fig. 8.34 compares analytical and simulation results for this system. Without
diversity (D = 1), the difference is about 2 dB for 7, < 10~3. However, for
two-branch diversity (D = 2), the difference is within 1 dB.

7.  TURBO CODES

The principle of Turbo coding or concatenated coding is to construct long
random-like codes that have a structure that permits practical decoding [26].
Turbo codes are interleaved concatenated codes that are constructed from sim-
ple component codes and pseudo-random interleavers. The interleaver makes
the code appear random. Since the component codes are easy to decode, the
overall code can be decoded by iteratively decoding the component codes.
There are two basic types of Turbo codes depending on the type of concatena-
tion, namely parallel concatenated codes and serid concatenated codes. The
component codes can be either convolutional codes or block codes. Here we
just consider convolutional component codes. Perdle concatenated convolu-
tional codes (PCCCs) userecursive systematic convolutional (RSC) component
codes. Serial codes. Serial concatenated convolutional codes (SCCCs) useare-
cursive or non-recursive convolutional outer code and arecursive convolutional
inner code.
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Figure 8.34. Comparison of analytical and simulation results for 4-state, 8-PSK, TCM on a
two-equal-ray T'-spaced fading ISI channel, from [303].

71  PCCC ENCODER

Fig. 8.35 shows a PCCC encoder structure which is a parallel concatenation

of two RSC component codes’. The component codes must be recursive for
reasons we will see later. If the component codes have rates R = k/n; and

R{Y = k/ny, then the PCCC has code rate

R(I)R(Q) k

O r®  nitng
The input data sequence a is first encoded by RSC1. The feedforward and

feedback generator polynomials of RSC1 are g (D) = ¢g{¥ + ¢{¥ D +.

9P D” and gW(D) = ¢! + ¢\"D + ... + ¢V D", respectlvely, where v

is the encoder memory. The outputs of RSC1 are the systematic component

b, = {bs, } and the parity component bS" = {5} defined by

b

Ry = (8.101)

s, — Gk

b = ngl)dk—i

“The parallel concatenation of more than two component codes is possible, but we will consider only two
component codes for simplicity.
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Figure 8.35. PCCC encoder.

where

v
dy = ar @ Zgz@)dk—i (8.102)

1=1

The data sequence a is interleaved by the interleaver 7 of size.N = kN’ into

the sequence & and encoded using RSC2 to produce the parity sequence b§,2).
The interleaving operation can be defined by a mapping ©« — = (2} of the input
bit position i to output bit position = (i). For example, the interleaver might
perform the mapping

{0,1,2,3,...,N — 1}nx — {23,12,6,7,...}n

For Turbo codes the choice of interleaver is crucia. In many cases, random
interleavers are employed, where the interleaving mapping is completely ran-
dom. In other cases, an S-random interleaver is used, where interleaver inputs
that are separated by less than S positions, |¢ — j| < S, are interleaved into
interleaver outputs that are separated by at least S positions, |7 (i) —x(5)] > S.
A PCCC code word b = (b,, b$", b{?) is formed by the parallel con-
catenation (or interleaving) of the systematic component and the two parity
sequences. |If higher code rates are desired, then the parity outputs of the RSC
component encoders can be punctured. A punctured Turbo code is obtained by
starting with arate-1/n Turbo code and deleting or puncturing specified parity-
check symbols. For example, the puncturing pattering in Fig. 8.35 produces
arate-1/2 code from arate-1/3 code’. Note that the systematic component of
RSC2 is not transmitted. Tall bits are typically added to the data sequence to
terminate RSCL1 in the all-zeroes state while the trellis of RSC2 is left ‘open’.

A “1" in the puncturing pattern means that the bit is transmitted, while a “0" means that the hit is not
transmitted
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72 PCCC DECODER

The Turbo decoder is an iterative structure consisting of many identical
stages, each consisting of two soft-input/soft-output SISO decoding units. The
decoder structure for PCCCs is shown in Fig. 836. The (SISO) modules
generate a-posteriori probabilities (APPS)

Plaklys, y, ¥$9) (8.103)
or, for binary codes, 1og-likelihood ratios (LLRS)
) (2))

Plax = 1]y, vV, y$

(1) _(2)

L{ax) = log
Play =0lys,yp ', ¥p )

(8.104)

of each information bit ay, based on the received signal sequence yg, yﬁl), y,(,z)

and the extrinsic information passed between the two SISO modules.

The iterative decoding operation of parallel Turbo codes can be explained
asfollows, using LLRs as an example. At the mthiteration, m > 1, the LLRs
generated by the SISO decoders for databit ay are

L (ax) = Loys(ar) + L Vlak) + Ly (a)  (8.105)
L) = Loslar) + L3R () + Lh(ar)  (8.106)

where Lgys(a) = (2/0%)ys, isthe LLR dueto the systematic component, and
L™ (ai) and L) (ay,) are the extrinsic information for each bit generated

extl

at the mth decoding stage by SISO1 and SISO2, respectively, and can be
expressed as

L™ (ak) = f(Leys, LT3 (ak)) (8.107)
L% (ay) = f(Lsyng:?l(ak)) (8.108)

whae f (- ) denotes the SISO decoding unit. The iterative procedure is started
withinitial condition L{%), (ax) = 0. Thefinal bit decision for 1 is determined
by the sign of Z{™ (ay,).

A variety of SISO agorithms have been proposed to either generate or
approximate the APPs or LLRs. Berrou et al. [36] and Robertson [283] used a
modified version of the Bahl, Cocke, Jelinek and Raviv (BCJR) a gorithm [25]
to generate APPs. Hagenauer et al. [154], [156] introduced the soft-output
Viterbi algorithm (SOVA) [155] to generate soft outputs based on the LLR.

As mentioned previously, Turbo codes can provide near Shannon limit per-
formance. Fig. 8.37 shows the typical performance of a rate-1/2, 16-State,
PCCC on an AWGN channel for different random interleaver sizes. Also in-
cluded, isa 2'®-state convolutional code for comparison. Observe that asimple
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Figure 8.37.  Typical PCCC performance on an AWGN channel.

16-state PCCC can easily outperform a very complex 2'°-state convolutional
code, at low Ey/No. At highEy/N,, the BER slope of PCCCs is shallow,
loosely termed an “error floor.” The error floor is not actually an error floor, but
rather a change in the dope of the error rate curve due to the relatively small
free distance of Turbo codes.
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Figure 8.39. SCCC decoder.

73 SCCC ENCODER AND DECODER

Fig. 8.38 shows a SCCC encoder which is a serid concatenation of two
component codes separated by an interleaver. In a SCCC scheme, the input
data sequence of length N7, is first encoded by an outer convolutional code
C, with rate R° = k/p. The output of C, is interleaved using a pseudo-
random interleaver of length N = N’/R°, and then encoded using an inner
convolutional code C; with rate R* = p/n. The SCCC has code rate

Rr = RYRD = (k/p)(p/n) = k/n . (8.109)

The codewords of the outer and inner codes are referred to as outer and in-
ner codewords, respectively. Consequently, the inner codewords are aso the
codewords of the SCCC. With SCCCs, the inner encoder must be recursive for
reasons to be seen later. The outer code does not have to be recursive.

The structure of the SCCC decoder is shown in Fig. 8.39. It operatesin an
iterative fashion similar to the PCCC decoder. However, the SISO modules
now produce APPs or LLRs for the information bits, ax,and the code hits ¢
from the outer coder.

74  WEIGHT DISTRIBUTION

It is sometimes useful to view PCCCs and SCCCs as equivaent block codes
with input sequences of length N’ = N/kand N’ = Nk /p,repectively, where
N is the interleaver size. Like block codes, Turbo codes can be described by
a distance spectrum (d, Aq), where A4 is the number of codewords of weight
Hamming weight d. The conditional weight enumerating function (CWEF) of
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ablock code defined as [32]

Au(2) 2 S Ay e (8.110)
d

where Ay 4 is the number of weight-d codewords having information-weight
w. Notethat Aq = Y, Aw.g- The smdlest non-zero vaue of d is the free
Hamming distance of the code, denoted by dgee. The union bound on the
probability of bit error is

1
Pe) < 553 > wAwaPy(d) (8.111)

W d=dfree

where Py(d) is the pairwise error probability between two coded sequences
separated by Hamming distance d.

To obtain alow Pi(e) there are generally two approaches; we can either
decrease Ay, 4 O inCrease dgree. Withconvolutional codes, Agincreasesrapidly
with d°. As aresult, convolutional codes are said to have a “dense distance
spectrum.” Also, A4 o< N with convolutional codes, dueto their timeinvariant
property. Hence, for convolutional codes adecreasein P,(e) isusually obtained
by increasing<ds.ee, Which ultimately obtained by increasing the total encoder
memory. Turbo codes take other approach by drastically decreasing Ag4. This

property is called “spectral thinning.”

The spectra thinning property of Turbo codes can be explained intuitively
asfollows. Considering PCCCs, the total weight of aPCCC codeword is equal
to the weight of the systematic and parity components

w(b) = w(b,) + w(blM) +w(b{?) . (8.112)

Congder for example a RSC with generator matrix [1, Tfjg%%,] and the ran-
dom interleaver shown in Fig. 8.40. Certain input sequences awill lead to low
output weights w(b$") from the first encoder RSCL. For example, the input
sequence a(D) = 1 + D? produces the output b,(@l)(D) =1+D+D?+ D3
from the first encoder RSC1. However, the interleaved sequence a(D)will

usualy lead to a high output weight w(b§,2)) from the second encoder RSC2.
Conseguently, most codewords have large weight. However, some input s
quences that produce low weight codewords in one encoder, after interleaving
will aso produce low weight codewords in the other encoder. Therefore, there
are afew codewords with small weight. For most random interleavers, this oc-
curs with high probability [87]. At high E/N, the error events corresponding

*Itis important to realize that A4 isnot equal to ag (in our earlier discussion of convolutional codes), since
the Turbo codewords can consist of multiple error events.
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Figure 8.40. Random Turbo interleaver.

to these low-weight codewords dominate the BER performance with the result
that the BER curves of PCCCs flatten at high Ej/N,. This has been loosely
termed as an “error floor” [32, 71].

In the sequel, convolutional codes, PCCC and SCCC are discussed simul-
taneously and, to avoid confusion, the quantities associated with them are
distinguished by the superscripts ¢, T, and S, respectively.

For convolutional codes, every non-zero codeword corresponds to an error
event or a concatenation of error events. The weight of a codeword equals the
sum of the weights of the error events. Let AS , ; denote the number of weight-
d codewords having information weight-w and formed by the concatenation
of i error events. Then, the number of weight-d codewords with information
weight-w is A ; = 370> A2 ., Where nyax is the maximum number of
possible error events for a length-N' input sequence.

Thedistance spectrum of Turbo codes is difficult to determine for aparticul ar
Turbo interleaver. Fortunately, Benedetto and Montors [32] solved this prob-
lem by introducing a hypothetical interleaver called unlform interleaver that
permutes agiven weight-w sequence onto any of the (Y) possible interleaved
sequences with equal probability. The distance spectrum of a Turbo code with
auniform interleaver can be obtained by averaging the distance spectrum over
all possible interleaver mappings. At least half the random interleavers are
guaranteed to yield a weight distribution that is as good as the average weight
distribution. Furthermore, most of the randomly generated interleavers have a
weight distribution that is close to the average weight distribution. Hence, the
typical performance of a Turbo code with a randomly chosen interleaver can
be obtained from the average weight distribution with a uniform interleaver.

741 WEIGHT DISTRIBUTION OF PCCCS

With a uniform interleaver the number of weight-d Turbo codewords with
welght-w input sequences is, for large N, [31]

d Nmax Mmax (N)

ATdNZE Z At Awd—tns (8.113)

{=0n1=1nqz=1
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Using the approximation (%) ~ -’%,3 gives

d Tmax Mmax

PIPIDD

=0 n1j=1n2=1

N ge | AC

w,d—1,ns (8.114)

n1| n2 w,l,n1

Observe that themultiplicity, AL ,, of the PCCC codewords is inversely pro-
portional to the interleaver length N. Consequently, increasing N results in
very small multiplicity, a phenomenon caled spectral thinning, and is the
reason for the remarkable performance of Turbo codes. In contrast, we note
that the time-invariant property of convolutional codes implies that A§ o< N
The uniform interleaver is hypothetical and impractical. For reasonably large
interleaver sizes N, random interleavers perform very well [87]. To see why,

consider arate-1/3, 8-state, PCCC code where the RSC component encoders

have generator matrices [1, %] . Since the component codes are recur-

sve, al weight-1 input sequences produce infinite-weight output sequences.
The minimum distance error event at the output of each RSC encoder corre-
sponds to an input error sequence of the form D*(1 + D + D?). However, the
random interleaver permutes such sequences very effectively so that the output
of the other encoder has high weight [87]. Weight-2 input error sequences to
RSC1 of the form .D*(1 + D?) will produce a finite-weight output sequence
having theform D?(1 + D + D? + D3). However, the random interleaver per-
mutes these sequences into sequences which are not of the form.D7(1 + D?)
with high probability [87]. However, an occasiona bad mapping occurs, where
input sequences of the form D*(1 + D?) are permuted into input sequences
of the form D7 (1 + D?3) for somei,j. This is illustrated in Fig. 8.41. Such
input sequences produce low-weight outputs from both encoders and define the
minimum Hamming distance of the PCCC code. The probability that an input
sequence D'a of weight-w is interleaved into a sequence & of the form D7a
for at least one pair i, j is proportiona to N¥=2 [87]. Hence, bad mappings
are very likely to occur for weight-2 input sequences and very unlikely to oc-
cur for weight w > 2 input sequences. So the minimum distance error event
corresponds to a weight-2 input sequence with very high probability. If the
smallest weight RSC output corresponding to al weight-2 input sequences is
deefie, then the free Hamming distance of the PCCC code is di ., = 2 + 2dcesr-
For our example PCCC code, the free distance is dgee = 2 + 4 + 4 = 10,
which is rather small. This small free Hamming distance is typical of PCCCs
precisely the reason for the so called BER and FER floor of PCCCs. Findly,
we note that other types of interleavers, such asthe S-random interleaver, are
generaly very difficult to analyze, but most of the above arguments are valid.
PCCCs inherently provide unequal error protection, because the bad inter-
leaver mappings define certain bit positions are affected by th dominant error
events. Such bad mappings affect only a very few bit positions, but they nev-
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Figure 841.  Bad random interleaver mappings.

ertheless result in a BER floor. In contrast, for convolutional codes al bit
positions in the input sequence are affected by the same error events. Con-
sequently, all bit positions are equally likely to be in error. So PCCCs are
inherently unequal error protecting (UEP) codes.

It is instructive to understand how the expected number of bad mappings
changes with the interleaver size, N. The total number of possible interleaver
mappings for a block of N bits is N!' The number of bad mappings, where
a sequence of the form D1 + D3) is mapped into a sequence of the form
DJ(1 + D?) is approximately N x 2 x (N — 2)! The approximation is due
to the fact that edge effects have been ignored which is a valid assumption for
large N. Therefore, the probability that a sequence of the form D (1 + D?3) is
mapped onto a sequence of the form DJ(1 + D3) is

2N(N-2)! 2
N! T N-1"

P(D'(1+ D% — D1+ D?)) = (8.115)

Assuming that the mappings for the different bit positions are independent
and ignoring the edge effects, the distribution of the total number of such
bad mappings k, in a block of length N, can be approximated by a binomial
distribution for small k i.e,’

: N 2 \* 2 Nk
P (total number of bad mappings = k) = (k) (N_—l) (1 - N—_—l)
The mean number of bad mappingsis N %, which converges to 2 for large N.
Therefore, the mean number of data bits affected by bad mappings converges
to 4 for large N, snce the bad mappings correspond to weight-2 input error
sequences.

"The case of large k is not of interest because the probability of many bad mappings is extremely small and
therefore, does not contribute significantly to the mean of the distribution.
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742  WEIGHT DISTRIBUTION OF SCCCS

Consider the serial concatenation system in Fig. 8.38. Let the input block
lengthis N’ bits. The length of the outer codeword and, therefore, the inter-
leaver size and length of the input to the inner encoder isN = N'/R° = N'p/k
bits. Under the assumption of a uniform interleaver, the number of weight-h
code words that are generated by weight-w input sequences is [287]

R ]

-y 3 3t Gl

ACe  AC:i (8.116)
= don" lni=1 l)

w l,ne* ,dnt

where d% is the minimum free distance of the outer code, and n$, and n, refer
to the maximum number of error events p0$| ible for the outer and inner codes,
respectively. By using the approximation (n) ~ T [287]

ngy nM . I ]
n°+ni— .
w a ™ lzd: Zl Z N pn°+n‘nolnz| nAw l TLOAl h,nt (8117)
2 n°=1npi=]

where w?, is the minimum-weight of al input sequences that will produce an
error event for the outer code.

Observe from (8.117) that the contribution of each codeword to the BER
is multiplied by the term N7°+7'—t=1 Therefore, when n® +ni =1 -1 <
0, increasing N decreases the BER exponentially. This effect is called the
interleaver gain. Consider a weight-I outer codeword which is aresult of n°
error events of the outer code. If the inner encoder is non-recursive, then a
weight-l outer codeword can result in a maximum of | error events (each ‘1’ in
the outer codeword can cause an error event). Therefore, n* can be equal to |.
In this case, the exponent of N will be n® — 1 and, when n® > 1, the exponent
of N will be positive. Consequently, increasing N increases the contribution
of such codewords to the final BER [287]. When n° = 1, the exponent of N
will be zero, implying that the interleaver does not impact the multiplicity of
such codewords or, equivalently, no interleaving gain is possible.

When the inner encoder is recursive, only input sequences having weight-2
or greater can cause error events. Therefore, a weight-l outer codeword can
causea most {1/2] error eventsfor theinner code. Conseguently, the exponent
of Nisn®—~[l/2]-L If all outer codewords corresponding to one error event
of the outer code (n? = 1) haveweight [ > 2or, equivaently, the free distance
of the outer code is greater than 2, the exponent of N is always negative. This
implies that increasing N will always decrease the BER.

Problems

81 Consider a rate-1/3 convolutional code with generators gt = (111),
g® = (111), and g® = (101).
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a) Draw ablock diagram of the encoder structure.

b) Draw the state diagram and trellis diagram.

c) Determine the output sequence corresponding to the input seguence
1110101.

8.2. The output of arate-1/3 convolutional encoder with constraint length 3 to
the input a = (1,1,0,...) isb = (111, 110, 010,...)

a) Determine the transfer function T(D,N,L).

b) Determine the number of paths through the state diagram or trellis that
diverge from the all-zeroes state and remerge with the al-zeroes date
7 branches |ater.

c) Determine the number of paths of Hamming distance 20 from the all
Zeroes sequence.

8.3. Consider the rate-1/3 code in Problem 8.1.

a) Determine the transfer function T(D, N, L) of the code. What is the
free Hamming distance diree?

b) Assuming the use of BPSK signaling and an AWGN channel, derive a
union-Chernoff bound on the decoded bit error probability with i) hard
decision decoding and ii) soft decision decoding.

C) Repeat part b) assuming an interleaved flat Rayleigh fading channel,
where the receiver has perfect knowledge of the channel.

84. Consider the 8-PAM and 32-CROSS signd constellations in Fig. 8.42.

a) Construct the partition chain asin Fig. 8.11 and compute the minimum
Euclidean distance between signal points at each step in the partition
chain.

b) What is the average symbol energy for each of the signal constellations.

85. Consider the 2-state, rate-1/2, trellis encoder shown in Fig. 8.43. By using
this encoder with a4-PAM and 8-PAM signal constellation we can construct
aTCM systems having bandwidth efficiencies of 1 bit/s'Hz and 2 bits/s/Hz,
respectively.

a) Determine the appropriate partitions for the signal constellation for the
2-state, 4-PAM and 8-PAM trellis codes.

b) Construct and label the trellis diagrams for the 2-state 4-PAM and 8
PAM trellis codes.
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sile

a) 8-PAM

b) 32-CROSS

Figure 8.42.  Signal constellations for Problem 8.4.

a —l— b(2)

Figure 843.  Trellis encoder for Problem 8.5.

¢) Determinetheminimum Euclideandistancefor eachtrelliscode, andthe
asymptotic coding gain on an AWGN channel relative to the equivaent
uncoded systems.

86. Construct and label thetrellis diagram for atwo-state MTCM system using
8-PSK. What is the asymptotic coding gain for this system on an AWGN
channel relative to the equivalent uncoded system.

87. For the MTCM code shown in Fig. 819, show how the values of MDD1
and MDD2 are determined. Repeat for the 2-D code shown in Fig. 8.20.

88 To simplify the calculation of performance bounds a Chernoff bound is
often imposed on the pairwise error probability.

a) Derive the Chernoff bound on the pairwise error probability for an
AWGN channel with soft decision decoding, given by (8.61).
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b) Derive the Chernoff bound on the pairwise error probability for an
AWGN channel with hard decision decoding, given by (8.63).

¢) Derive the Chernoff bound on the pairwise error probability for an

interleaved flat fading channel with soft decision decoding, given by
(8.75).

89. Suppose that the 2-state, 4-PAM trellis code in Problem 8.5 isused on a
2-tap 1Sl channel characterized by the channel vector g = (go, 91)-

a) Construct the super-trellis diagram.
b) What is the minimum distance error event in the super-trellis?

¢) Determine the condition number of the path distance matrix E for the
minimum distance error event found in part b).

d) Determinethechannel vectors that minimize and maximize the pairwise
error probability.



Chapter 9

SPREAD SPECTRUM TECHNIQUES

Spread spectrum systems were originally developed for military applica-
tions, to provide antijam and low probability of intercept communications by
soreading a Sgnd over a large frequency band and transmitting it with a low
power per unit bandwidth [86], [262], [306]. Recently, code division multiple
access (CDMA) based on spread spectrum technology has been recognized as
a viable aternative to both frequency divison multiple access (FDMA) and
time division multiple access (TDMA) for cellular systems. During the late
1980s and early 1990s, Qualcomm, Inc.’s efforts, aong with those of many
other organizations such as Motorolaand AT&T, have lead to the North Amer-
ican IS-95 cellular standard [96]. A detailed description of the IS 95 CDMA
cellular approach can be found in a number of papers, including those by Lee
[193] and Gilhousen et al. [136]. The book by Viterbi [344] provides a good
coverage of the spread spectrum concepts that form the foundation of the 1S-95
CDMA cdllular system.

Spread spectrum signals have the distinguishing characteristic that the band-
width used is much greater than the message bandwidth. This band spread
is achieved by using a spreading code or pseudo-noise (PN) sequence that is
independent of the message and is known to the receiver. The recelver uses
a synchronized replica of the PN sequence to despread the received signal al-
lowing recovery of the message. Since the PN sequence is independent of the
message, the bandwidth expansion does not combat additive white Gaussian
noise (AWGN), unlike some other modulation techniques such as wide band
analog FM. Nevertheless, the wide band character of spread spectrum signals
can be utilized to mitigate the effects of interference and multipath fading.

While there are many different types of spread spectrum systems, the two
predominant types are direct sequence (DS) spread spectrum and frequency
hopped (FH) spread spectrum. DS spread spectrum achieves the band spread
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by using the PN sequence to introduce rapid phase transitions into the carrier
containing the data, while FH spread spectrum achieves the band spread by us-
ing the PN sequence to pseudo-randomly hop the carrier frequency throughout
alarge band. An excellent tutorial treatment of spread spectrum can be found
in the books by Simon et al. [306] and Ziemer and Peterson [381]. Some of
the early proposals that applied CDMA to cellular radio, such as the system
proposed by Cooper and Nettleton [65], were based on FH spread spectrum
while most of the recent standards, such as 1S-95, favor DS spread spectrum.
As aresult, the focus of this chapter is on DS CDMA.

While it appears that any cellular system can be suitably optimized to yield a
competitive spectra efficiency regardless of the multiple access technique being
used, CDMA offers a number of advantages along with some disadvantages.
The advantages of CDMA for cellular applications include i) universal one-cell
frequency reuse, ii) narrow band interference reection, iii) inherent multipath
diversity in DS CDMA, iv) ability to exploit silent periods in speech voice
activity, v) soft hand-off capability, vi) soft capacity limit, and vii) inherent
message privacy. The disadvantages of CDMA include i) stringent power con-
trol requirements with DS CDMA , ii) hand-offs in dual mode systems, and iii)
difficulties in determining the base station (BS) power levels for deployments
that have cells of differing sizes, and iv) pilot timing.

This chapter begins with an introduction to DS and FH spread spectrum in
Section 1., along with a comparison between these two types of spread spec-
trum systems. Such a comparison is important if we are to determine the best
CDMA approach for a given environment. PN sequences are fundamental to
all spread spectrum systems and are the subject of Section 2.. The remainder
of the chapter concentrates on DS spread spectrum. Section 5. discusses the
performance of point to point DS spread spectrum on frequency selective fad-
ing channels and shows how a RAKE receiver can be used to gain multipath
diversity. Error probability upper and lower bounds and approximations are es-
sential for predicting the performance of CDMA systems. Section 6. considers
an accurate analysis of the error probability of DS CDMA on AWGN chan-
nels. Several Gaussian approximations to the error probability are derived. The
chapter concludes with a performance evaluation of cellular DS CDMA. Unfor-
tunately, DS CDMA cellular systems are very complex systems with intricate
interactions between system functions. Therefore, the analytical evaluation of
system capacity typically requires simplifying assumptions, while focusing on
a particular parameter or effect. Usualy we can obtain relative performance
comparisons, while the true capacity of a suitably optimized CDMA system in
arealistic deployment scenario remains elusive.
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Figure 9.1.  Simplified DS/QPSK system.

1.  BASIC PRINCIPLES OF SPREAD SPECTRUM
11 DIRECT SEQUENCE (DS) SPREAD SPECTRUM

A smplified DSYQPSK spread spectrum system is shown in Fig. 9.1. The
pseudo-random (PN) sequence generator produces a spreading sequence a =
{ait}, which is actually a periodic deterministic sequence with period N. This
spreading sequence is used to generate the spreading waveform

= A aghe(t — kT,) , 9.1)
k

where a = {a; : ax € {1 £ j}} isacomplex spreading sequence, T isthe
PN symbol or chip period, and h.(t) isarea chip amplitude shaping function
having a peak amplitude of unity. The energy per chip is

x o0
E. = A%g? / h2(t)dt = A? / h2(t)dt 9.2)
—00 —00

since o2 = 1E[lax|?] = 1. Notice that spectral control is achieved with DS
spread spectrum by shaping the PN chips rather than the data symbols.
The data symbol sequence {z,} is used to generate the waveform

z(t) = Y znur(t —nT) , (9.3)

where A istheamplitude, x = {z,, : z, € {£1/v/2+j/v/2}}isthe complex
data symbol sequence, and T is the data symbol duration. It is necessary that T
be an integer multiple of T, and theratio G = T'/T, is caled the processing
gain, defined here as the number of PN chips per data symbol. There are two
types of spreading codes, distinguished by the relative values of N and G. A
short code has G = N, 0 that each data symbol is spread by afull period of
the spreading sequence. A long codehas G « N, 50 that each data symbol is
spread by a subsequence or partial period of the spreading sequence.

The DSQPSK complex envelope, obtained by multiplying a(t) and x(t), is

=A Z Lphn(t —nT) (9.4)



where
G-1

hn(t) = 3 angykhe(t — KTe) . (9.5)
k=0

The complex spreading operation is illustrated in Fig. 9.2. Notice that the
DS/QPSK signa can be thought of as a QPSK signal where the nth data
symbol is shaped with the amplitude shaping pulse h,(t) in (9.5). For short
codes h,(t) is the same for al data symbols. The advantage of complex
spreading is a reduction in the peak-to-average ratio of the magnitude of the
complex envelope. OQPSK should not be used with complex spreading, since
it will actually increase the peak-to-average ratio. The complex envelope 3(t)
is applied to a quadrature modulator to produce the bandpass waveform

s(ty = AZ{ (#10h1n(t — nT) — 2o nhgn(t —nT)) cos(2m f,t)

~ (@@nhin(t — nT) + T1nhqn(t — nT)) sin(2r fct)} 9.6)

where

ha(t) = hra(t) + jhon(t) 9.7)
Tn = Tin+jTon - (9.8)

During thetimeinterval [nT), (n + 1)T'],the DSIQPSK complex envelope can
assume one of the four possible values

§i(t) = Ahn(t)zy, i=1,...,4 . (9.9)

Using the basis function

Pn(t) = '2_Ehn(t) (9.10)
where E = GE, is the symbol energy, we can write
5i(t) = V2Ezign(t), i=1,...,4 (9.11)
and it follows that the complex DSQPSK signal vectors are
§i=V2Ez;, i=1,...,4 . 9.12)

Notice that the basisfunction ¢, () is indexed with the baud epoch n.
Besides complex spreading, other types of PN spreading are possible. We

could use dual-channel quaternary spreading as shown in Fig. 9.3. Usualy

this scheme is used with OQPSK modulation to reduce the pesk-to-average



Spread Soectrum Techniques 461

ap(t)

Figure 9.2.  Complex spreading.
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Figure 9.3.  Dual-channel quaternary spreading.

ratio of the magnitude of the complex envelope. If only one data sequence isto
be transmitted, then we could use either smple binary spreading or balanced

quaternary spreading, as shown in Fig. 9.4. Balanced quaternary spreading

is known to be less sengtive to interference than simple binary spreading.

Fig. 9.1 dso showsasimplified DSYQPSK receiver. Ingenerd, theDS spread
spectrum receiver must perform three functions; synchronize with the incoming
spreading sequence, despread the signal, and detect the data. Consider the
received complex envelope in the timeinterval [nT, (n + 1)T]. This signd
can be despread and detected by using the correlator detector in Fig. 5.2 or the
matched filter detector in Fig. 5.3, where ¢, (t)is defined in (9.10). The output
of the correlator or matched filter despreader/detector is

T=25§+nN (9.13)

where i is azero-mean Gauissian random variable with variance $E[|7|%] = No.
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Figure 9.4. Spreading binary data using (a) simple binary spreading, and (b) balanced quater-
nary spreading.

The ML receiver observes 7 and decides in favor of the signal vector 3,, that
minimizes the squared Euclidean distance

1(8m) = |IF = 3ml® . (9.14)

It followsthat thebit error probability of DS/QPSK with Gray coding isidentical
to QPSK, given by
Py = Q(v/2m) (9.15)

where v, = Ej,/N, is the received bit energy-to-noise ratio. Note that spread
spectrum signaling does nothing to improve the error rate performance on an
AWGN channel. However, in the sequel we will show that spread spectrum
signaling offers significant error rate performance gains against additive inter-
ference, multipath-fading, and other types of channel impairments.

12 FREQUENCY HOP (FH) SPREAD SPECTRUM

Frequency hopping spread spectrum systems hop the carrier frequency
pseudo-randomly throughout afinite set of hop frequencies. The most common
type of modulation with frequency hopping is orthogonal M-ary frequency shift
keying (MFSK). The MFSK complex envelope is

§(t) = A e Artyp(t — nT) (9.16)

where A isthe frequency separation, and z,, € {£1, £3, ..., tM —1}. A
FH/MFSK waveform can be generated by using adigital frequency synthesizer
whose inputs consist of the data sequence and the contents of a pseudo-noise
sequence generator. A conceptual FH/MFSK spread spectrum system is shown
in Fig. 9.5.
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Figure 9.5.  Simplified FH system operating on an AWGN channel.

There are two basic types of FH spread spectrum modulation, fast frequency
hopping (FFH) and dow frequency hopping (SFH). SFH systems transmit
one or more (in genera L) data symbols per hop. The SFH/MFSK complex
envelope is

L
5(t) = AD > elnrim At iintyn(t — (nL +9)T) 9.17)

where the first sum indexes the sequence of hop frequencies f,,, and the second
sum indexes the vector of L data symbolsx, = (znL+1, TnL+2; - - - » Tnt1)L)
that are transmitted at the nth hop.

FFH systems transmit the same data symbol on multiple (in genera L)
hop frequencies. If independent interference is experienced on each of the
hop frequencies then a diversity gain is achieved. The FFH/MFSK complex
envelope is

L
g(t) — AZZ ejInWAft+27l’fnL+ituT/L(t _ ('nL + Z)T/L) (918)

n ;=1

where the first sum indexes the sequence of data symbols, z,, and the second
sum indexesthe sequence of hopfrequenciesf, = (fnr+1, faL+2s-- s fny1)L)
that are used for the nth data symbal.

With orthogonal MFSK the required frequency separetion Ay depends on
the type of detection that is used. Coherent detection requires a frequency
separation A = 1/2T, while non-coherent detection requires Ay = 1/T (see
Problem 4.5). If coherent detection can be used, then the error probability
of SFHIMFSK or FFH/MFSK on an AWGN channel is given by (5.103).
However, FH/MFSK is often detected non-coherently because of the difficulty
in achieving rapid carrier synchronization when the carrier frequency is hopped.
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The error probability of SFH/MFSK on an AWGN channel with non-coherent
square-law detection is given by (5.174). If FFH/MFSK is used on an AWGN
channel, then the error probability assumes a more complicated form, (see
[270)).

2.  SPREADING SEQUENCES

CDMA systems achieve their multiple-access capability by using large sets
spreading sequences that are chosen to have three desirable attributes; i) the se-
guences are balanced so that each element of the sequence aphabet occurs with
equa frequency, ii) the autocorrelations have small off-peak values, to allow
for rapid sequence acquisition at the receiver and to minimize sdf interference
due to multipath, iii) the cross-correlations are small a dl delays, to minimize
multiple-access interference.

Spreading sequences are often characterized in terms of their discrete-ti me
correlation properties. Let a8 denote the kth complex spreading sequence’.
For spread spectrum systems that employ short codes, each data symbol is
spread by a full period of the spreading sequence. In this case the full period
correlation properties are of interest. The full period autocorreation of the
sequence at®) is?

] N-1

Prk(n) = o aMalt; (9.19)
1=0

and the full period cross-correlation between the sequences a*) and a(™) is

-1
(k) ,(m)"
Pkm(n) = 2N Za agy (9.20)

where N is the length or period of the spreading sequences.
The aperiodic autocorrelation of al*) isdefined as

(I L osnenoy
Ge(n) = ¢ L T N4n oM™ _N+1<n<0 9.21)
0 , Inl 2 N

For spread spectrum systems that employ long codes, each data symboal is
spread by only a portion of the spreading sequence. In this case, the par-
tial period correlations are of interest. The partial period auto- and cross-

"The following development also applies to red spreading sequences.
*Throughout this section complex spreading sequences are assumed. For real spreading sequences, the
correlation functions are similar but are normalized by N rather than 2N.
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corrdations ae
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,_.

1 k) (8)°

$hin) = aFaf; 9.22)
y 2G prd 1 n
1 G-1 k) (m)"

& () e oMol (9.23)

Il
=}

1

The partial period correlations are not only afunction of the delay n, but aso
depend upon the point in the sequence(s) where the summation actually starts.
The partia period correlations are difficult to derive analytically, except for
certain types of sequences. Therefore, we often resort to a statistical treatment
under the assumption that the sequences are randomly generated, i.e., the
seguence ements are chosen from the set {£1, +5} independently and with
probability. For random sequences

SEaP]=0 B[P =1

5 lE[a(k)a(m)‘] =0. (9.24)

2 n n

Hence, the mean value of the partial period autocorrelation is

1 G-1
pop ) = Eldks(m)] = 57 _OE (k) g8
- ‘WNZ— (9.25)
where
6”"”:{ 0 Z;% 9.26)

| an integer. The variance of the partial period autocorrelation is

Uzi,k(n) = E[M’%,k(”)ﬁ “N2i,k(n)
1 E& L wo w0 o
= GGR & L Bla ety il ey o
1= J:
= (1-90nen)(1/G) . (9.27)

Likewise, the mean and variance of the partia period cross-correlation are

gy oy = Elffn(m)]=0, Vn (9.28)
oL = Bl -ply o =1/G, ¥n. (929
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21  SPREADING WAVEFORMS

The full period cross-correlation between two spreading waveforms a(®) (t)
and a™(t) is

Rim(T) = = /0 a®)(t) ™ (t + 7)dt

o0 oQ . T
= 7 Z ; ag’“)agm) /0 he(t — 1To)he(t + 7 — 5T,)dt

I=—00 j=—00

(9.30)

The integral in (9.30) is nonzero only where the chip pulses h.(t — iTc) and
he(t+7—3T,) overlap. Sincethedelay = canassumeany valuelet 7 = £T.+4,
where ¢ = |7/T,| isaninteger and 0 < § < T,. If the chip pulses are chosen
to have duration 7, and 7 = ¢T, + 4, then the chip pulses overlap only for
i=f+jandi=1{¢+j+ 1, 20tha

S 0 me L[ : /
Rk:m = Z Qs T / t +(S)dt
=0
1 mye 1 [T
+ ¥ Z aFa §+3+1T | helthe(t' = Te 4 8)dt (931
1=0

The continuous-time partial autocorrédation functions of the chip waveform
h.(t) are defined as [272]

Te—0
Ry(8) = _11‘_0 /O he(t)he(t' + 8)dt’ (9.32)
N 1 T
Rp(8) = T T—Jhc(t’)hc(t'—Tc+5)dt' (9.33)

alowing usto write

Rim(T) = Gkm (&) Ra(8) + dim (€ + 1) Ry (6) (9.34)

where ¢r.m(€) is the full period cross-corrdaion defined in (9.20). As an
example, if he(t) = ur,(t), then
) )
Rim(r) = $em(®) (1= ) + demlE+ D7 - 039)

c

When G < N, the partid correations in (9.22) and (9.23) must be used.
In this case the cross-correlation in (9.34) becomes arandom variable that (for
random spreading sequences) has mean and variance

HRym(t) = Heypm(e)Bn(8) + #¢k,m(e+1)Rh(5) =0 (9.36)
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ORom(r) = T (@ BR(O) + 05, (er1)RA (D)
_ 1 £
= 5 (RO + R©) - (9.37)

Likewise, the autocorrelation isalso arandom variable that (for random spread-
ing sequences) has mean and variance

BRii(r) = Hopu@)Br(8) + g, . (e+1) B (0)
Ry(5), ¢=iG
= { Rp(6), ¢+1=1iG (9.38)
0, elsewhere
a%k.k(T) = U?ﬁk,k(e)R’%(é) + ag’k,k(e'*'l)R’?"(d)
R2(8), ¢=iG
= { R}(8), £+1=iG (9.39)
1/G, elsewhere

wherei is an integer.

22 M-SEQUENCES

One very well known class of spreading sequences are the maximal length
sequences or mrsequences. As shown in Fig. 9.6, an m-sequence a = {ax},
ar € {0,1}, is generated by using a linear feedback shift register (LFSR)
of length m. The sequence a = {ax} is obtained by using the level shift
ax = 2d,—1. Thefeedback or connection polynomial isaprimitive polynomia
of degree m over GF(2), having the form

p(r)=1®pi1z ®p2$2 Opsr’e®--- ® pr_1z™ ! @ ™ (9.40)

where p; € {0,1} and @ denotes modulo 2 addition. Tables of primitive
polynomials, p(x), are tabulated in many texts, eg., [199]. Noticethat pn = 1,
since this represents the feedback connection tap. Also, p,, = 1;otherwise, if
pm = 0 we are effectively using a shift register of length less than m.

Maximal length sequences are by definition the longest sequences that can
be generated by an LFSR of a given length. For a shift register of length m, a
sequence of of length N = 2™ — 1 is generated. As a m-sequence generator
cycles through one full period of length N = 2™ — 1,the contents of the m-
stage shift register go through al possible 2™ — 1 non-binary m-tuples values
or states. The al-zeroes state is the only forbidden m-tuple, since the LFSI
would lock in this state.

The m-sequences have many remarkable properties, and every full period
of an m-sequence satisfies some important randomness properties. First, the
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Figure 9.6. m-sequence generator.

sequence is balanced with 2™~1 ones and 2™~ ! — 1 zeros. A run is defined
as a string of consecutive zeros or ones, and a sequence can be characterized
in terms of its run length distribution. For m-sequences the number of runs of
length P, np, is

am-P-1  p=12..,m-1
np_{ 1 P (9.41)
The full period autocorrelation of an m-sequence is
1 , n=4£¢N
¢<n)_{ Ly L nen (9.42)

For large values of N, ¢(n) = §(n) 0 that m-sequences are almost ideal when
viewed in terms of their full period autocorrelation. For a rectangular chip
shaping function h.(t) = ur,(t), the corresponding spreading waveform a(t)
has autocorrelation function

) )
R(r) = $(6) (1 _ :F) e D 9.43)
This function is plotted in Fig. 9.7.
Themean and variance of the partial period autocorrel ation of an m-sequence
can be obtained in a straight forward fashion by replacing the expectations in
(9.25) and (9.27) with averages over al possible starting positions. This gives

1 , n=4N
Hom) = {—1/0 mAEN ©.44)
0 0 , n={(N 0 45
To(n) LA+ (1-8) L nzen (9.45)

Unfortunately, m-sequences also have a number of undesirable properties.
First, the number of m-sequences that can be generated by a LFSR of length m
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Figure 9.7. Typical full period autocorrelation function of an m-sequence spreading waveform.

is equa to the number of primitive polynomials of degree m over GF(2), and
isgivenby ®(2™ — 1)/m, where ®( - ) is the Euler Totient function

®(n) = nf{ (1 - %) (9.46)

where the product is over all primesp that divide n. Hence, there are relatively
few m-sequences for a given shift register length m. Second, only for certain
vaues of m, do there exist a few pairs of m-sequences with low full period
cross-correations. In genera, m-sequences do not have good cross-correlaion
properties. Consider the full period cross-correlation ¢ ,(n) between two m-
sequencesa(®) and a(™) . Let us define the average full period cross-correlation

1 N-1
=72 km(n) (9:47)

n=0
Thevaue of & depends on the particular pair of m-sequences that are sdected.
The best and worst case values of ¢ are shown in Table 9.1. Notice that the
worst case full period cross-correlations are very large even for long sequence

lengths.

23  GOLD SEQUENCES

A st of Gold sequences [141] consists of 2™ + 1 sequences each with a
period of N = 2™ — ] that are generated by using a preferred pair of m-
sequences obtained as follows. Let GF(2™) be an extension field of GF(2).
Let a be a primitive Nth root of unity in the extension field gr(am), where
N =2™—-1. Letp; (z) and p2(x) be apair of primitive polynomials over GF(2)
each having degree m such that p; () = 0 and p3(a?) = 0for some integer d.



m N Number of 6 6
m-sequences Worst Best

5 31 6 035 0.29
6 63 6 036 0.24
7 127 18 0.32 0.13
8 255 16 0.37 0.12
9 511 48 022 0.06
10 1023 60 0.37 0.06
11 2047 176 0.14 0.03
12 4095 144 0.34 0.03

Table 9.1.  Best and worst case average cross-correlations for m-sequences.

Consider the casewhen m # 0mod 4. If d = 2" +1ord = 22" — 2" + 1 and
if e = GCD(m, h) is such that nVe is odd, then pi(z) and py(z) constitute
a preferred pair of polynomials. Note that p2(x) may not be unique. For
example, withm =5, both h = 1 and h = 2 will work, so that we can choose
pa(z3) = 0 or pa(z®) = 0. To find the corresponding polynomials we can refer
to Peterson’ stable of irreducible polynomials [261]. Thetwo m-sequences ab
and a? that are generated by using pi(z) and py(z) are known as a preferred
pair of m-sequences. Ther cross-correlation function is three-valued with the
vaues {-1, —t(m), t(m) — 2} where
2m+1)/2 11 modd
tm) = { 20m+2)/2 L 1 | meven (9-48)

By using the preferred pair of sequences db and a@, wecan construct a
st of Gold sequences by taking the sum of &b with al cyclicaly shifted
versions of a2 or vice versa. A typical Gold sequence generator is shown in
Fig. 9.8, where the preferred pair of polynomials ae pi(z) = 1+ z2 + z° and
pa(z) = 1+ z + 22 + z* + 5. This above procedure yields N new sequences
each with period N = 2™ — 1. These sequences along with the origina two
sequences gives a st of 2™ + 1 sequences.

It is important to note that all the 2™ + 1 Gold sequences are balanced
with 2™~ ones and 2™~ ! — 1 zeros. In fact, it can be shown that only
2m — 2m~e — 1 of the Gold sequences are balanced. The balanced Gold
sequences are the most desirable. With the exception of the preferred pair of
sequences aY) and @), the Gold sequences are not m-sequences and, therefore,
their autocorrelations are not two-valued. However, Gold sequences have three-
vaued off-peak autocorrdations and cross-correlaions, with possble vaues
{1, -t(m), t(m) — 2}, where t(m) is defined in (9.48).
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Figure 9.8. A Gold sequence generator with py (z) = 14+ x? +z° and pa(z) = 1 + 2 + 2% +
x* + z®. This sequence generator can produce 32 Gold sequences of length 31.

™m N Number Peak cross m-sequence  t(m) Gold sequence
m sequences  correlation Pmax/P(0) t(m)/¢(0)
3 7 2 S 0.71 5 0.71
4 15 2 9 0.60 9 0.60
5 31 6 11 0.35 9 0.29
6 63 6 23 0.36 17 0.27
7 127 18 4] 0.32 17 0.13
8 255 16 95 0.37 33 0.13
9 511 48 113 0.22 33 0.06
10 1023 60 383 0.37 65 0.06
11 2047 176 287 0.14 65 0.03
12 4095 144 1407 0.34 129 0.03

Table 9.2.  Peak cross-correlation of m-sequences and Gold sequences.

24 KASAMI SEQUENCES

The construction of Kasami sequences proceed as follows [177], [178]. Let
mbeeven. Let p, (X) beaprimitive polynomial over thebinary field GF(2) with
degreemand aasaroot, and let p, (x) betheirreducible minimal polynomia of
o whered = 2™/2 +1. Once again, these polynomials can be identified using
Peterson’s table of irreducible polynomials [261]. Let & and a®@ represent
the two m-sequences of periods 2 — 1 and 2™/2 — 1 that are generated by p, (X)
and p2(X), respectively. The set of Kasami sequences is generated by using the
two m-sequences in a fashion similar to the generation of Gold sequences, i.e,
the set of Kasami sequences consists of the long sequence a® and the sum of
av with al2™/2 — 1 cyclic shifts of the short sequence a®. The number
of Kasami sequences in the st is 2™/2, each having period N = 2™ — 1.
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Figure 9.9. A Kasami sequence generator with pi(z) = 1+ z + 2% and po(2) = 1 + z + 2°.
This sequence generator can produce 8 Kasami sequences of length 63.

In fact, this set is known as the small set of Kasami sequences. A typical
Kasami sequence generator is shown in Fig. 9.9 with generator polynomias
pi(z) =1+z+ 28 andpo(z) = 1 4+ z + 23.

Like Gold sequences, the off-peak autocorrelation and cross-correlation
functions of Kasami sequences are aso three-valued, however, the possible
values are { —1, —s(m), sS(m) — 2} where

s(m)=22 41 . (9.49)

25 BARKER SEQUENCES
Barker sequences exist for lengths 2, 3, 4, 5, 7, 11, and 13, given asfollows:

(+1-1)
(+1+1-1)
(+1+1-1+1)
(+1+1+1-1+4+1)
(

(

(

Il

Fl4+1+1—-1-14+1-1)
+l+1+1-1-1-1+1-1-141-1)
F1+1+41+141-1-1+4141-1+1—1+1)

PP PP
It

The mirror images (or time reversed) sequences are also Barker sequences.
Barker sequences of other lengths do not exist.

Barker sequences are specialy designed sequences that have amost idedl
aperiodic autocorrelation functions, defined in (9.21). For the Barker sequences

a _ 1 s n=20
¢’°"°(n)_{0,1/N,or—1/N , 1<|n|]<N-1 (9.50)
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26 WALSH-HADAMARD SEQUENCES

Walsh-Hadamard sequences are obtained by selecting as sequences the rows
of a Hadamard matrix Hps.. For M = 2 the Hadamard matrix is

[+ +1
Hz_[+1 _1} (9.51)
Larger Hadamard matrices are obtained by using the recursion
_[Hpy Hy
H2M_[HM '“HM} . (9.52)
For example,
[ +1 +1 41 +1 +1 +1 +1 +1]
+1 -1 41 -1 +1 -1 +1 -1
+1 +1 -1 -1 41 41 -1 -1
H, = +1 -1 -1 41 41 -1 -1 +1 9.53)

+1 41 41 41 -1 -1 -1 -1
+1 -1 +1 -1 -1 +1 -1 +1
+1 +1 -1 -1 -1 -1 +1 +1
+1 -1 -1 41 -1 41 41 -1

The rows in the Hadamard matrix define the Walsh-Hadamard sequences,
and have the property that they are all orthogonal to each other.

The Walsh-Hadamard sequences can be used for orthogonal spreading, also
called orthogona CDMA, where the users are distinguished by assigning them
different Walsh-Hadamard sequences, and the data symbols are sent by using
simple binary spreading as shown in Fig. 9.4.. With orthogonal CDMA, the
data symbols of the different users must be synchronized to within a small
fraction of achip period. Thisis because the Walsh-Hadamard sequences have
very poor cross-correlations at non-zero lags. In fact, some of the Walsh-
Hadamard sequences arejust cyclic shifts of each other. Findly, multipath will
also destroy the orthogonality of the received waveforms, because the Walsh
Hadamard sequences have large off-peak autocorreation vaues even at small

lags.

261 ORTHOGONAL AND BI-ORTHOGONAL MODULATION

The Walsh Hadamard sequences can be used for modulation rather than
spreading. There are several possibilities. One is M-ary orthogonal mod-
ulation, where k = log, M bits are used to sdlect one of the M orthogonal
waveforms for transmission. The signals can be detected coherently or non-
coherently as discussed in Chapters 4 and 5. Another possibility isavariant of
biorthogonal modulation, where each row of the Hadamard matrix is used to
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Figure 9.10. Construction of orthogonal spreading codes with different spreading factors.

send one bit of information. In this case M bits are sent a one time. This type
of modulation requires coherent detection.

27 VARIABLE LENGTH ORTHOGONAL CODES

In multimediaapplications it is necessary to support avariety of data services
ranging from low to very high bit rates. Quite often these services are used
concurrently and they all use the same sporead bandwidth. Consder a system
where each data symbol in the highest bit rate service R = Rpax 1S Soread by
an orthogonal sequence of length N = 2™. Then the data symbolsin a service
with bit rate B = Rinax/2¥ must be spread by a sequence of length 2™+,
One way to achieve orthogonality between spreading sequences with different
spreading factors is to use tree structured orthogonal codes. The construction
of these codes is illustrated in Fig. 9.10. Tree-structured orthogonal codes are
generated recursively according to the following:

Cn,1 Cn,1
Can,1 7

Cn,1 Cn,
Con,2

Cop = . = (9.54)

[ Chn Cnn ]

Con,2
n,2Nn Cn,n “Cn,n
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where ¢4y, isan orthogonal code set of size 2n. The orthogonality properties are
smilar to Walsh-Hadamard sequences. In fact the set of sequences is identical,
and only their order is different.

A code can be assigned for use if and only if no other code either on the path
from the specific code to the root of the tree, or on the subtree produced by
the specific code, is aready being used. Hence, the total number of available
codes is not fixed, but depends on the rate or spreading factor of each physica
channel.

28 COMPLEMENTARY CODE KEYING (CCK)

Complementary codes have the property that the sum of their aperiodic
autocorrelaion functions are zero for dl delays except zero delay. That is,

1 M
=7 2 $hp(n) = d(n) . (9.55)
Mg b

A variety of constructions exist for complementary codes and two examples
are given here.

The IEEE 802.11b standard uses CCK. For 11 Mb/s transmission length-8
sequences are used. The eight complex chip values for CCK code words are

C = {ej(¢1+¢2+¢3+¢4),ej(¢1+¢'3+¢4),ej(¢1+¢2+¢4),

-ej(¢1+¢4),ej(¢1+¢2+¢3)ej(¢1+¢3) _ ej(¢1+¢2)ej(¢1)} (9.56)

wherethephases {¢1, ¢2, ¢3, 4} e QPSK phases. The phases ¢4, ¢3, and ¢4
each take on 4 different values, leading to a code alphabet of size 64. The phase
¢1 is differentially encoded across successive codewords. Since each of the 4
phases ¢1 — —¢4 represents 2 hits of information, 8 bits are transmitted per
codeword. The chip rate for IEEE 802.11 is 11 Mchips/s, 0 that the resulting
bitrateis 11 Mb/s.

The IEEE 802.11b standard for 5.5 Mb/s transmission is similar but uses
CCK with length-4 sequences. The complex chip values for the CCK code
words are

C = {ej(¢1+¢2+¢3), el (@1103) oi(d1td2) _ oil1) } (9.57)

where, again, the phases {¢1, ¢2, ¢3} are QPSK phases.

3. POWER SPECTRAL DENSITY OF DS SPREAD
SPECTRUM SIGNALS

We seen earlier that the DS/QPSK signal can be thought of as a QPSK signal
where the nth data symbal is shaped with the amplitude shaping pulsein (9.5).
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For uncorrelated zero-mean data symbols, the results in Chapter 4 showed that
the power spectral density (psd) of the complex envelope is (c.f. 4.206)

Ss5(f) = ?02 |Ho(f)? (9.58)

where h,(¢) is the amplitude shaping pulse. In the case of a short code, the
amplitude shaping pulse is

N-1
=Y aghe(t — kTo) . (9.59)
k=0

Taking the Fourier transform of h,(t) gives

N-1
Ho(f) = He(f) Y ape ?7/F T (9.60)
k=0
and
N—-1N-1 '
Ho(f)? = [H(NP Y. S apapei2rik=0T (9.61)
k=0 ¢=0

The above expression can be put in a more convenient form by using the
aperiodic autocorrelation defined in (9.21). It can be shown that

|Ho(£)? = |He(f)|? 2N Py 4 (f) (9.62)

where @ x(f) is the discrete-time Fourier transform (DTFT) of the aperiodic
autocorrelation function, defined by

Sep(f)= 3 dha(n)e 2T (9.63)

=—N+1
Using T = NT, and 02 = lE[|xi|2] = 1/2, we can write
Sss(f) = fH )2 ek (f) (9.64)

Observe that the psd depends on both |Ho(f)| and @k x(f). Suppose the
spreading sequence has an ideal “thumbtack” aperiodic autocorrelation function

Pt x(n) = { 0l om0 (9.65)
Then ‘I’k,k(f) =1and
Ss:(f) = T |He(f) (9.66)
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12 " : . . : ' ]

Figure 9.11.  Aperiodic autocorrelation function for the length-11 Barker sequence.

In this case, the psd depends only on the chip shaping response |H.(f)!.

For example, if hc(t) = ur,(¢), then H.(f) = Tesinc(fT,) and Sz(f) =

A?T,sinc?(fT,). Unfortunately, no spreading sequences having the ideal ape-

riodic autocorrelation function in (9.65) exist for any non-trivial length.
Consider the following two spreading sequences

a? = (m14+1-1-141-1-1-141+1+1) (9.67)
a® = (41-1-141-1-1-141414141-14+1—-1+1)

The first is a length-11 Barker sequence and the second is a length-15 m-
sequence.  The aperiodic autocorrelation functions for these sequences are
shown in Figs. 911 and 9.12, respectively. The corresponding power spectral
densities with athe rectangular chip shaping function h.(t) = ur,(t) areplotted
in Figs. 9.13 and 9.14, respectively. Notice that the aperiodic autocorrelation

of the m-sequence deviates significantly from the ided function in (9.65).
This leads to spectral peaks and nulls in Fig. 9.14. For wireless loca area
networks (LAN) that operate in unlicensed bands, such spectrd pesks are
highly undesirable. The length-11 Barker sequence is seen to provide a much
smoother psd without any large peaks. For this reason, the length-11 Barker
sequence has been chosen for the IEEE 802.11 wireless (LAN) specification.
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o(n)

Figure 9.12.  Aperiodic autocorrelation function for the length-15 m-sequence.

It is interesting to note that complementary code keying is used, then the
psd depends on the DTFT of the average aperiodic autocorrelation function in
(9.55). Inthis case,

1 M
Mkzlcl’k,k(f) =1
and the psd has the ideal form in (9.66).
Finally, if along code is used, then the power spectrum must be obtained by
averaging over al possible spreading code subsequences of length G. Usually,
this will result in a*“smoother” power density spectrum.

4. PERFORMANCE OF DSQPSK IN TONE
INTERFERENCE

Spread spectrum systems must often operate in the presence of narrowband
interfering signals. In the United States, commercial spread spectrum systems
operate in the unlicensed ISM (Instrumentation, Scientific, and Medical) bands
according to FCC Part 15 spectrd etiquette rules. The ISM bands are character-
ized by sources of narrowband interference. Military systems are oftenjammed
with narrowband interference. Here we consider the effect of continuous wave
(CW) tone interference on the performance of DS/QPSK.
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Figure 9.13.  Psd with the length-11 Barker sequence.

Consder a DSYQPSK system with dual-channel quaternary spreading as
shown in Fig. 9.3. The bandpass DSQPSK waveform is

s(t) = A Z {1 nh1n(t —nT)cos(27 fct)

— 2gnhgn(t — nT)sin(2n ft)} (9.68)

where A is the amplitude. During time interval [nT, (n + 1)T] the transmitted
quaternary data symbol is z, = (274, Z0.n)» Trn, Ton € {+1/V2,—1/v/2}
and the spreading waveforms are

G-1

hin(t) = Y arncsrhe(t — nTe) (9.69)
k=0
G-1

hon(t) = D agnatkhe(t — nTe) (9.70)
k=0

With dual-channel quaternary spreading, the energy per modulated symbol is
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Figure 9.14.  Psd with the length-15 m-sequence.

E = /OT $2(t)dt

= / {m, nh t) cos? 2w fot + mé,nh2 (t) sin? 27rfct}

A2
= 7/0 {r <>+hé,n<t)}
= TZ(al,nG+k+a2Q,nG+k) A ha(t)dt
k=0
2 pT.
et / h2(t)dt
2 Jo
- GE, (9.71)
where
AZ Te
E. == h2(t)dt (9.72)
0

is the energy per PN chip. Note that (9.72) and (9.2) differ by a factor of
2, because (9.2) assumes complex spreading while (9.72) assumes quadra
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ture spreading. This can be seen by comparing the energy of the bandpass
waveformsin (9.68) and (9.68) over theinterval [nT, (n + 1)T.

Thereceived bandpass signal in the presence of toneinterference and additive
white Gaussian noise (AWGN) is

r(t) = s(t) + n(t) + J(t) (9.73)

where n(t) is AWGN with two-sided power spectral density N,/2 and J(t)is
the tone interference of the form

J(t) = Ajcos(2nfst + 6) (9.74)

where A isthe toneamplitude, f; isitsfrequency, and €is a random phase
uniformly distribution on theinterval [—m, ]. Thetoneenergy in atimeinterval
of duration T is 2
E;= —-gT : (9.75)
The received signal is despread and processed with the quadrature demod-
ulator shown in Fig. 9.15 to generate the decision variables Z; and Zg. To
derive the values of Z; and Z, we consder the signal, noise, and interference
separately. During the time interva [nT, (n + 1)T] the contribution of the
signal term to Zy and Zg is

Zi(s) = /0 Ta) \/gh,,n(t)dt

= TAm h . A—2
= [ Azin 1n(t) 4Eh1,n(t)dt
= x,,nA\/?—Z OThﬁn(t)dt
= z.,VE (9.76)
where we have used (9.71). Likewise
Zg(s) = zquVE . (9.77)

The contribution of the AWGN termto Z; and Zg is

T A2
Ziw) = [ w0y gk (9.78)

T [ 42
Zg(n) = /0 ng(t) EhQ,n(t)dt. 9.79)
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Figure 9.15.  Quadrature demodulator for DS/QPSK.

It can be shown that Z;(n) and Zg(n) are independent zero-mean Gaussian
random variables with variance N, /2.

Finally, the contribution of the tone interference term to Z; and Zg can be
calculated as follows:

Zi(J) = /OT J(t) - 2cos(2mfet) - 4/ %;th(t)dt
T A2
- / Ay cos(2rft) - 2008(2m fet) - \| = b n(t)dt
0 4F

[42 /T
= Ay _fE/ 2h1 n(t) cos(2m fct) cos(2m f st + 6)dt
0

A2 (T
= AnTp / him(t) {cos(2nE st + 8) + cos(2nA st + 6)} dt
0

(9.80)

where
f = fe+fs (9.81)
Ay = fr—fe - (9.82)

Using Ay = /2E; /T, we can write

AT 1 T
Z10) = VB o 7 /0 hin(t) {cos(2nE st + 0) + cos(2mA st + 0) } dt
(9.83)
Finaly, using

A? (T
E=G— h2(t)dt (9.84)
0
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we can write
—1 (T
21(J) = \Es/Fer: /O hip(t) {cos(2nS st + 8) + cos(2mA st + 0) } dt .
(9.85)

where

_ 1 T.

he = — / he(t)dt . (9.86)

Tc 0

Using further trigonometric identities we can write

Zi(J) = +\/Ej/h. {cos 9% /OT hrn(t) (cos(2mXst) + cos(2mArt)) dt

T
- sinﬁ%/ hrn(t) (sin(2w¥st) + sin(2rAft)) dt} . (9.87)
0

In asimilar fashion

Zi(J) = /OTJ(t)-2sin(27rfct)-\/ghQ,n(t)dt

- 1 /T . .
VEj/he {cos Gf /0 hqn(t) (sin(2mrAyt) — sin(27Xyt)) dt

T
+ sine%/ hqn(t) (cos(2mAst) — sin(27Xst)) dt} .(9.88)
0

Combining the signal, noise, and tone interference terms
Zr = Zi(s)+ Zi(n) + Z1(J)
Zg = Zg(s)+ Zg(n) + Zg(J) . (9.89)

It follows that Z; and Zg are independent Gaussian random variables with
variance N, /2 and means

E[Z)) = z1.VE+I1\/E;/h,
E(Zq] = 2g.VE+Ig/Es/he (9.90)

where

T
Iy = cosG%/ hin(t) (cos(2mEt) + cos(2mAyt)) dt
0
1 T
—sinBT/ hrn(t) (sin(2nZt) + sin(2rAgt)) dt  (9.91)
0
1 T
Ip = cosHT/ hqn(t) (sin(2rAyt) — sin(2nX 5t)) dt
0

1 T
+ sin BT / hqn(t) (cos(2mAst) — sin(27X ¢t)) dt . (9.92)
0
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Error probability with ashort code:.  For the purpose of illustration assume
arectangular chip shaping pulse h¢(t) = ur,(t) so that k. = 1 in (9.90), and
assume a short code (G = N) <0 that each data symbol is spread by the same
sequence. Furthermore, assume that the same spreading sequence is used on
the inphase and quadrature channels so that

h(t) = hrn(t) = hga( Z aruT, (t — kTy) (9.93)
(9.94)
It follows that
NT. N-1
= — kT,
Iy NT. Jo Z aru, (t — KT,)
x (cos(2mXst) + cos(27rAft)) dt
NT. N-1
NT, Z agur, (t — kT¢)
X (sin(27Xst) + sxn(27rAft)) dt
1 N1 k+1
= — Z a {cos&/ (cos(2mX¢Tct) + cos(2mAfTct)) dt
k
k+1
— sinB/ (sin(2rX T, t) + sin(2n AT t)) dt » . (9.95)
k
Likewise
1 N-1 k+1
Ip = Z ay, cosﬂ/ (sin(2r AT t) — sin(2nX fTet)) dt
k
k+1
+ sinH/ (cos(2m AT t) —sin(2rX ¢ Tet))dt o . (9.96)
k

Fortunately, the above integrals exist in closed form. Defining

a = 25T, (9.97)
B =2nA;T, (9.98)

we have
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I=~ NZ—l ax {60s9 (Sin((k + 1)a) — sin(ke)

N b o

sin((k + 1)3) — sin(k()
v B )
sing <cos(ka) — cos((k + 1)a)
cos(kB) — cos((k + 1))
" 5 )}

(9.99)

and

1 & kB3) — k+1
o=+ k};} o {cose <COS( B) c;S(( )B)

cos(ka) — cos((k + l)a))
+sind (sin((k: + 1),;) — sin(kB)
_ cos(ka) — cos((k + 1)a)>} .

«

(9.100)

Due to the random phase of the tone interferer, the tone interference cir-
cularly symmetric, similar to the AWGN. This alows us to rotate the signal
constellation for the purpose of calculating the bit error probability. Therotated
constellation is shown in Fig. 9.16. In the absence of tone interference, the
probability of correct symbol reception is

P(c) = (1 — By)? (9.101)
where
P, =Q(v2m) (9.102)

isthe bit error probability, and -y, = E,/N,isthe received bit energy-to-noise
ratio.
The probability of correct reception is

Peibgp, = (1 — Po1)(1 — Pya) . (9.103)

When toneinterference is present, the error probability depends on thetransmit-
ted symbol and the interference impairment Iy and I. Referring to Fig. 9.16

Pejoo = (1 = Py )(1 — Pya) (9.104)
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Figure 9.16.  QPSK signal constellation with tone interference.

where

Py =Py=0Q Q/%? (1 +2/E;/EI; + (EJ/E)ZIIQ>> . (9.105)

Hence, we can write

2F
Pyoo =Q (\/;b (1 +2\/E;/EI + (EJ/E)ZI})> . (9.106)

In a similar fashion,
Pyor = Q (\/215” (1 +2/E;/Elg + (EJ/E)Z’Ié)) (9.107)

2FE
By = Q(\/Tb (1—2 EJ/EII+(EJ/E)2I?)> (9.108)

Pyio = Q (\/% (1 —2y/E;/Elg + (EJ/E)U%)) .(9.109)

Since al symbols are equally likely, the bit error probability is

1
Py = 7 (Bojoo + Popr + Pojso + Fhjor) - (9.110)
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Figure 9.17.  Bit error probability with length-15 m-sequence.

Observe that the bit error probability depends on I; and Ig. However Iy and
Ig are random variables due to the random phase 8. Therefore, the bit error
probability must calculated by averaging (9.110) over random phase of the tone
interferer.

Fig. 9.17 shows thebit error probability when thelength-15 m-sequence, a(?
in (9.67) is used as a short code (G = 15). Fig 9.17 arbitrarily assumes that
fe = 280 MHz, and T, = 191 x 10~9%. Observe that the bit error probability
varies greatly with the frequency of the tone interferer. It is interesting to note
that an interfering at the carrier frequency f. is not the worst case. Also, the
bit error probability is seen to exhibit an error floor due to the AWGN.

Fig. 9.18 showsthe bit error probability when the length-11 Barker sequence
al) in (9.67) is used as a short code (G = 11). Observe that the length-11
Barker sequence generally has worse performance for the same E/E jthanthe
length-15 m-sequence, except a frequencies where the length-15 m-sequence
is highly sensitive to tone interference. This is because the length-11 Barker
sequence has a lower processing gain compared to the length-15 m-sequence.

Fig. 9.19 inverts Fig. 9.17 and plotsthe E/ E; required to achieve a bit error
rate of 1076 with the length-15 m-sequence in the presence of a single ton