
hannel coding is an error-control technique
used for providing robust data transmission
through imperfect channels by adding redun-
dancy to the data. There are two important

classes of such coding meth-
ods: block and convolutional.
For this tutorial, we focus on
linear block codes because
they provide much insight and allow for a simple visuali-
zation of the error detection/correction process.
Forward error correction (FEC) is the name used when
the receiving equipment does most of the work. In the
case of block codes, the decoder looks for errors and,

once detected, corrects them (according to the capability
of the code). The technique has become an important
signal-processing tool used in modern communication
systems and in a wide variety of other digital applications

such as high-density memory
and recording media. Such
coding provides system per-
formance improvements at

significantly lower cost than through the use of other
methods that increase signal-to-noise ratio (SNR) such
as increased power or antenna gain. 

In this article we first develop the ideas behind sim-
ple binary codes. We then treat cyclic and nonbinary

An intuitive treatment of error detection and correction

Bernard Sklar and Fredric J. Harris

IEEE SIGNAL PROCESSING MAGAZINE14 JULY 2004
1053-5888/04/$20.00©2004IEEE

©
M

A
S

T
E

R
S

E
R

IE
S

C



codes. Finally, we review the astounding strides that
have been made in this decade toward approaching the
theoretical limitations of what is possible. This article
can serve as a precursor for serious students who intend
to further pursue the subject and a quick overview for
experienced scientists or mathematicians who have not
yet investigated this area. 

Channel Coding
Channel coding involves data transformations that are
used for improving a system’s error performance by
enabling a transmitted message to better withstand
the effects of channel impairments such as noise,
interference, and fading. For applications that use
simplex channels (one-way channels such as compact
disk recordings), the coding techniques must support
FEC since the receiver must detect and correct errors
without the use of a reverse channel (for retransmis-
sion requests). Such FEC techniques can be thought
of as vehicles for accomplishing desirable tradeoffs
that can reduce bit error rate (BER) at a fixed power
level or allow a specified error rate at a reduced power
level at the cost of increased bandwidth (or transmis-
sion delay) and a processing burden. Figure 1 illus-
trates such coding applied to a typical digital radio. A
data or message vector m = m1, m2, . . . , mk contain-
ing k message elements from an alphabet is trans-
formed by the block code into a longer code vector or
code word U = u1, u2, . . . , un containing n code ele-
ments constructed from the same alphabet. The ele-
ments in the alphabet have a one to one
correspondence with elements drawn from a finite
field. Finite fields are referred to as Galois fields, after
the French mathematician Evariste Galois
(1811–1832). A Galois field containing q elements is
denoted GF(q), with the
simplest such finite field
being GF(2), the binary
field with elements (1, 0),
which have the obvious
connection to the logical
symbols (1, 0) called bits.
When we deal with fields
that contain more than
two elements, these nonbi-
nary elements are encoded
as binary m-tuples (m-bit
sequences). Then the ele-
ments are processed as
binary words according to
the rules of the field in
much the same way that
decimal integers were
encoded as binary-coded
decimal (BCD) symbols in
early computers (such as
ENIAC or the IBM 650)

and in contemporary calculators. The number of out-
put elements n (code bits) and input elements k (data
bits) characterizing a block code are denoted by the
ordered pair (n, k). Often, the designation (n, k, t) is
used to indicate that the code is capable of correcting
t-errors in the n-element code word.

For transmitting the code bits (comprising U) with
waveforms, a common practice is to use bipolar pulses
with values (+1,−1) to represent the binary logic lev-
els (1, 0), respectively. For a radio system, such pulses
are modulated on to a carrier wave, typically denoted
s (t ), as shown in Figure 1. Channel impairments are
responsible for transforming a transmitted waveform
s (t ) into a corrupted waveform r(t ) = s (t ) + n(t ) ,
which is received and processed by a demodulator/
detector. The demodulator recovers samples of the cor-
rupted waveform, and the detector interprets the digi-
tal meaning of that waveform. A commonly used
model for n(t) is that of an additive white Gaussian
noise (AWGN) process [1]. Noise, interference, and
channel distortion mechanisms account for the detec-
tor making errors. Consequently, instead of accurately
reproducing the bipolar pulse values or logic levels
(representing U), the detector might instead output a
corrupted version r, written as

r = U + e (1)

where r = r1, r2, . . . , rn represents a received block of n
elements, and e = e1, e2, . . . , en represents the corrup-
tion, referred to as the error sequence or error pattern.

Hard Decisions and Soft Decisions 
In Figure 1, each detected element ri of the received
vector r can be described as a quantized-amplitude

IEEE SIGNAL PROCESSING MAGAZINEJULY 2004 15

▲ 1. Simplified diagram of channel coding applied to a typical digital radio.

Message
Vector

Transmitter

Receiver

m

Channel Encoder

U = mG

(n,k) Code

 Codeword

U

Modulator

Antenna

Transmitted
Waveform

s(t)

Received
WaveformDemodulator/

Detector
r = U + e

Received
Vector

r

Channel Decoder

U = r + e
r(t) = s(t) + n(t)

m

m = G–1U



decision. The decision may simply answer the question
“Is the amplitude greater or less than zero?” yielding a
binary decision of 1 or 0. Such a decision is called a
hard decision because the detector firmly selects one of
two levels. Sometimes the detector’s decision may
answer multiple questions such as “Is the amplitude
greater or less than zero, and is it greater or less than
some reference level?” For binary signaling, such multi-
part decisions are called soft decisions; they offer the
decoder side information about the SNR of the cor-
rupted analog waveform. A soft decision might tell the
decoder, “this signal has a positive amplitude, but it is
not very far from the zero amplitude” or “this signal
has a positive amplitude, and it is quite far from the
zero amplitude.” The most popular soft-decision for-
mat entails eight-level signal quantization, which can
be interpreted as a hard decision plus a measure of con-
fidence. The figure-of-merit for the error performance
of a digital communication system is usually expressed
as a normalized SNR, known as the ratio of bit energy
to noise power spectral density, Eb /N0. The coding
gain or benefit provided by an error-correcting code to
a system can be defined as the “relief” or reduction in
required Eb /N0 that can be realized due to the code.
For an AWGN channel, when the detector presents the
decoder with such soft decisions, the system can typi-
cally manifest an improvement in coding gain of about
2 dB compared to hard-decision processing [1]. For
the majority of block-code applications, hard-decision
decoding is used. For most of this tutorial, a received
vector r out of the detector is made up of hard-decision
components, designated by pulses (+1, −1) or by logic
levels (1, 0). However, later we show that soft decisions
are of great value for systems using iterative decoding
techniques that operate close to theoretical limitations.
Examples of such techniques are turbo codes and low-
density parity check (LDPC) codes.

Simple Parity Codes
At the transmitter, the encoder adds redundancy with a
set of constraints that must be satisfied by the set of all
code words. Error detection occurs when a received
vector does not satisfy the constraints. The simplest
approach to error detection modifies a binary data
sequence into a code word by appending an extra bit
called a parity bit. When using the constraint that a
code word must contain an even number of ones, the
scheme is referred to as even parity (the constraint of an
odd number of ones is called odd parity). To establish

the even-parity condition, the parity bit p is formed, as
the modulo-2 sum of the message bits, as

p = m1 ⊕ m2 ⊕ m3 ⊕ · · · ⊕ mk (2)

where the symbol ⊕ indicates modulo-2 addition. The
test (even-parity check) conducted by the receiver veri-
fies that the modulo-2 sum of the parity plus message
bits in the received sequence r is zero. If the sequence
fails the test, an error has been detected. We refer to
the test result as the syndrome S, written as

S = r1 ⊕ r2 ⊕ · · · ⊕ rk ⊕ rk+1. (3)

The syndrome in (3) can be modeled as the modulo-2
sum of the transmitted sequence and the error
sequence, as

S = (m1 ⊕ e1) ⊕ (m2 ⊕ e2)

⊕ · · · ⊕ (mk ⊕ ek) ⊕ (p ⊕ ek+1) (4)

S = (m1 ⊕ m2 ⊕ · · · ⊕ mk ⊕ p)

⊕ (e1 ⊕ e2 ⊕ · · · ⊕ ek ⊕ ek+1)

= 0 ⊕ (e1 ⊕ e2 ⊕ · · · ⊕ ek ⊕ ek+1). (5)

When factored into separate message and error
sequences as seen in (5), we recognize that the syn-
drome tests both the transmitted sequence and the
error sequence, but since the syndrome of the transmit-
ted sequence is zero, the syndrome is only responding
to the error sequence. For the case of a single parity
bit, as in (5), only an odd number of errors can be
detected, since an even number of errors will yield the
syndrome S = 0.

A single parity bit can only be used for error detec-
tion. To perform error correction, we require addition-
al information to locate the error positions; the code
word needs to be embedded with more than a single
parity bit. A simple example of a code that appends
additional parity bits to the message sequence is shown
in Table 1. Here, a set of eight message elements is
packed into a two-dimensional array from which we
form parity for each row and parity for each column.

The appended array can be rearranged into a code
word sequence U as

U = m1 m2 m3 m4 m5 m6 m7 m8 p1 p2 p3 p4 p5 p6. (6)

When U is received, it can be mapped back to the
same two-dimensional array, and a set of syndromes can
be calculated corresponding to each row and each col-
umn. A single error located anywhere in the message
positions will cause a nonzero syndrome in a row and
in a column, and thus the intersection of the row and
column corresponding to the parity failure contains the
single error. One should conclude that a block code
capable of detecting and correcting error sequences

IEEE SIGNAL PROCESSING MAGAZINE16 JULY 2004

m1 m2 m3 m4 p1

m5 m6 m7 m8 p2

p3 p4 p5 p6

Table 1. Row and column parity for a 
two-dimensional data set.



needs to have multiple parity symbols appended to the
data message and multiple syndromes generated during
the parity checks at the receiver.

The Generator Matrix 
and Systematic Codes
The most general form of the parity generation
process, in which each code element ui of the code
word U is a weighted sum of message elements, can be
written in the form of a vector matrix equation as

U = mG (7a)

[u1 u2 u3 · · · un] = [m1 m2 m3 · · · mk]

×




g1,1 g1,2 g1,3 · · · g1,n
g2,1 g2,2 g2,3 · · · g2,n
g3,1 g3,2 g3,3 · · · g3,n
...

...
...

. . .
...

gk,1 gk,2 gk,3 · · · gk,n




(7b)

where the entries of the matrix G, called the generator
matrix, represent weights (field-element coefficients),
and the multiplication operation follows the usual rules
of matrix multiplication. The product of a message
row-vector m with the ith column-vector of G forms
ui a weighted sum of message elements representing
the ith element of the code word row-vector U. For a
binary code, the data elements as well as the matrix
weights are 1s and 0s, but for a nonbinary code the
data and weights are general field elements (of the non-
binary field) with arithmetic performed in accordance
with the field structure [1], [2].

A useful variant of the code word U is one in which
the vector of message elements is embedded, without
change, in the code word along with an appended vector
of parity elements. When the code word is constrained in
this manner, the code is called a systematic code. To form
a systematic code the generator matrix G can be modi-
fied in terms of submatrices P and Ik as follows:

U = mG = m [P|Ik] (8a)

U = [u1 u2 u3 · · · un] = [m1 m2 m3 · · · mk]

×




g1, k+1 · · · g1, n
g2, k+1 · · · g2, n
g3, k+1 · · · g3, n

...
. . .

...

gk, k+1 · · · gk, n

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




︸ ︷︷ ︸
P

︸ ︷︷ ︸
Ik

(8b)

where P is the parity portion of G, and Ik is a k-by-k
identity submatrix (ones on the main diagonal, and
zeros elsewhere).

Vector Spaces and Subspaces
For now, we restrict our discussion to binary codes and
n-bit sequences called n-tuples. The space of all binary
n-tuples is called a vector space Vn over the GF(2).
This field is characterized by two operations, modulo-2
addition and scalar multiplication [2], [3]. Within the
space Vn , one can form as many as 2n distinct
sequences or n-tuples. A block of k message bits,
referred to as a k-tuple, can form any one of 2k possible
message sequences. The encoding process involves a
one-to-one assignment, whereby the 2k message k-
tuples are uniquely mapped into a new set of 2k code
words chosen from the set of 2n n-tuples. When the
code is in systematic form, one can view the procedure
as the addition of n – k parity bits (or redundant bits,
since they carry no new information) to each k-bit mes-
sage sequence. Even though such a code word is com-
prised of k data bits and n – k parity bits, we typically
refer to each element in a binary code word as a code
bit. For linear codes, the mapping transformation is, of
course, linear. Within a block, the ratio of data bits to
total code bits, denoted k/n, is called the code rate; it
represents the portion of a code bit that constitutes
information. For example, in a rate 1/2 code, each
code bit carries 1/2 b of information. Note that when
the coding tradeoff involves expanded bandwidth to
achieve improved performance, then use of a rate 1/2
code will require twice as much transmission band-
width as that of an uncoded system. Similarly, the use
of a rate 3/4 code will require a bandwidth expansion
by the factor 4/3.

To construct a valid linear block code, the 2k n-
tuples, making up the (n, k) code, must be confined to
a subspace of the Vn space; all the code words of the
system must satisfy this constraint. A subset of n-tuple
vectors can be viewed as a subspace of Vn if the follow-
ing two conditions are met: 1) the all-zeros vector is
one of the vectors in the subset, and 2) the sum of any
two vectors in the subset is also a member of the subset
(known as the closure property). Note that condition 2
requires condition 1, because any vector added to itself
modulo-2 is equal to an all-zeros vector. Figure 2 illus-
trates the framework of a linear block code using a sim-
ple pictorial. The entire vector space Vn comprises 2n

n-tuples (shown as points). Within this space there
exists a subset of 2k n-tuples (shown as darker points)
comprising a subspace or code system. This subset of
2k points, “sprinkled” among the more numerous 2n

points, represent the code words {U} assigned to mes-
sages. At the receiver, a corrupted version r of a trans-
mitted U may be detected. If the corrupted vector r is
not too unlike (not too distant from) the transmitted
U, the decoder can decode the message correctly. A
correctable error is one that takes the transmitted code
word outside the subspace, but doesn’t take it “too far
away.” A noncorrectable error is one that takes the
transmitted code word to the vicinity of another code

IEEE SIGNAL PROCESSING MAGAZINEJULY 2004 17



word. A nondetectable error is one that takes the trans-
mitted code word to exactly another code word. To
have a sense of what is “too far away” we next examine
the concept of distance between vectors. 

Weight and Distance Properties
The Hamming weight w(U) of a code word U is
defined as the number of nonzero elements in U. For a
binary vector (or a nonbinary vector with field elements
represented in binary form), this is equivalent to the
number of ones in the vector. For example, if U =
1 0 0 1 0 1 1 0 1, then w(U) = 5. The Hamming dis-
tance d(U, V) between two binary code words U and
V is defined as the number of bit positions in which
they differ. For example

if U = 1 0 0 1 0 1 1 0 1
and V = 0 1 1 1 1 0 1 0 0

then d(U, V) = 6. (9)

By the properties of subspaces, we note that the sum of
two code words U + V is another code word W in the
subspace, with binary ones in those positions in which
the code words U and V differ. For example

W = U + V = 1 1 1 0 1 1 0 0 1. (10)

Thus, we observe that the Hamming distance between
two code words is equal to the Hamming weight of the
summed vectors: that is, d(U, V) = w(U + V). Also,
note that the Hamming weight of a code word is equal
to its Hamming distance from the all-zeros vector.

Decoding Task
The decoding task can be stated as follows: Having
received the vector r, find the best estimate of the

particular code word Ui that was transmitted. The
optimal decoder strategy is to minimize the decoder
error probability, which is the same as maximizing
the probability P (Û = Ui |r). If all code words are
equally likely and the channel is memoryless, this is
equivalent to maximizing P (r|Ui ), the conditional
probability density function (pdf) of r, expressed as

p(r|Ui ) = max p(r|Uj )

over all Uj (11)

where the pdf, conditioned on having sent Ui , is called
the likelihood of Ui . Equation (11), known as the max-
imum likelihood (ML) criterion [1], can be used for
finding the “most likely” Ui that was transmitted. For
algorithms using Hamming distances, the likelihood of
Ui with respect to r is inversely proportional to the dis-
tance between r and Ui , denoted d(r, Ui ). Therefore,
we can express the decoder decision rule as: Decide in
favor of Ui if

d(r, Ui ) = min d(r, Uj )

over all Uj . (12)

In the context of Figure 2, (12) means that for any n-
tuple r, received in the Vn space of 2n possible values,
the decoder shall choose the closest code word (heavy
black point) as the best estimate Û of the transmitted
code word.

Error-Detecting 
and Error-Correcting Capability
Consider the set of distances between all pairs of code
words in the space Vn. The smallest member of the set
is called the minimum distance of the code and is
denoted dmin. To find dmin, we need not search the set
of code words in a pairwise fashion. Because of the clo-
sure property, we need only find the nonzero code
word having the minimum weight. The minimum dis-
tance, like the weakest link in a chain, gives us a meas-
ure of the code’s capability (indicates the smallest
number of channel errors that can lead to decoding
errors). Figure 3 illustrates the distance between two
code words U and V using a number line calibrated in
Hamming distance, where each black dot represents a
corrupted code word. In this example, let the distance
d(U, V) be the minimum distance dmin = 5. Figure 3(a)
illustrates the reception of a vector r1, which is distance
1 from U and distance 4 from V. An error-correcting
decoder, following the ML strategy, will select U upon
receiving r1. If r1 had been the result of a 1-b corrup-
tion to the transmitted code word U, the decoder has
successfully corrected the error. But if r1 had been the
result of a 4-b corruption to the transmitted code word
V, the result is a decoding error. Similarly a double
error in transmission of U might result in the received
vector r2, which is distance 2 from U and distance 3

IEEE SIGNAL PROCESSING MAGAZINE18 JULY 2004

▲ 2. Linear block code framework.

2n n-Tuples Constitute
the Entire Space Vn

2k n-Tuples Constitute
the Subspace of Code Words



from V, as shown in Figure 3(b).
Here too, the decoder will select U
upon receiving r2. A triple error in
transmission of U might result in a
received vector r3 that is distance 3
from U and distance 2 from V, as
shown in Figure 3(c). Here the
decoder will select V upon receiving
r3 and, given that U was transmit-
ted, will have made a decoding error.
From Figure 3, one can see that if
the task is error detection (and not
correction), then as many as 4-b
errors can be detected. But, if the
task is error-correction, the decision to choose U if r falls
in region 1, and V if r falls in region 2, illustrates that this
code (with dmin = 5) can correct as many as 2-b errors.
We can generalize a linear block code’s error-detection
capability ε and error-correction capability t as [1]

ε = dmin − 1 (13a)

t =
⌊

dmin − 1
2

⌋
(13b)

where the notation �x�, called the floor of x, means the
largest integer not to exceed x (in other words, round
down if not an integer).

A (6, 3) Linear Block Code Example
Table 2 describes a code word-to-message assignment
for a (6, 3) code, where the rightmost bit represents
the earliest (and most-significant) bit. For each code
word, the rightmost k = 3 bits represent the message
(hence, the code is in systematic form). Since k = 3,
there are 2k = 23 = 8 message vectors, and therefore
there are eight code words. Since n = 6, then within
the vector space Vn = V6 there are a total of 2n = 26 =
64 6-tuples.

It is easy to verify that the eight code words shown
in Table 2 form a subspace of V6 (the all-zeros vector is
one of the code words, and the sum of any two code
words is also a code word). Note that for a particular
(n, k) code, a unique assignment does not exist; how-
ever, neither is there complete freedom of choice.

A Generator Matrix for the (6, 3) Code
For short codes, the message-to-code-word mapping in
Table 2 can be accomplished via a lookup table, but if k is
large, such an implementation would require a prohibitive
amount of memory. Fortunately, by using a generator
matrix G, described in (7) and (8), it is possible to reduce
complexity by generating the required code words as
needed instead of storing them. Since the set of code
words is a k-dimensional subspace of the n-dimensional
vector space, it is always possible to find a set of n-tuples
(row-vectors of the matrix G), fewer than 2k that can gen-
erate all the 2k code words of the subspace. The generat-

ing set of vectors is said to span the
subspace. The smallest linearly inde-
pendent set that spans the subspace is
called a basis of the subspace, and the
number of vectors in this basis set is
the dimension of the subspace. Any
basis set of k linearly independent n-
tuples V1, V2, . . . , Vk (that spans the
subspace) can be used to form a gen-
erator matrix G. This matrix can then
be used to generate the required code
words, since each code word is a linear
combination of V1, V2, . . . , Vk .
That is, each code word U within the

set of 2k code words can be described by 

U = m1V1 + m2V2 + · · · + mkVk (14)

where each mi = (1 or 0) is a message bit and the
index i = 1, . . . , k represents its position. In general,
we describe this code generation in terms of multiply-
ing a message vector m by a generator matrix G. For
the (6, 3) code introduced earlier, we can fashion a
generator matrix G in systematic form, as

G =
[ V1

V2
V3

]
=


 1 1 0

0 1 1
1 0 1︸ ︷︷ ︸

P

1 0 0
0 1 0
0 0 1︸ ︷︷ ︸




Ik

(15)

IEEE SIGNAL PROCESSING MAGAZINEJULY 2004 19

▲ 3. Error detection and correction capability.

Decision
Line

Region 1 Region 2

U Vr1

(a)

U Vr2

(b)

U Vr3

(c)

Message vector Code Word
000 000000
100 110100
010 011010
110 101110
001 101001
101 011101
011 110011
111 000111

Table 2. Assignment of messages to 
code words for the (6, 3) code.



where P and Ik represent the parity and identity sub-
matrices, respectively, and V1, V2, and V3 are three lin-
early independent vectors (a subset of the eight code
vectors) that can generate all the code words, made up
of the weights {gi, j } as described in (8). Note also that
the sum of any two generating vectors does not yield
any of the other generating vectors since linear inde-
pendence is, in effect, the opposite of closure. The gen-
erator matrix G completely defines the code and
represents a compact way of describing a block code. If
the encoding operation utilizes storage, then the
encoder only needs to store the k rows of G instead of
all 2k code words of the code. For systematic codes, the
encoder only stores the P submatrix; it doesn’t need to
store the identity portion of G.

Visualization of a 6-Tuple Space
Figure 4 is a visualization of the eight code words pre-
sented in the (6, 3) example of Table 2. Since k = 3
and the code words are generated from linear combina-
tions of the k = 3 independent 6-tuples in (14), the
code words form a three-dimensional subspace. Figure
4 shows such a subspace completely occupied by the
eight code words (large black circles); the coordinates
of the subspace are purposely drawn to emphasize their
nonorthogonality. Figure 4 is an attempt to illustrate
the entire space, containing 64 6-tuples, even though
there is no precise way to draw or construct such a
model. Spherical layers or shells are shown around each
code word. Each of the nonintersecting inner layers is a
Hamming distance of one from its associated code
word; each outer layer is a Hamming distance of two
from its code word. Larger distances are not useful in
this example. The two shells surrounding each code

word are occupied by corrupted code words. There are
six such points on each inner sphere because, for a (6,
3) code word, there are six ways to make a 1-b error.
Thus there are a total of 48 such 6-tuples on the inner
spheres (eight code words × six ways for each to make
an error). These 48 6-tuples are distinct in the sense
that each one can best be associated with only one code
word, and therefore for the case of a single bit being
received in error, the code word can be corrected.
Later, we show that there is also one 2-b error pattern
that can be corrected for this (6, 3) code. There is a
total of 

( 6
2

) = 15 different 2-b error patterns that can
be inflicted on each code word, but only one of them,
in our example the 010001 error pattern, can be cor-
rected. The other 14 2-b error patterns yield vectors
that cannot be uniquely identified with just one code
word. In the figure, all correctable (56) 1- and 2-b
error-corrupted code words are shown as small black
circles. Corrupted code words that cannot be corrected
are shown as small clear circles. Figure 4 is useful for
understanding desirable goals for a code system. We
would like for the space to be filled with as many code
words as possible (yielding efficient utilization of the
added redundancy), and we would also like these code
words to be as far away from one another as possible
(yielding reduced vulnerability to noise). Obviously,
these goals conflict.

Error Detection 
and the Parity-Check Matrix
At the decoder, a method of verifying the correctness of
a received vector is needed. Let us define a matrix H,
called the parity-check matrix, that will help us decode
the received vectors. For each (k × n) generator matrix
G, one can construct an (n − k) × n matrix H, such
that the rows of G are orthogonal to the rows of H.
Another way to express this orthogonality is to say that
GHT = 0, where HT is the transpose of H, and 0 is a
k × (n − k) all-zeros matrix [1]. HT is an n × (n − k)

matrix (whose rows are the columns of H). To fulfill the
orthogonality requirements of a systematic code, the H
matrix can be written as H = [In−k|PT ], where In−k rep-
resents an (n − k) × (n − k) identity submatrix and P
represents the parity submatrix defined in (8). Since by
this definition of H, we see that GHT = 0, and since
each U is a linear combination of the rows of G, then
any vector r is a code word generated by the matrix G, if
and only if

rHT = 0. (16)

Equation (16) is the basis for verifying whether a
received vector r is a valid code word.

Towards Error Correction: 
Syndrome Testing
In (1), the received vector r was expressed as the addi-
tion of a transmitted code word U and an error pattern

IEEE SIGNAL PROCESSING MAGAZINE20 JULY 2004

▲ 4. Visualization of eight code words in a 6-tuple space.

101001

011101

000000

110011

011010

101110

000111

110100



e. Following (16), we define a syndrome vector S of r as

S = rHT . (17)

The syndrome (like the symptom of an ailment) is the
result of a parity check (like a diagnostic test) per-
formed on r to determine whether r is a member of the
code word set. If, in fact, r is a valid code word, then
from (16), its syndrome S must be an all-zeros vector;
in other words, r = U must have been generated by
the matrix G. If r contains detectable errors, its syn-
drome will have some nonzero value. If the detected
errors are correctable, the syndrome will have a nonze-
ro value that can uniquely earmark the particular error
pattern. A forward error-correcting decoder will then
take action to correct the errors.

The Standard Array and Error Correction 
The syndrome test gives us the ability to detect errors
and to correct some of them. Let us arrange the 2n

n-tuples that represent possible received vectors in an
array, called the standard array. This array can be
thought of as an organizational tool or a filing cabinet
that contains all of the possible vectors in the space,
nothing missing, and nothing replicated. The first row
contains the set of all the 2k code words
U1, U2, . . . , U2k starting with the all-zeros code word
designated U1. In this array, each row, called a coset,
consists of an error pattern in the leftmost position,
called a coset leader, followed by corrupted code words
(corrupted by that error pattern). Thus the first column,
made up of coset leaders, displays all of the correctable
error patterns. The structure of the standard array for an
(n, k) code, is 

U1 U2 · · · Ui · · · U2k

e2 U2 + e2 · · · Ui + e2 · · · U2k + e2
e3 U2 + e3 · · · Ui + e3 · · · U2k + e3
...

...
...

...

ej U2 + ej · · · Ui + ej · · · U2k + ej
...

...
...

...

e2n−k U2 + e2n−k · · · Ui + e2n−k · · · U2k + e2n−k

(18)

Note that code word U1 plays two roles. It is one of
the code words (the all-zeros code word), as well as the
error pattern e1, that is the pattern that introduces no
errors so that r = U + e1 = U. Since the array contains
all the 2n n-tuples in the space, each n-tuple appearing
only once, and each coset or row contains 2k n-tuples,
we can compute the number of rows in the array by
dividing the total number of entries by the number of
columns. Thus, in any standard array, there are
2n/2k = 2n−k cosets. At first glance, the benefits of this
tool seem limited to small block codes, because for
code lengths beyond n = 20 there are millions of n-
tuples in Vn . Even for large codes, however, the stan-

dard array concept allows visualization of important
performance issues, such as bounds on error-correction
capability, as well as possible tradeoffs between error
correction and detection. 

In the sections that follow, we show how the decod-
ing algorithm replaces a received corrupted code word
r = U + e with an estimate Û of the valid code word
U. If code word Ui is transmitted over a noisy channel,
and the corrupting error pattern is a coset leader, then
the received vector will be decoded correctly into the
transmitted code word Ui . If the error pattern is not a
coset leader, an erroneous decoding will result [4], [5].

The Syndrome of a Coset
The name coset is short for “a set of numbers having a
common feature.” What do the members of a coset
have in common? Each member has the same syn-
drome. We confirm this as follows: If ej is the coset
leader or error pattern of the jth coset, then Ui + ej is
an n-tuple in this coset. From (17), the syndrome of
this n-tuple can be written as

S = rHT = (Ui + ej )HT = Ui HT + ej HT . (19)

Since Ui is a valid transmitted code word, then
Ui HT = 0, since the parity check matrix H was con-
structed with this feature in mind. We can therefore
express (19) as

S = rHT = ej HT . (20)

Thus, the syndrome test, performed on either a cor-
rupted code vector or on the error pattern that caused
it, yields the same syndrome. Equation (20) establishes
that the syndrome is in fact only responding to the error
pattern, which was similarly shown in (5) for a simple
parity code. An important property of linear block
codes, fundamental to the decoding process, is that the
mapping between correctable error patterns and syn-
dromes is one to one. The syndrome for each coset is
different from that of any other coset in the code; it is
the syndrome that is used to estimate the error pattern,
which then allows for the errors to be corrected.

Locating the Error Pattern
Returning to the (6, 3) code example, we arrange the

IEEE SIGNAL PROCESSING MAGAZINEJULY 2004 21

The process of decoding a
corrupted code word by first
detecting and then correcting
an error can be compared to a
familiar medical analogy.



26 = 64 6-tuples in a standard array as shown in Figure
5. The valid code words are the eight vectors in the first
row, and the correctable error patterns are the seven
nonzero coset leaders in the first
column. Note that all 1-b error pat-
terns are correctable. Also note that
after exhausting all 1-b error pat-
terns, there remains some error-cor-
recting capability since we have not
yet accounted for all 64 6-tuples.
There is still one unassigned coset
leader; therefore, there remains the
capability of correcting one addi-
tional error pattern. We have the
flexibility of choosing this error pat-
tern to be any of the n-tuples in the
remaining coset. In Figure 5, this
final correctable error pattern was
chosen, somewhat arbitrarily, to be the 2-b error pat-
tern 010001. The error-correcting task performed by
the decoder can be implemented to yield correct mes-
sages if, and only if, the error pattern caused by the
channel is one of the coset leaders. For the (6, 3) code
example, we now use (20) to determine the syndrome
(symptom) corresponding to each correctable error
pattern (ailment), by computing ej HT for each coset
leader, as follows:

S = ej




1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 0 1




. (21)

The results are listed in Table 3. Since each syndrome
in the table has a one-to-one relationship with the list-
ed error patterns, solving for a syndrome earmarks the
particular error pattern corresponding to that syn-
drome [6].

Error Correction Decoding
Given a received vector r at the input of the decoder in
Figure 1, we summarize the procedure for deciding on

Û and finally on m̂ as follows: 1) calculate the syn-
drome of r using S = rHT and 2) use Table 3 to
locate the coset leader (error pattern) ej , whose syn-

drome equals rHT . This error pat-
tern is assumed to be the
corruption caused by the channel
and will be our estimate ê of the
error (3) An estimate of the code
word Û is identified as Û = r + ê.
We can say that the decoder
obtains an estimate of the transmit-
ted code word by removing an esti-
mate of the error ê (in modulo-2
arithmetic, the act of removal is
effected via addition). This step can
be written as

Û = r + ê = (U + e) + ê = U + (
e + ê

)
. (22)

If the estimated error pattern is the same as the actual
error pattern, that is, if ê = e, then the estimate Û is
equal to the transmitted code word U. However, if the
error estimate is incorrect, the decoder will choose a
code word that was not transmitted, resulting in a
decoding error.

As an example from the (6, 3) code, assume that
code word U = 1 0 1 1 1 0 corresponding to m = 1 1 0
(see Table 2) is transmitted and that the vector
r = 0 0 1 1 1 0 is received. From (17) we compute the
syndrome as

S = [0 0 1 1 1 0] HT = 1 0 0. (23)

From Table 3, we can verify that the error pattern is
e = 1 0 0 0 0 0. Then, using (22), the corrected vector
is estimated as

Û = r + ê = 0 0 1 1 1 0 + 1 0 0 0 0 0 = 1 0 1 1 1 0. (24)

Since in this example, the estimated error pattern is the
actual error pattern, the error correction procedure
yields Û = U, which means that the output m̂ will cor-
respond to the actual message 1 1 0. Note that the

process of decoding a corrupted code
word by first detecting and then cor-
recting an error can be compared to a
familiar medical analogy. A patient r
(potentially corrupted code word)
enters a medical facility (decoder). The
examining physician performs a diag-
nostic test (multiplies r by HT ) to find
a symptom (syndrome). Imagine that
the physician finds characteristic spots
on the patient’s X rays. An experienced
physician would immediately recognize
the correspondence between the symp-

IEEE SIGNAL PROCESSING MAGAZINE22 JULY 2004

▲ 5. Example of a standard array for a (6, 3) code.

Error pattern e Syndrome S
000000 0 0 0
000001 1 0 1
000010 0 1 l
000100 1 1 0
001000 0 0 1
010000 0 1 0
100000 1 0 0
010001 1 1 1

Table 3. Syndrome lookup table. 



tom and the ailment, for example tuberculosis. A
novice physician might have to refer to a medical hand-
book (Table 3) to associate the symptom (syndrome)
with the ailment (error pattern). The final step is to
provide medication ̂e. If ê is the proper medication (if
ê = e), then the ailment is removed, as seen in (22). In
the context of binary codes and the medical analogy,
(22) and (24) reveal an unusual type of medicine prac-
ticed here. The patient is cured by reapplying the origi-
nal ailment, a process that works because in the binary
field 1 + 1 = 0.

Decoder Implementation
When the code is short as in the case of the (6, 3) code,
the decoder can be implemented with simple circuitry.
The steps that such a circuit must take are: 1) calculate
the syndrome, 2) locate the error pattern corresponding
to that syndrome, and 3) modulo-2 add the estimated
error pattern to the received vector to yield an estimate
of the corrected vector. Consider the circuit in Figure 6,
made up of exclusive-OR gates and AND gates that can
accomplish these decoder steps for any single-error pat-
tern in the (6, 3) code. From Table 3 and (17), we can
write an expression for the syndrome bits s1, s2, s3 in
terms of the received code word bits r1, . . . , r6 as

S = rHT (25a)

S = [s1 s2 s3] = [r1 r2 r3 r4 r5 r6]




1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 0 1




(25b)

and s1 = r1 + r4 + r6

s2 = r2 + r4 + r5

s3 = r3 + r5 + r6. (26)

We use these syndrome expressions for wiring up the
circuit in Figure 6. The exclusive-OR gate provides the
same operation as modulo-2 arithmetic and hence uses
the same symbol. A small circle at the termination of
any line entering the AND gate indicates the logic
complement of the signal.

The corrupted signal r enters the decoder at two
places simultaneously. At the upper part of the circuit,
the syndrome S is computed, and at the lower part
that syndrome is transformed to its corresponding
error pattern e. The error is removed by adding it back

IEEE SIGNAL PROCESSING MAGAZINEJULY 2004 23

▲ 6. Implementation of the (6, 3) decoder.

Exclusive-OR
Gates

AND gates

e1 e2 e3 e4 e5 e6

r1 r2 r3 r4 r5 r6

u1 u2 u3 u4 u5 u6

r1 r2 r3 r4 r5 r6

s1 s2 s3

Received
Vector r

Received
Vector r

Corrected
Output U

Syndrome S

Error
Pattern e



to the received vector yielding the corrected code
word U. Note that, for tutorial reasons, Figure 6 has
been drawn to emphasize the algebraic decoding steps,
calculation of syndrome, error pattern, and corrected
output. For real circuitry, the decoder would not need
to deliver the entire code word; its output would con-
sist of the message bits only. Hence, the Figure 6 cir-
cuitry becomes simplified by eliminating the gates that
are shown with shading. For longer codes such an
implementation is very complex, and the preferred
decoding techniques conserve circuitry by using a
sequential approach instead of this parallel method
[2]. It is important to emphasize that Figure 6 has
been configured to detect and correct only single-error
patterns for the (6, 3) code. Error control for a dou-
ble-error pattern would require additional circuitry.

Cyclic Codes
Cyclic codes are a subset of linear block codes based on
an algebraic structure that leads to strong error correct-
ing capabilities and to computationally efficient encod-
ing and decoding algorithms. Important classes of
cyclic codes are the binary Bose, Chaudhuri, and
Hocquenghem (BCH) codes and the nonbinary Reed-
Solomon (R-S) codes. The cyclic nature of such codes
can be stated as follows: If U is a code word (which is
made up of n elements) expressed as

U = u0, u1, u2, . . . , un−1 (27)

then a single cyclic (or end around) shift of the code
elements, written as

U(1) = un−1, u0, u1, . . . , un−2 (28)

is also a code word. A rich set of properties and struc-
ture can be extracted from this simple relationship. The
cyclic code properties are best understood by mapping
data sequences and code words to polynomials in the
indeterminate X, in a manner similar to the Z-trans-
form (or delay-transform) [7] for sampled data
sequences. For this article, the indexing scheme that
was used for elements and vectors (data, code bits, pari-
ty, and errors) up until this section, started with the
index 1, as seen in (6)–(8). Counting in this natural
way generally facilitates the intuitive understanding of
error-correction coding. When treating the subject of
cyclic codes, where polynomials are used to represent
sequences of elements, a different indexing scheme is
preferred. Whenever polynomials are used, we typically
start the counting of elements with the index 0, as seen
in (27). With this scheme, a code word of the form
shown in (27) can be more naturally mapped to its cor-
responding polynomial as

U(X ) = u0 + u1X + u2X 2 + · · · + un−1X n−1. (29)

The coefficients of the polynomial are the correspon-
ding elements of the sequence. In this mapping, the
indeterminate X uses positive-integer exponents (as
opposed to the negative integers used in the Z-trans-
form). In this notation, all code words can be repre-
sented by polynomials of degree n − 1 or less, with
coefficients drawn from the binary field (the degree
indicates the value of the highest-order exponent). For
nonbinary codes, the definition must include nonbina-
ry coefficients. The polynomial corresponding to (28)
is written as 

U(1)(X ) = un−1 +u0X +u1X 2 +· · ·+un−2X n−1. (30)

We note that the cyclically shifted form shown in (30)
can be obtained by using X as a delay operator followed
by a set of trivial manipulations. We first form the poly-
nomial XU(X) to obtain a linear shift of the elements
and then add the terms un−1 + un−1 . In the binary
field, the added terms sum to zero so this addition does
not alter the shifted polynomial. We write this as

X U(X ) = u0X + u1X 2 + · · · + un−2X n−1 + un−1X n

= un−1 + u0X + u1X 2 + · · · + un−2X n−1

+ un−1X n + un−1

= un−1 + u0X + u1X 2 + · · · + un−2X n−1

+ un−1(X n + 1). (31)

We now point out that we can form the cyclically
shifted polynomial in (30) from the linearly shifted
version in (31), as the remainder of X U(X) modulo-
(X n + 1). We write this as

U(1)(X ) = X U(X )modulo-(X n + 1)

= un−1 + u0X + u1X 2 + · · · + un−2 X n−1.

(32)

Note that the modulo-(X n + 1) expression is some-
times seen in the literature as modulo-(X n − 1). In the
binary field, either one is identical because +1 = −1.
The expression in (32), often called the residue reduc-
tion operation, consists of dividing the right side of
(31) by X n + 1, then discarding the quotient polyno-
mial and retaining the remainder polynomial. By
repeated application of the cyclic shift using this residue
reduction operation, we can similarly obtain the poly-
nomial corresponding to all the cyclic shifts of any code
word in the subspace.

The Generator Polynomial
In an (n, k) cyclic code there is one code word polyno-
mial g(X ) having minimum degree equal to n − k .
Without proof, we state that g(X ) must be a factor of
the polynomial X n + 1 [2], [8]. Because g(X ) can be

IEEE SIGNAL PROCESSING MAGAZINE24 JULY 2004



used to generate all code words in the code subspace
(in a manner similar to the operation of the generator
matrix G described earlier), this polynomial is called
the generator polynomial. The form of g(X ) is

g(X ) = 1 + g1X + g2X 2 + · · ·
+ gn−k−1 X n−k−1 +X n−k . (33)

For this polynomial to be of minimum degree, the
coefficient of X 0 and X n−k must each be one while the
coefficient of any term having a power higher than
X n−k must be zero. These zero-valued coefficients of
the higher-powered terms represent the zeros in a code
sequence needed to ensure that each code word is
made up of exactly n elements. 

There is a one-to-one correspondence between
the basis vectors comprising a generator matrix G
and the polynomials formed by cyclically shifted ver-
sions of g(X ). Here is how we illustrate the corre-
spondence. By the properties of cyclic codes, since
g(X ) is a proper code word polynomial, then any
cyclic shift of g(X) is also a code word. In this dis-
cussion, we limit the number of shifts to k − 1, the
value that brings the degree of the shifted g(X ) up
to n − 1. Each cyclic shift of g(X ) is performed by
first multiplying g(X ) by X (linear shift) and then
end-around shifting the zero coefficient of the X n

term so that it becomes the new coefficient of the
X 0 term. Consequently we can say that for these
k − 1 shifts, the cyclic shift formed by the residue
reduction in (32) yields the same result as the linear
shift indicated as

X i g(X ) modulo-(X n + 1) = X i g(X )

where i = 0, 1, 2, . . . , k − 1. (34)

These i-shifted versions of the generator polynomial
g(X ) in (34) constitute a basis set of the code in the
same manner as the row space of the generator matrix
G provides a basis set in (7). In a linear code, the
weighted sum of proper code words yields another
code word. Hence, since any X i g(X ) of the form cited
in (34), is a proper code word polynomial, then we can
represent it in terms of a message sequence as

U(X ) = (m0 + m1X + m2X 2 + · · · + mk−1X k−1) g(X )

= m0g(X ) + m1X g(X ) + m2X 2g(X )

+ · · · + mk−1X k−1g(X )

= m(X ) g(X ). (35)

Note the similarity between the formation of a code
word polynomial using the generator polynomial g(X )

in (35) and the formation of a code word using the
generator matrix G in (7). Since for a binary code,
there are 2k possible polynomials described by (35),
and knowing that an (n, k) code contains precisely 2k

code words, we can conclude that (35) describes all
proper code word polynomials in the cyclic code. That
is, every code word polynomial can be formed as a
product of a data polynomial m(X ) and the generator
polynomial g(X ). One might recall from knowledge of
linear systems, that the product of polynomials is equiv-
alent to the convolution of their corresponding coeffi-
cients. Thus a tapped delay line convolver, with weights
equal to the coefficients of the generator polynomial,
can form the code words of a cyclic code [9]. 

Systematic Cyclic Code
The generator polynomial can also be used to form a
systematic form of the code word polynomial. From
the expression derived in (35), we know that a proper
code word is a multiple of g(X). Thus, dividing a prop-
er code word by g(X ) yields a quotient (message poly-
nomial) and a zero remainder. In general, if we divide
any polynomial by g(X ), the remainder must be a poly-
nomial of degree less than the divisor g(X ); that is, it
must be less than degree (n − k). We can encode a data
polynomial m(X ) into a systematic code word polyno-
mial by first multiplying m(X ) by X n−k (representing
n − k shifts) and then performing polynomial division,
written as

X n−k m(X )

g(X )
= q(X ) + p(X )

g(X )
(36)

where q(X) and p(X) are the quotient and remainder
polynomials, respectively. When each side of this
expression is multiplied by the divisor polynomial we
obtain an equivalent form known as the Euclidian
division algorithm, written as 

X n−km(X ) = q(X )g(X ) + p(X ). (37)

We next add the remainder polynomial p(X) to both sides
of (37), yielding U(X) in systematic form, as follows:

p(X ) +X n−k m(X ) = q(X ) g(X ) + p(X ) + p(X )

= q(X ) g(X ) = U(X ). (38)

Since the p(X) + p(X) sums to zero, then U(X) in
(38) is seen to be a multiple of g(X); hence U(X) is a
proper code word polynomial. We note that the poly-
nomial p(X) contains powers of X from zero through
n − k − 1 (thus there are n − k coefficients), while the
shifted polynomial X n−k m(X ) contains the same coef-
ficients as m(X), but positioned at powers of X from
n − k through n − 1. When we add the prefix (parity)
polynomial p(X) to the shifted message polynomial
X n−k m(X ), there is no overlap in the powers of X. We
can think of the k coefficients of the polynomial
X n−k m(X ) as the message that has been right shifted
n − k positions to make room for parity bits, as the
n − k coefficients of the polynomial p(X).

IEEE SIGNAL PROCESSING MAGAZINEJULY 2004 25



Encoding with a Linear Feedback 
Shift Register
The linear feedback shift register (LFSR) shown in
Figure 7 performs the division operation as well as the
(n − k)-bit shift presented in (36) and (37). This LFSR
encoding process operates in the following manner. For
the first k shifts of the input data sequence, the feedback
path in the LFSR is enabled (switch 1 is closed); also,
switch 2 is down. During this interval, the LFSR divides
by g(X), while the output switch simultaneously passes
the input data sequence to the output port. At the end
of the kth input shift, the register contains the parity
bits of the code word polynomial. For the next n − k
shifts, the feedback path is disabled (switch 1 is opened)
during which time the n − k parity bits from the regis-
ter are transferred to the output port through switch 2,
now moved to the up position. Note that the generator
polynomial g(X ) (analogous to the generator matrix G)
completely defines the cyclic code. g(X) is the mini-
mum degree code word polynomial and thus represents
the most compact description of a cyclic code.

One may recognize Figure 7 as the dual form of the
recursive filter structure used in standard digital signal
processing applications. The traditional recursive filter
forms a feedback term as a weighted sum of states

stored in a tapped delay line. This dual form is more
desirable for high-speed implementation because of the
simultaneous operation of the distributed summations
between the registers, as opposed to the adder tree
required in the tapped-delay feedback path.

Figure 8 demonstrates the use of an LFSR to encode
the message m = 1 0 1 1 for a (7, 4) cyclic code (in sys-
tematic form) using the generator polynomial
g(X ) = 1 +X +X 3 . The output code word is
U = 1 0 0 1 0 1 1, where the rightmost four bits repre-
sent the message. Table 4 tabulates the state of the
LFSR, the input and output queues, and the switch set-
tings, for seven successive operating cycles.

One should note that the wiring of the LFSR in
Figures 7 and 8 correspond to the coefficients of the
generator polynomial g(X), where a coefficient 1 or 0
corresponds to the presence or absence of a wire,
respectively. Sometimes a schematic such as the one in
Figure 8 is used to specify a particular cyclic code,
though a more compact way is to represent the code
with its generator polynomial.

Error Detection with 
an (nnn − kkk) Stage LFSR
A code word that has been altered by AWGN can be
described as a received polynomial r(X), which is the
sum of the transmitted polynomial U(X) and an error
polynomial e(X), written as

r(X ) = U(X ) + e(X ). (39)

The decoder must perform an error-detection test on
the received polynomial r(X) to determine if it is a
proper code word. This proceeds as follows: First, the
decoder forms a syndrome polynomial S(X) as the
remainder of r(X) modulo-g(X). Note that S(X) serves
the same function as the syndrome vector S in (19) and
(20). Since the remainder of the transmitted polynomi-
al U(X) modulo-g(X) is zero, then S(X) represents a
test on the error polynomial e(X). In the context of the

IEEE SIGNAL PROCESSING MAGAZINE26 JULY 2004

▲ 7. Linear feedback (n– k stage) shift register.

g1 g2 g3 gn-k-1

Switch 1

Input     m0,m1,m2,...,mk–2,mk–1

Up at Shift k

Up at Shift k
Switch 2

u0,u1,u2,...,un–2,un–1

Output

Shift Input Register 
Number S1 S2 Queue Contents Feedback Output
0 D D 1 0 1 1 0 0 0 0 1
1 D D 1 0 1 1 1 0 1 1
2 D D 1 0 1 0 1 1 0
3 D D 1 1 0 0 1 1
4 U U — 1 0 0 — 0
5 U U — 0 1 0 — 0
6 U U — 0 0 1 — 1

Table 4. Description of LFSR 
encoding of the message (1 0 1 1).

S1 = Switch 1, S2 = Switch 2, U = Up, D = Down



medical analogy proposed earlier, this test is the cyclic-
code “diagnostic procedure” for finding the symptom
of an error. We represent this procedure as

S(X ) = r(X ) modulo-[g(X )]
= U(X )modulo-[g(X )] + e(X ) modulo-[g(X )]
= e(X ) modulo-[g(X )]. (40)

Whenever a channel-induced error results in a
received polynomial r(X) being a noncode word, then
the syndrome polynomial S(X) will be nonzero and its
nonzero Hamming weight is an indication of an error.
The same LFSR that formed the parity sequence at the
encoder can be used to generate the syndrome polyno-
mial S(X) at the decoder. The n bits of the received
r(X) are processed by such an n − k stage LFSR (simi-
lar to the one in Figure 8), and after the n-shift opera-
tions, the contents of the register will be the
coefficients of S(X). The syndrome along with the
structure (embedded in the generator polynomial) can
be used to locate the error pattern. 

Hamming Codes and BCH Codes
Hamming codes are single-error correcting codes that
exist for the (n, k, 1) set described by

(n, k, 1) = (2m − 1, 2m − 1 − m, 1) (41)

where m is the number of parity bits in the code. The
encoder and decoder for a Hamming code can be
implemented with an m-stage LFSR where m is the
degree of the generator polynomial (a factor of the
polynomial X n + 1) and n = 2m − 1.

A generalization of the Hamming codes leads to the
BCH codes [10]–[12], which represent a class of cyclic
codes that offer a large range of block length, code
rates, and error correcting strength. A t-error correct-
ing BCH code exists for the (n, k, t) set described
approximately by

(n, k, t ) ≈ (2m − 1, 2m − 1 − mt , t ) (42)

where the degree of the generating polynomial as well
as number of parity bits in the code is less than or equal
to mt. We use (42) as an upper bound for the number
of parity bits required to correct t binary errors in a
code word polynomial of length 2m − 1 bits. Since the
BCH code is a cyclic code, the encoding process is per-
formed by a standard LFSR in the same manner that
we form any cyclic code.

The operational difference for a BCH code is in the
decoding segment performed at the receiver. BCH
decoders, except for the simplest codes, do not use par-
ity check matrices and syndrome tables. These earlier-
described techniques are only implemented for short
simple codes. For each received code word, typical
BCH decoders perform a sequence of algebraic opera-
tions that yield the number of errors and the error
locations. Rather than deriving the underlying mathe-
matics for BCH codes, we will simply state the proper-
ties of the polynomials and show how they enable the
design of g(X) as well as the implementation of the
error-detection and correction algorithms. Bear in
mind that the processing mechanism used to select the
generating polynomial and implement the decoding
algorithms perform Galois field arithmetic, a detail that
is not needed to understand the overall process. One
concept that we do need to examine to understand the
encoding and decoding process is the representation of

IEEE SIGNAL PROCESSING MAGAZINEJULY 2004 27

▲ 8. LFSR for g(X) = 1 + X + X3.

X0 X1 X2 X3

Switch 1

Up at Shift 4

Up at Shift 4

Switch 2

Input Queue 1011

Output
Queue

For R-S codes, one can say that
the codes “prefer” to see the
noise occur in bursts. There is a
kind of “economy of scale”
at work.



the elements in a Galois field. The nonzero elements of
GF(2n) are the roots of the polynomial X n + 1. In the
complex field, the roots of X n − 1 form the periodic
sequence exp ( j 2π/n), exp ( j 4π/n), exp ( j 6π/n),
and so forth, which we write compactly as
w1, w2, w3, . . . , where w = exp ( j 2π/n). Recall that in
the binary field, X n − 1 is equal to X n + 1. We often
refer to the roots of unity by their exponent, as we do
for instance when referring to the kth bin of a fast-
Fourier transform (FFT). In like manner the roots of
X n + 1 in a GF form a periodic sequence written as
α, α2, α3, . . . that are also referred to by their expo-
nent. In the error location process described later, the
exponents of a set of roots will be the indicator of the
error locations. 

Decoding of BCH Codes
The generator polynomial g(X) is selected as a product
of factors of X n + 1, with n = 2m − 1, such that the
composite polynomial has a set of 2t known roots,
α, α2, α3, . . . , α2t denoted here as β1, β2, . . . , β2t . The
binary polynomials containing these roots are tabulated
in many textbooks [1], [2]. We have already described
in (40) how the remainder modulo-g(X) of the
received code word polynomial is in fact the syndrome
of the error polynomial. The relationship between the
error polynomial e(X) and the syndrome polynomial
S(X) is shown as

e(X ) = q(X ) g(X ) + S(X ). (43)

Evaluating both sides of (43) at the known roots
X = βi of the generator g(X), we get

e(βi ) = q(βi ) g(βi ) + S(βi ) = 0 + S(βi ). (44)

Since g(βi ) = 0, when we evaluate the syndrome poly-
nomial at values of X equal to the roots βi , we obtain
the values that are the same as those we would obtain
by evaluating the error polynomial. Hence, these values
contain information (or clues) about the error polyno-
mial. We compute the 2t scalar syndromes by first
forming S(X) from the received vector and then evalu-
ating it at the roots βi as follows: 

Si = S(X )|X =βi
= S (βi ) : i = 1, 2, . . . , 2t . (45)

In general, the error polynomial e(X) is of the form:

e(X ) = {e i } =
ν∑

j=1

X i( j ) (46)

where the jth error is located at indicator-index i(j)
carried by the exponent of X, and ν represents the
number of errors in the code word. Note that the
decoder has no knowledge of either the number of
errors ν or their location i( j ). A syndrome Si , com-
puted by evaluating the error polynomial at the ith

power of α, is related to the error sequence by the
relationship written as

Si =
ν∑

j=1

(αi )i( j ) =
ν∑

j=1

(αi( j ))i

=
ν∑

j=1

(βj )
i , i = 1, 2, . . . , 2t . (47)

In (47) we have interchanged the ith power with the
error location index i( j ) and simplified notation by
replacing αi( j ) by βj (similar to an earlier simplification).
Suppose we have a double error correcting code, say a
(15, 7, 2) code, and an error polynomial with nonzero
errors at the two positions i(1) and i(2), written as

e(X ) = X i(1) +X i(2). (48)

We form the scalar values Si , for i = 1, 2, . . . , 2t , from
the syndrome polynomial S(X) that for this example is
an eighth-order polynomial. Then for this double-error
correcting example (t = 2), S = S1, S2, S3, S4. When we
evaluate the eighth-order polynomial S(X) at the four
known root values βi we obtain a set of four simultane-
ous nonlinear equations in two unknowns written as

S1 = β
i(1)
1 + β

i(2)
1

S2 = β
i(1)
2 + β

i(2)
2

S3 = β
i(1)
3 + β

i(2)
3

S4 = β
i(1)
4 + β

i(2)
4 . (49)

In the general case, the decoder does not know the
number of errors or the number of exponents to be
determined. Note that for this double-error example,
(49) indicates that there are two unknowns, the expo-
nents i(1) and i(2). Why are there two unknowns
(errors) but four equations? The answer is that in a
binary code two of the equations are dependent and
can be discarded. But, in a nonbinary code with two
errors, there are four unknowns—the two error posi-
tions and the two error values. A related question is,
suppose we only had one error but four equations? The
answer is the same; some of the equations are depend-
ent and are discarded.

A decoding algorithm that solves for the unknown
exponents is termed an error locating process. Once
the number of exponents and their values has been
determined, error correction with a binary code is a
matter of adding a one to the identified location(s) in
the received vector. One technique for solving the non-
linear set of relationships in (49) is to define an auxil-
iary polynomial known as the error locating polynomial
σσσ (X) and use the syndrome values to solve for the coef-
ficients σσσi . The error locating polynomial is defined to
have roots equal to the inverse of the error location
numbers λi. The σσσ (X) polynomial is represented as

IEEE SIGNAL PROCESSING MAGAZINE28 JULY 2004



σσσ(X ) = (1 − λ1X )(1 − λ2).....(1 − λνX )

= σ0 + σ1X + · · · + σν−1X ν−1 + σνX ν. (50)

To determine the coefficients of the σσσ (X), we first
form an infinite series S∞(X) from an extended list of
syndrome coefficients, shown as

S∞(X ) =
∞∑

i=1

SiX (i−1). (51)

Substituting (47), the expression for the syndromes Si
into (51), and rearranging the sum, we can write

S∞(X ) =
∞∑

i=1

X (i−1)
ν∑

j=1

(βj )
i

=
∞∑

i=1

X (i−1)
ν∑

j=1

(βj )
(i−1)βj (52)

=
ν∑

j=1

βj

∞∑
i=0

(βiX )i =
ν∑

j=1

βj
1

1 − βjX
. (53)

In (53) we have replaced each of the geometric series
(connected to each error) with its closed form and rec-
ognize the resulting sum as the partial fraction expan-
sion of the infinite series. If we now form the product
of S∞(X) and σσσ (X), we find that the factors of σσσ (X)
cancel the denominator terms of (53)

S∞(X ) σσσ(X ) =
ν∑

j=1

βj
1

1 − βjX

ν∏
�=1

(1 − β�X )

=
ν∑

j=1

βj

ν∏
�=1
��= j

(1 − β�X ). (54)

From (54) we concluded thatz, due to the denominator
canceling, the product of the infinite polynomial S∞(X)
and the finite polynomial σσσ (X) is a finite polynomial of
degree ν − 1, where ν is the number of errors in the
sequence. Consequently, the coefficients formed by the
product in (54) for the powers of X greater than or equal
to ν are precisely zero. The coefficients of any power of X
formed by the polynomial product are seen to be a
weighted sum of the syndrome coefficients. Setting the
coefficients of the powers of X from ν to 2t to zero, leads
to the collection of equations relating the error locating
coefficients σσσi and the scalar syndromes Si shown as




S1 S2 · · · St
S2 S3 · · · St+1
...

...
. . .

...

St St+1 · · · S2t−1







σt
σt−1

...

σ1


 =




−St+1
−St+2

...

−S2t


 .

(55)

One may recognize (55) as the set of normal equations
that describe a one-step linear predictor used in many
signal-processing applications. The Berlekamp-Massey

algorithm [2], [13], [14] iteratively forms the solution,
but any standard technique to invert a matrix can be
applied to the task. If (55) has more equations than
unknowns its determinant will be zero and we can
sequentially peel off one row and column and attempt
to invert the reduced size matrix. Once the coefficients
σσσi of the error location polynomial have been deter-
mined, the polynomial is tested to find its roots λi . The
Chien algorithm [8], [15] is a method of exhaustively
testing the polynomial to find these roots, which when
inverted, identify the error locations. Then, adding a
one to their identified locations easily repairs the errors.

Reed Solomon Codes
In 1960, Irving Reed and Gus Solomon described a
new class of error correcting codes [16] that are now
called R-S codes. The R-S codes are nonbinary cyclic
codes in which the code symbols are binary m-tuples.
They are used in many applications, from the compact
disk to spacecraft traveling beyond the orbit of Pluto
[17]. In 1964, Singleton showed that R-S codes have
the best possible error-correction capability for any
code of the same length and dimension [18]. Codes
that achieve this “optimal” error correction capability
are called maximum distance separable (MDS). As the
name implies, their key property is that they provide
maximum distances between code words [17], [18].
These codes are extensions of the BCH codes in much
the same manner that the BCH codes are extensions of
the Hamming codes. There exist t-error correcting R-S
codes for the (n, k, t) set described as

(n, k, t ) = (2m − 1, 2m − 1 − 2t , t ) (56)

where 2t is the degree of the generating polynomial as
well as the number of parity symbols in the code
[19], [20]. The coefficients of the generating polynomi-
al g(X ) are no longer binary but rather they are m-bit
coefficients having the same meaning as the m-bit parti-
tion of the input data. The LFSR, which performs both
encoding and decoding, stores m-bit words in its regis-
ters and performs products of the m-bit coefficients
using arithmetic rules defined by an extension field
referred to as GF(q), where the number of elements q in
the field must be of the form pm where p is a prime inte-
ger and m is positive integer [2], [21]. Elements from
the extension field GF(2m) are used in the construction
of R-S codes. The rules for doing the arithmetic are not
needed to understand the overall algorithms. Cyclic R-S
codes with code words from GF(q) have length
m = q − 1, as is seen in (56). Popular R-S code choices
for many applications are chosen from the field GF(28)
= GF(256), because each of the 256 field elements can
be represented as an 8-b sequence, or byte [17]. 

Earlier we showed that simple block codes can be
decoded by using a syndrome lookup table (or circuit).
The syndrome was computed and its corresponding
error pattern was subtracted from the received vector.

IEEE SIGNAL PROCESSING MAGAZINEJULY 2004 29



Unfortunately, this approach is out of the question for
all but the most trivial R-S codes. For example, the (63,
53) five-error correcting R-S code has approximately
1020 syndromes. The construction of such a table is
somewhat questionable. In [16], Reed and Solomon
proposed a decoding algorithm based on solving sets of
simultaneous equations. Though much more efficient
than a lookup table, this algorithm is only useful for the
smallest R-S codes. The decoding of longer R-S codes
became viable in 1967 when Berlekamp demonstrated
his efficient decoding algorithm for both R-S and non-
binary BCH codes [14], [22], [23]. 

Since the symbols in the R-S code are m-tuples, the
error symbols introduced by the channel are also m-
tuples. A typical two-symbol error polynomial may
have the form shown as

e(X ) = e1X i(1) + e2X i(2) (57)

where m-bit errors e1 and e2 have been added at posi-
tions i(1) and i(2). A channel error is detected at the
decoder if the syndrome polynomial has nonzero coef-
ficients. As with the BCH codes, the syndrome polyno-
mial is evaluated at the roots of the generator
polynomial to determine the received syndrome values
Si . These values are used in (55) to find the coefficients
of the error location polynomial. The degree of the
error location polynomial tells us the number of errors
in the received code vector. The final task is to solve for
the error values {e i ,} by solving the following matrix
(shown for the general case of ν errors)




λ1 λ2 · · · λv
λ2

1 λ2
2 · · · λ2

v
...

...
. . .

...

λv
1 λv

2 · · · λv
v







e1
e2
...

ev


 =




S1
S2
...

Sv


 . (58)

Equation (58) expresses (57) evaluated at the roots
X = λi of the error-locating polynomial σσσ(X ), where
the indeterminate X is replaced with the known error
locations. Once the error values are determined, the m-
tuple error values are added to the received m-tuples at
the previously determined error locations.

Channel Erasure Decisions 
In one form of soft-decision making, the detector
forms one of three decisions regarding the received
processed waveform: binary 1, binary 0, or E, called an
erasure. The 1 and 0 denote the sign of a processed sig-
nal if its magnitude is greater than some threshold
(hard decision), and E denotes the condition that the
signal magnitude is less than the threshold. The erasure
reflects the information that the signal level is “too
close to call” and might yield an unreliable decision. 

A decoder can correct dmin − 1 erasures (treated as
unknown errors at known error locations). Normally
half the information residing in the syndrome values is

used to locate the error positions and half is used to
correct the errors. Since erasure locations are known,
only their values have to be determined by the decod-
ing algorithm. Thus for the erasure correction task, the
total syndrome information can be directed to repair-
ing up to dmin − 1 erasures (rather than about half that
many �dmin − 1�/2 for the error correction task). The
decoding technique involves setting the erasured sym-
bols to zero value and then proceeding with standard
R-S decoding (omitting application of the error locat-
ing polynomial). The ability to recover from twice as
many erasures as errors is one of the reasons that the
compact disk player uses erasure detection and correc-
tion in its concatenated and interleaved R-S error-con-
trol procedures [24], [25]. 

Performance of R-S Codes in Bursty Noise
A key benefit of nonbinary codes, such as R-S codes, is
their performance in the presence of bursty noise [26].
Even when a channel is characterized by random noise,
R-S codes are often concatenated with convolutional
codes to repair any convolutional decoding errors
(which typically occur in bursts) [27], [28]. Consider
as an example, the R-S (255, 247) code. In the context
of (56), this code can be described using the (n, k)
notation of (28 − 1, 28 − 1 − 2t ). Hence, n − k = 2t ,
or the code’s error-correcting capability is
t = (n − k)/2. In terms of its 8-b symbols (or bytes),
t = (255 − 247)/2 = 4 B within each code word
sequence of 255 code bytes. Imagine a burst of con-
tiguous noise events, having a duration of 25 b. How
many code bytes within the code word would be affect-
ed? No matter where these contiguous noise events
might appear within the 255 code bytes, they must
affect exactly 4 B. However, the R-S (255, 247) code is
capable of correcting 4 B. The decoding is based on
replacing an incorrect byte regardless how many bits
within the byte have been corrupted. An incorrect byte
is replaced with a correct one, whether the corruption
was caused by a 1-b-duration noise event or an 8-b-
duration noise event. Now compare this to the case
where the noise does not appear as a contiguous burst,
but as 25 random events. How many of the 255 R-S
code bytes might be “hit” in such case? Twenty-five
bytes might be hit, and the code would then be over-
whelmed. For R-S codes, one can say that the codes
“prefer” to see the noise occur in bursts. For nonbinary
codes such as R-S, there is an kind of “economy of
scale” at work whenever the degrading events occur in
bursts rather than as random events.

Approaching the Shannon Limit
Shannon [29], [30] developed many of the fundamen-
tal mathematical relationships for communicating infor-
mation in the presence of noise. He showed that every
channel has a channel capacity C, and for transmission
rates less than C, there exists codes capable of achieving

IEEE SIGNAL PROCESSING MAGAZINE30 JULY 2004



arbitrarily small decoded-
error probabilities. An
outgrowth of his capacity
theorem shows that with
optimum coding, it is
possible to approach an
error probability of zero
with an Eb /N0 as low as
−1.6 dB. This limiting
value is known as the
Shannon limit; it is often
shown as a discontinuous
curve (vertical line) on
the bit-error probability
PB versus Eb /N0 plot,
extending from PB = 1/2 to PB = 0. Shannon’s work
proves the existence of codes that can approach this
limiting performance but does not show how to con-
struct them. It does show that to achieve very low error
probabilities, long block lengths are needed. In effect,
Shannon predicted that coding techniques would be
found for achieving coding gains of about 11–12 dB.
Ever since 1948, research in error-correction coding
has focused on constructing good codes and finding
easy-to-implement encoding/decoding methods
toward fulfilling Shannon’s prediction. The Shannon
limit represents an interesting theoretical bound, but it
is not a practical goal because it was derived for a rate 0
code. Several authors use an Eb /N0 of 0.2 dB as a
pragmatic Shannon limit for a rate 1/2 code over a
binary-input AWGN channel [31].

For about 30 years after Shannon’s fundamental
work, coding research produced a rich assortment of
practical techniques (some of which are listed in the
references), resulting in an achievable coding gain of
about 6–7 dB at PB = 10−5. During the 1980s, there
weren’t any major developments to allow for larger
gains. In 1993 Berrou et al. reported on a concatenat-
ed rate 1/2 coding scheme that used iterative decoding
to achieve a PB = 10−5 at an Eb /N0 within about 0.5
dB away from the “pragmatic” Shannon limit [32].
That development, known as turbo coding, enabled the
implementation of real systems with coding gains of
about 8–10 dB.

The next revolution, known as LDPC codes, was
actually a resurgence of a scheme that had been pro-
posed by Gallager in his 1961 doctoral dissertation
and in [33] and [34]. These codes were largely forgot-
ten for several decades due to the lack of computation-
al capability in those years. LDPC codes, which also
use iterative decoding, were rediscovered by McKay
and Neal [35] in 1996. Today the field of LDPC cod-
ing appears to represent the main competition to
turbo coding. An LDPC rate 1/2 code using a block
length of 107 holds the distinction of achieving a BER
of 10−6 within 0.04 dB of the “pragmatic” Shannon
limit, as reported by Chung et al. [36] in 2001.

Likelihood Functions 
and the ML Criterion
Linear block codes, including cyclic codes and R-S
codes, lend themselves to hard-decision decoding giv-
ing rise to the type of syndrome calculation and deci-
sion making described earlier. However, for iterative
decoding (as exemplified by both turbo and LDPC
codes), the improvements offered by soft-decision
decoding (about 2 dB for eight-level quantization, in
AWGN) are an essential part of the operation. 

Figure 9 shows the conditional pdfs, referred to as
likelihood functions, that depict the binary decision-
making process associated with pulses (+1,−1) dis-
turbed by AWGN. Since AWGN is the most commonly
used noise model in communication systems, we use it
here and therefore show the likelihood functions in
Figure 9 drawn with the familiar Gaussian shapes. The
rightmost function p(x |d = +1), called the likelihood
of d = +1, shows the pdf of the random variable x
(noisy signal sample) conditioned on the data d = +1
being sent. The leftmost function p(x |d = −1), called
the likelihood of d = −1, illustrates a similar pdf condi-
tioned on d = −1 being sent. In Figure 9, one such
arbitrary received sample value xj is shown. A line sub-
tended from xj intercepts the two likelihood functions
yielding the likelihood values �1 = p(xj |d = +1) and
�2 = p(xj |d = −1). Stemming from Bayes’ theorem
[1], one can make a data decision by forming a ratio of
likelihoods and deciding that d = +1 if

�1

�2
= p(xj |d = +1)

p(xj |d = −1)
>

P (d = −1)

P (d = +1)

or
p(xj |d = +1)P (d = +1)

p(xj |d = −1)P (d = −1)
> 1. (59)

Equation (59), known as the maximum a posteriori (MAP)
criterion, corresponds to making a decision based on com-
paring �1/�2 to the threshold P (d = −1)/P (d = +1), a
ratio of a priori probabilities. That is, decide d = +1 if the
likelihood ratio �1/�2 is greater than the threshold, and
otherwise decide d = −1. When knowledge about the a

IEEE SIGNAL PROCESSING MAGAZINEJULY 2004 31

▲ 9. Likelihood functions.

Likelihood of d = –1
p(x|d = –1)

Likelihood of d = +1
p(x|d = +1)

–1

Threshold

+1xj

xj2

xj3

x



priori probabilities is not available, decisions are usually
made by assuming equally likely a priori probabilities.
When this is done, the MAP criterion in (59) is then
known as the ML criterion. 

Turbo Codes
Initially, turbo codes were implemented with two or
more convolutional encoders configured as concate-
nated component codes; but block encoders are equal-
ly applicable. By taking the logarithm of a likelihood
ratio, we obtain a useful metric called the log-likeli-
hood ratio (LLR). In the context of (59), we designate
L ′(d̂) to represent the sum of two LLRs (one for the
detector’s soft-decision output and one for the ratio of
a priori probabilities of the data). We show this as

L ′(d̂) = log
[

P (x |d = +1)

P (x |d = −1)

]
+ log

[
P (d = +1)

P (d = −1)

]

(60a)
= L (x |d) + L (d) = Lc (x ) + L (d) (60b)

where L (x |d ), designated Lc (x ), is the LLR of the
random variable x representing the detector’s measure-
ment of the received signal x under the alternate condi-
tions that d = +1 or d = −1 may have been sent, and
L (d) is the a priori LLR of the data bit d. The notation
Lc (x ) emphasizes that this LLR term is the result of a
channel measurement made at a receiver. Note that for
equally likely a priori probabilities, the ratio of prior
probabilities is equal to one; hence, its logarithm, seen
as the last term in (60), is equal to zero. This corre-
sponds to a threshold that is located at the crossover of
the two likelihoods as seen in Figure 9. So far we have
not considered the presence of any coding. The intro-
duction of a code will typically yield decision-making
benefits. For a systematic code, it can be shown [32]
that the LLR (soft output) L (d̂) out of the decoder can
be expressed as

L (d̂) = L ′(d̂) + Le (d̂) = Lc (x ) + L (d) + Le (d̂) (61)

where L ′(d̂) stems from (60) and Le (d̂), called the
extrinsic LLR, represents extra knowledge that is
gleaned from the decoding process. Thus, (61) express-
es the decoder output in terms of three LLR elements—
a channel measurement, a priori knowledge of the data,
and an extrinsic LLR stemming solely from the decoder.
Each of these individual LLRs can be added (for a sys-
tematic code) because these three terms are statistically
independent [1], [33], [37]. This decoder output L (d̂)

is a real number that provides a hard decision plus a
confidence metric regarding that decision. The sign of
L (d̂) denotes the hard decision; that is, for positive val-
ues of L (d̂), we decide that d = +1, and for negative
values decide that d = −1. The magnitude of L (d̂)

denotes the confidence of that decision. Often, the
value of Le (d̂) has the same sign as Lc (x ) + L (d), and
therefore acts to improve the reliability of L (d̂).

Decoding of Turbo Codes
Turbo decoding involves feeding outputs from one
decoder to the inputs of other decoders in an iterative
fashion. The phenomenal performance of these tech-
niques requires a novel type of decoder—one that
accepts soft decisions at its input and delivers soft deci-
sions at its output. For the first decoding iteration, illus-
trated in Figure 10, one generally starts with the
assumption that the binary data is equally likely, yielding
an initial a priori LLR value of L (d) = 0 for the right-
most term in (60). The channel LLR value, Lc (x ), is
measured by forming the logarithm of the ratio of the
values of �1 and �2 for a particular observation of x (see
Figure 9). As illustrated in Figure 10, where the
decoder block represents two or more decoders, the
extrinsic likelihood Le (d̂) out of the decoder is fed
back to the decoder input, to serve as a refinement of
the a priori probability of the data for the next iteration.
Additional iterations yield values of L (d̂) that asymptot-
ically manifest further refinements and hence better
error performance. A fundamental principle for feeding
back information to another decoder is that a decoder
should never be supplied with information that stems
from its own input (because the input and output cor-
ruption will be highly correlated). Such a soft-input,
soft-output decoder is sometimes referred to as a “SNR
amplifier.” Real systems are typically implemented with
a fixed number of about four to eight such decoding
iterations. Figure 9 offers some insight into the iterative
process. As a result of a single pass through the decoder,
the sample xj yields a soft number, the LLR L (d̂). This
is illustrated by a vertical line passing through xj and
the likelihood intercepts �1 and �2. Imagine a second
and third decoding iteration of the same sample, now
labeled xj2 and xj3, respectively, that may result in a
more confident L (d̂) output, as shown in Figure 9 by
the rightward movement of the vertical line. Such

IEEE SIGNAL PROCESSING MAGAZINE32 JULY 2004

▲ 10. Soft-input/soft-output decoder.

Soft-In
Soft-Out
Decoder

Feedback for the Next Iteration

L(d)
A Priori
Value In

Le(d)
Extrinsic

Value Out

Lc(x)
Channel
Value In

L′(d)
A Posteriori
Value Out

^

Demodulator
A Posteriori
LLR Value

L′(d) = Lc(x) + L(d)^
Output LLR Value
L(d) = L′(d) + Le(d)^ ^ ^



movement can come about (with increased iterations)
because the initial a priori probabilities become
“refined” during each round, resulting in an apparent
movement of the sample point yielding a more confi-
dent L (d̂). We can interpret this to mean that the turbo
decoder iterations give us an apparent SNR enhance-
ment. An extensive treatment of turbo encoding and
decoding can be found in [32] and [38]–[51].

LDPC Codes 
An LDPC code is traditionally defined by its M ×N
parity-check matrix H. The M rows in H specify the
M constraints in the code. For example, if one constraint
dictates that bit numbers 1, 4, and 6 must sum to zero
for each code word, then there must be one row in H
that contains a one in positions 1, 4, and 6, and zeros
elsewhere. The N columns in H correspond to the total
number of code bits within a code word. A regular
LDPC code has a sparse H matrix having exactly wc ones
per column and exactly wr = wc (N /M ) ones per row,
where wc and wr are both small compared to N . Thus,
each parity-check equation involves exactly wr bits, and
every bit in a code word is involved in exactly wc parity
check equations. The term “low density” indicates that
these codes are characterized by sparse H matrices. The
fraction of ones in a regular LDPC matrix is wr/N ,

which can be quite small for long codes. In contrast, the
average fraction of ones in a random binary matrix (with
independent components equally likely to be one or
zero) is 1/2. If H is sparse, but the number of ones per
column or row is not constant, the code is called an
irregular LDPC code. Such irregular codes often outper-
form regular codes with similar dimensions [52], [53].

Any parity-check code (including an LDPC code)
may be specified by a Tanner graph [54], as shown in
Figure 11. The (6, 3) code example (described earlier)
does not have a sparse H matrix; nevertheless, we use it
here as a simple way to illustrate this graph. For LDPC
codes, we shall use the index m to indicate a particular
parity check location (row in H), and index n to indicate
a particular bit position (column in H). The Tanner
graph contains two kinds of nodes, check nodes (desig-
nated with squares) and bit nodes (designated with cir-
cles). There are M check nodes, one for each parity
check C1, . . . ,Cm, . . . ,CM , and N bit nodes, one for
each code bit v1, . . . , vn, . . . , vN . The check nodes are
connected to the bit nodes that they check. Specifically, a
branch (also called an edge) connects check-node m to
bit-node n if and only if the mth parity check involves
the nth bit (i.e., only if Hm,n = 1). Thus, the graph is
analogous to the H matrix, since the entries in H are 1 if
and only if the mth check node is connected to the nth
bit. The branches between nodes can be thought of as
information-flow pathways for the iterative computation
of probabilistic quantities. During the decoding process,
likelihoods obtained from soft-decision components of a
received vector r initialize the bit nodes. Each bit node

determines the probability of a bit having value one (also
zero), given the parity check information from all the
check nodes involving that bit. Each check node deter-
mines the probability that its parity check is satisfied,
given that a particular bit is set to one (also zero) and
the other participating bits have separable distributions. 

In Figure 11, we have repeated properties of the
(6, 3) code described earlier—code word assignments,
matrix G, and matrix H. Only bits and checks that are
related by having a one in the corresponding location
of Hm,n need to be considered. For the (6, 3) code,
the rows of H, describing the parity checks that must
be met by each proper code word, can be written as

v1 ⊕ v4 ⊕ v6 = 0
v2 ⊕ v4 ⊕ v5 = 0
v3 ⊕ v5 ⊕ v6 = 0. (62)

For the (6, 3) code, the set of relationships in (62) cor-
roborates what was described in (26). That is, each rela-
tionship yields a syndrome, and the code constraints are
met when each syndrome component has a zero value.

Decoding of LDPC Codes
For decoding an LDPC code, we want to find the
probability that each bit vn of a received vector r equals
one (also zero), knowing that the estimated code word
Û stemming from r must satisfy the constraint
Û HT = 0. Given a received vector r, solving directly
for the probability P (vn = b |r), that the nth bit equals
either one or zero is very complex. Gallager [34] pro-
vided an iterative technique, known as the sum-product
algorithm, where the probability µmn(b ) that the mth
check is satisfied by a received vector r (given vn = b ),
is passed from check node Cm to bit node vn . This sat-
isfied-check probability µmn(b ) is gleaned from all bits
participating in the m th check (other than vn ).
Likewise, the bit probability qmn(b ) that the nth bit has
value vn = b , is passed from bit node vn to check node
Cm . This bit probability qmn(b ) is gleaned from all the
checks that the nth bit participates in (other than Cm). 

IEEE SIGNAL PROCESSING MAGAZINEJULY 2004 33

▲ 11. Representing the (6, 3) code with a Tanner Graph.

000 
100 
010 
110 
001 
101 
011 
111

000000 
110100 
011010 
101110 
101001 
011101 
110011 
000111

Messages Code words

11 0 1 0 0  
0 11 0 1 0  
1 0 1 0 0 1

1 0 0 1 0 1  
0 1 0 11 0  
0 0 1 0 11

G H

P Ik In–k PT

C1 C2 C3 Bit
Probablity

qmn(b)

Satisfied-Check
Probability

µmn(b)

v1 v2 v3 v4 v5 v6



The message-passing procedure is indicated on the
Tanner graph of Figure 11 in the context of the (6, 3)
code described earlier. Messages containing satisfied-
check probabilities µmn(b ) are shown moving from
check nodes to bit nodes, and messages containing bit
probabilities qmn(b ) are shown moving from bit nodes to
check nodes. The process is repeated until it converges to
a code word solution or until a time limit is reached.
With the aid of Figure 11, consider the following exam-
ple of message-passing iterations, focusing particularly on
bit-node v4 and check-nodes C1 and C2. At the start, bit
nodes are initialized with likelihood values stemming
from a detector. Suppose that bit node v4 passes the
probability q24(b ) that v4 = 1 (also 0) to check-node C2.
(It passes similar information to check-node C1.) Check-
node C2 collects the incoming probabilities from all
other bits involved in check 2, namely v2 and v5, com-
putes a probability µ24(b ) that parity-check C2 is satisfied
given that v4 = 1 (also 0), and passes this message to bit-
node v4. Check-node C2 passes similar information to v2,
given v2 = 1 (also 0), and to v5, given v5 = 1 (also 0).
When bit-node v4 receives such satisfied-check informa-
tion from all the check nodes involving v4, namely C1
and C2, it recomputes the probability that v4 = 1 (also
0) gleaned from the connected check nodes (apart from
check-node C2) and passes this message back to node
C2, and similar information to check-node C1, and so
forth. Note that when sending µmn(b ) probabilities from
Cm to vn , this algorithm excludes information passed
from vn to Cm in the prior round. Similarly when send-
ing qmn(b ) probabilities from vn to Cm , the algorithm
excludes information passed from Cm to vn in the prior
round. These rules resemble those used in the iterative
turbo-decoding process, where information is never fed
back to a decoder that stems from itself.

After decoder initialization, we can think of the
process of updating the probabilities between nodes as
providing extrinsic information that yields improve-
ments in coding performance. Each iteration typically
provides more confident likelihood values of the code
bits. The algorithm is typically implemented in the loga-
rithmic domain using log-likelihood ratios similar to the
turbo-decoding process. The iterative decoding tech-
niques used in both turbo and LDPC codes are the
tools that have brought about the astounding error per-
formance that was promised by Shannon in 1948.
Extensive treatments of LDPC coding can be found in
[33], [34], [52]–[68]. An important coding task, yet to
be accomplished, is to determine for implementing real
systems, which codes and decoding techniques can yield
optimum performance with minimum complexity.

Conclusion
Basic principles of block codes were presented with
illustrations to visualize the concepts of vector spaces
and subspaces. We offered intuitive explanations of

goals, capabilities, and limitations of codes. We exam-
ined an important subclass of block codes called cyclic
codes, described their algebraic structure, and looked
at the very popular BCH and R-S cyclic codes. Also, we
looked at the newest techniques, turbo codes and
LDPC codes, that use iterative decoding to obtain per-
formance exceedingly close to theoretical limitations.

Bernard Sklar has 50 years of electrical engineering
experience at companies that include Hughes Aircraft,
Litton Industries, and The Aerospace Corp. He is
head of advanced systems at Communications
Engineering Services. He received the 1984 Prize
Paper Award from the IEEE Communications Society
and is the author of Digital Communications:
Fundamentals and Applications, 2nd edition (Prentice-
Hall, 2001).

Fredric J. Harris is a professor of electrical and comput-
er engineering at San Diego State University where he
holds the CUBIC Signal Processing Chair. He holds
several patents and is the author of Multirate Signal
Processing for Communication Systems (Prentice Hall
2004). He was chair of the Asilomar Conference on
Signals, Systems, and Computers, and the Software
Defined Radio Conference.

References
[1] B. Sklar, Digital Communications: Fundamentals and Applications, 2nd ed.

Englewood Cliffs, NJ: Prentice-Hall Inc., 2001.
[2] S. Lin and D.J. Costello, Jr., Error Control Coding: Fundamentals and

Applications. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.
[3] G.C. Clark and J.B. Cain, Error Correction Coding for Digital

Communications. New York: Plenum, 1988.
[4] J. Wolf, A. Michelson, and A. Levesque, “On the probability of undetected

error for linear block codes,” IEEE Trans. Commun., vol. COM-30, 
pp. 317–325, Feb. 1982.

[5] T. Kasami, T. Klove, and S. Lin, “Linear block codes for error detection,”
IEEE Trans. Inform. Theory, vol. IT-29, pp. 131–136, Jan. 1983.

[6] D. Hertz and Y. Azenkot, “Memory/speed tradeoffs for look-up table
decoding of systematic linear block codes,” IEEE Trans. Commun., vol. 38,
pp. 109–111, Jan. 1990. 

[7] R.G. Gallager, Information Theory and Reliable Communication. New
York: Wiley, 1968.

[8] W.W. Peterson and E.J. Weldon, Error Correcting Codes. Cambridge, MA:
MIT Press, 1972.

[9] R.E. Blahut, Fast Algorithms for Digital Signal Processing. Reading, MA:
Addison-Wesley, 1985.

[10] R.C. Bose and D.K. Ray-Chadhuri, “On a class of error correcting binary
group codes,” Inform. Contr., vol. 3, pp. 68–79, Mar. 1960. 

[11] R.C. Bose and D.K. Ray-Chadhuri, “Further results on error correcting
binary group codes,” Inform. Contr., vol. 3, pp. 279–290, Sept. 1960.

[12] S.A. Vanstone and P.C. van Oorschot, An Introduction to Error
Correcting Codes with Applications. Boston, MA: Kluwer, 1989.

[13] R.E. Blahut, Theory and Practice of Error Control Codes. Reading, MA:
Addison-Wesley, 1983.

[14] R. Berlekamp, “On decoding binary Bose-Chaudhuri-Hocquenghem
codes,” IEEE. Trans. Inform. Theory, vol. IT-11, pp. 580–585, Oct. 1965. 

[15] R.T. Chien, “Cyclic decoding procedure for the Bose-Chadhuri-
Hocquenghem codes,” IEEE Trans. Inform. Theory, vol. IT-10, pp.
357–363, Oct. 1964. 

[16] I.S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”

IEEE SIGNAL PROCESSING MAGAZINE34 JULY 2004



IEEE SIGNAL PROCESSING MAGAZINEJULY 2004 35

SIAM J. Appli. Math. vol. 8, pp. 300–304, 1960.

[17] S.B. Wicker and V.K. Bhargava, Ed., Reed-Solomon Codes and Their
Applications. New York: IEEE Press, 1994.

[18] R.C. Singleton, “Maximum distance Q-nary codes,” IEEE Trans. Inform.
Theory, vol. IT-10, no. 2, pp. 116–118, Apr. 1964. 

[19] S.B. Wicker, Error Control Systems for Digital Communication and
Storage. Englewood Cliffs, NJ: Prentice Hall, 1994.

[20] B. Cipra, “The ubiquitous Reed-Solomon codes,” SIAM News, vol. 26,
no.1, Jan. 1993. 

[21] R.J. McEliece, Finite Fields for Computer Scientists and Engineers. Boston,
MA: Kluwer Academic, 1987.

[22] E.R. Berlekamp, “Nonbinary BCH decoding,” presented at the 1967 Int.
Symp. Information Theory, San Remo, Italy.

[23] E.R. Berlekamp, Algebraic Coding Theory. New York: McGraw Hill, 1968
(rev. ed., Aegean Park Press: Laguna Hills, CA, 1984.)

[24] K.C. Pohlmann, The Compact Disk Handbook, 2nd ed. Madison, WI: A-R
Editions, 1992.

[25] M.J. Riley and I.E.G. Richardson, Digital Video Communications.
Boston, MA: Artech House, 1997.

[26] G.D. Forney, “Burst-correcting codes for the classic bursty channel,”
IEEE Trans. Commun., vol. COM-19, pp. 772–781, Oct. 1971. 

[27] G.D. Forney, Concatenated Codes. Cambridge, MA: MIT Press, 1967.

[28] J.L Massey, “Deep space communications and coding: A match made in
heaven,” in Advanced Methods for Satellite and Deep Space
Communications, J. Hagenauer, Ed. (Lecture Notes in Control and
Information Sciences, vol. 182). Berlin: Springer-Verlag, 1992.

[29] C.E. Shannon, “A mathematical theory of communication,” BSTJ, 
vol. 27, pp. 379–423, 623–657, 1948. 

[30] C.E. Shannon, “Communication in the presence of noise,” Proc. IRE,
vol. 37, no. 1, pp. 10–21, Jan. 1949.

[31] S.A. Butman and R.J. McEliece, “The ultimate limits of binary coding for
a wideband gaussian channel,” JPL Deep Space Network Progress Rep.
42–22, May–June 1974, pp. 78–80, Aug. 15, 1974.

[32] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-
correcting coding and decoding: Turbo codes,” in IEEE Proc. Int. Conf.
Communications, Geneva, Switzerland, May 1993, pp. 1064–1070.

[33] R.G. Gallager, “Low-density parity-check codes,” IRE Trans. Inform.
Theory, vol. IT-8, pp. 21–28, Jan. 1962.

[34] R.G. Gallager, Low Density Parity-Check Codes. Cambridge, MA: MIT
Press, 1963.

[35] D.J.C. Mackay and R.M. Neal “Near Shannon-limit performance of low-den-
sity parity-check codes,” Electron. Lett., vol. 32, pp. 1645–1646, Aug. 1996.

[36] S.-Y. Chung, G.D. Forney, Jr., T.J. Richardson, and R. Urbanke, “On the
design of low-density parity-check codes within 0.0045 dB of the Shannon
limit,” IEEE Commun. Letters, vol. 5, pp. 58–60, Feb. 2001.

[37] J. Hagenauer, “Iterative decoding of binary block and convolutional codes,”
IEEE Trans. Inform. Theory, vol. 42, no. 2, pp. 429–445, Mar. 1996. 

[38] D. Divsalar and F. Pollara, “On the design of turbo codes,” Jet
Propulsion Laboratory, Pasadena, CA, TDA Progress Rep. 42–123, pp.
99–121, Nov. 15, 1995.

[39] D. Divsalar and R.J. McEliece, “Effective free distance of turbo codes,”
Electron. Lett., vol. 32, no. 5, pp. 445–446, Feb. 29, 1996.

[40] S. Dolinar and D. Divsalar, “Weight distributions for turbo codes using
random and nonrandom permutations,” Jet Propulsion Laboratory,
Pasadena, CA, TDA Progress Rep. 42–122, pp. 56–65. Aug. 15, 1995.

[41] D. Divsalar and F. Pollara, “Turbo codes for deep-space sommunica-
tions,” Jet Propulsion Lab, Pasadena, CA, TDA Progress Rep. 42–120, pp.
29–39, Feb. 15, 1995.

[42] D. Divsalar and F. Pollara, “Multiple turbo codes for deep-space commu-
nications,” JPL, Pasadena, CA, TDA Progress Rep. 42–121, pp. 66–77,
May 15, 1995.

[43] D. Divsalar and F. Pollara, “Turbo codes for PCS applications,” in Proc.
ICC ‘95, Seattle, Washington, June 18–22, 1995, vol. 1, pp. 54–59. 

[44] L.R. Bahl, J. Cocke, F. Jeinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol.
IT-20, pp. 248–287, Mar. 1974.

[45] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Soft output

decoding algorithm in iterative decoding of turbo codes,” Jet Propulsion
Lab, Pasadena, CA, TDA Progress Rep. 42-124, pp. 63–87, Feb. 15, 1996. 

[46] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “A soft-input soft-
output maximum a posteriori (MAP) module to decode parallel and serial
concatenated codes,” Jet Propulsion Lab, Pasadena, CA, TDA Progress
Rep. 42-127, pp. 63–87, Nov. 15, 1996. 

[47] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “A soft-input soft-
output APP module for iterative decoding of concatenated codes,” IEEE
Commun. Lett., vol. 1, no. 1, pp. 22–24, Jan. 1997.

[48] S. Pietrobon, “Implementation and performance of a turbo/MAP
decoder,” Int. J. Satellite Commun., vol. 16, pp. 23–46, Jan.–Feb. 1998. 

[49] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and
sub-optimal MAP decoding algorithms operating in the log domain,” in
Proc. ICC’95, Seattle, WA, June 1995, pp. 1009–1013.

[50] F. Burkert and J. Hagenauer, “A serial concatenated coding scheme with
iterative turbo and feedback decoding,” in Proc. Int. Symp. Turbo Codes,
Sept. 1997, pp. 227–230. 

[51] R. Pyndiah, “Near optimum decoding of product codes: Block turbo
codes,” IEEE Trans. Commun., vol. 46, no. 8, pp. 1003–1010, Aug. 1998. 

[52] T.J. Richardson, M.A. Shokrollahi, and R.L. Urbanke, “Design of capaci-
ty-approaching irregular low-density parity-check codes,” IEEE Trans.
Inform. Theory, vol. 47, pp. 619–637, Feb. 2001. 

[53] Tanner, “A recursive approach to low complexity codes,” IEEE Trans.
Inform. Theory, vol. IT-27, pp. 533–547, Sept. 1981.

[54] X.-Y. Hu, E. Eleftheriou, D.-M. Arnold, and A. Dholakia, “Efficient
implementations of the sum product algorithm for decoding LDPC
codes,” in Proc. Globecom, 2001, vol. 2, pp. 25–29.

[55] D. MacKay, “Good error correcting codes based on very sparse
matrices,” IEEE Trans. Inform. Theory, vol. 45, pp. 399–431, Mar.
1999.

[56] M.P.C. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity itera-
tive decoding of low-density parity-check codes based on belief propaga-
tion,” IEEE Trans. Commun., vol. 47, pp. 673–680, May 1999.

[57] T.J. Richardson and R.L. Urbanke, “Efficient encoding of low-density
parity-check codes,” IEEE Trans. Inform. Theory, vol. 47, pp. 638–656,
Feb. 2001. 

[58] T.J. Richardson and R. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Trans. Inform.
Theory, vol. 47, no. 2, pp. 599–618, Feb. 2001.

[59] D.J.C. MacKay, S.T. Wilson, and M.C. Davey, “Comparison of construc-
tions of irregular Gallager codes,” IEEE Trans. Commun., vol. 47, pp.
1449–1454, Oct. 1999.

[60] M.G. Luby, M. Mitzenmacher, M.A Shokrollahi, and D.A. Spielman,
“Improved low-density parity check codes using irregular graphs,” IEEE
Trans. Inform. Theory, vol. 47, pp. 585–598, Feb. 2001. 

[61] J. Fan, E. Kurtas, A. Friedman, and S. McLaughlin, “Low-density parity-check
codes for magnetic recording,” in Proc. 1999 Allerton Conf, pp. 1314–1323.

[62] R. Lucas, M. Fossorier, et al., “Iterative decoding of one-step majority-
logic decodable codes based on belief propagation,” IEEE Trans.
Commun., vol. 48, pp. 931–937, June 2000.

[63] J.R. Barry, “Low-density parity-check codes,” course notes, Georgia
Institute of Technology, Oct. 5, 2001 [Online]. Available: http://
users.ece.gatech.edu/~barry/6606/handouts/ldpc.pdf

[64] B. Levine, R. Taylor, and H. Schmit, “Implementation of near Shannon
limit error-correcting codes using reconfigurable hardware,” in Proc. 2000
IEEE Symp. Field-Programmable Custom Computing Machines (FCCM),
Napa, CA, Apr., 2000, pp. 217–226.

[65] A. Shokrollahi, “LDPC codes: An introduction,” Digital Fountain, Inc.,
Fremont, CA, Tech. Rep., Apr. 2, 2003.

[66] F.R. Kschischang, “Codes defined on graphs,” IEEE Commun. Mag., vol.
41, no. 8, pp. 118–125, Aug. 2003.

[67] T. Richardson and R. Urbanke, “The renaissance of Gallager’s low-density
parity-check codes,” IEEE Commun. Mag., vol. 41, no. 8, pp. 126–131,
Aug. 2003.

[68] E. Yeo and V. Anantharam, “Iterative decoder architectures,” IEEE
Commun. Mag., vol. 41, no. 8, pp. 132–140, Aug. 2003.


	footer1: 


