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Abstract. Measuring and monitoring energy parameters of AC power systems requires 
several calculations, such RMS values of voltage and current, plus active and reactive power. 
These calculations are performed with samples of the monitored waveforms, at sample 
frequency equal to N times the nominal frequency of waves. Conventional algorithms regard 
N as constant and integer. When the actual frequency is not exactly the nominal, errors are 
introduced in the calculations, and averages are used over several cycles to reduce these 
errors. However, in protection systems, these calculations must be performed every cycle for 
quick response of protection circuits and averages are impracticable. The purpose of this 
article is to introduce a method to minimize these errors making N variable and non-integer. 
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1. INTRODUCTION 
 
 In AC power energy systems, measurements of transferred energy must be performed at 
each network point. These measurements are expressed by waveform parameters of voltage 
and current, such the root-mean-square (RMS) values, for characterizing of each voltage or 
current waveforms, and crossed products, to calculate the transferred power (Albu et al., 
2003). 
 Due the characteristics of AC energy, voltage and current waveforms mean are zero; 
however, during abnormal operation fluctuations may occur or oftentimes the offset error 
introduced by transducers must be accounted for the correct characterization of the energy. 
 These calculations are performed with a digital processing, using sequential samples with 
sample frequency equal to N times the AC frequency, nominally 60 Hz or 50 Hz. If the value 
N exactly matches the ratio between sample frequency fs = 1/Ts and AC frequency f = 1/T, 
there are only quantization errors due to finite length of bit number of samples. If, however, 
the ratio fs/f is not an integer value, what occurs most of the cases, more errors are introduced 
(Mesrobian et al., 1991). Usually the averaging process along several cycles significantly 
reduces those errors. However in protection systems these calculations need to be performed 
every cycle, or even in half cycle to allow fast decision for a device to open or switch a 
certain circuit. This study was conducted to eliminate, or reduce the errors in calculations with 
samples from one cycle (or half cycle). 
 It is not discussed here the methods to determine the samples of voltages and currents in 
phase or quadrature, nor which crossed products result the active and reactive power, but only 
the methods to perform the calculations. Also it is not discussed the measurement of period T; 
this information or the relation fs/f must be known a priori to perform the calculations of the 
proposed method. 
 
 
2. MATHEMATICAL MODELS 
 
 The values that need to be calculated are by definition the mean and the mean square over 
one period of a continuous (and periodic) signal x(t). 
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 The discrete method usually employed for calculating them is presented below, as 
described by the current standard (IEEE, 1995).  
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 Where, the values xn are the samples of the periodic signal and exact N samples are 
equally spaced along one complete signal period. 
 These expressions work well only when the period T of the signal is equal to N times the 
sample period Ts. In this case, the start and stop phases of the sampled period are the same.  
 The mean of crossed product between two sampled periodic signals with the same period 
is given analogously. 
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 Where, the values of xn and yn are the samples of the two periodic signals. 
 
2.1 Frequency displacement 
 
 When the supposed integer value N does not match the ratio between the period T of the 
periodic signal and the sample period Ts a greater or smaller one exact cycle will be summed 
leading on an inaccurate estimate. This fact occurs when the frequency of the periodic signal 
is not exactly the nominal value. The samples do not repeat from one cycle to another, and 
summation over one cycle cannot be made with exact N samples. 
 Calculations of mean, root-mean-square and crossed products made with N samples will 
result in values above or below the true value. In the long term, the average of these values 
converges to the true values, but in short term, there are errors. This fact makes impracticable 
the calculation of these values cycle by cycle for fast decision with sufficient reliability. 
 The mean and root-mean-square calculated values oscillate around the true values with a 
period corresponding to the "beating" of the frequencies f of the signal and fs/N supposed by 
the sampling. The amplitude of this oscillation varies with the difference between two 
frequencies. Since fs is fixed by design and f could fluctuate around a nominal value or even 
change severely during abnormal conditions, for precise calculations, N should be allowed to 
be variable and non-integer. 
 
 
3. CALCULATIONS WITH NON-INTEGER AMOUNT OF SAMPLES 
 
 When the period T of sampled periodic signal is not an integer multiple of sample period 
Ts, there is not an integer number N matching the ratio between them. So, N should be 
allowed to be non-integer. 
 Another advantage of N being non-integer is that the sample frequency fs doesn’t need to 
be an integer multiple of nominal frequency f of the signal, allowing use of any value of fs for 
system design. 
 A non-integer value of N will be interpreted as having the last sample summed with non-
unitary weight, because it corresponds to an interval with a fraction of the sample period Ts. 
Also, this fractional sample doesn’t correspond to any actual sample, and need to be 
calculated by interpolation between the preceding and the trailing samples. This interpolation 
will be taken linearly for speed. The interpolation error should result small due to the great 
number of samples per period, and the objective of characterizing global parameter, 
concerning a complete cycle. 
 
 
 
 



3.1 Mean by summation with linear interpolation 
 
 For a periodic signal represented by a sequence of N samples, corresponding to one 
complete cycle, the calculation of the mean by summation with linear interpolation of the 
values between each two samples is given by the following equation. 
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 Where, N is the integer number of samples per period, and the values xn are the samples. 
Equation (6) results a weight 1/2 for the first and last samples, and unity weight for the others, 
using N+1 samples. 
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 This calculation demands a differentiated calculation for the first and last samples. To 
facilitate the calculation, they are defined the interpolation samples below. 
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 So, the mean by summation with linear interpolation becomes the following. 
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3.2 Interpolation for a fractional sample period 
 
 When the period T of the periodic signal is not an integer multiple of sample period Ts, 
there is not an integer number matching the ratio between T and Ts, and may be defined the 
period P. 
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 Here, N is the integer part of P, and 0≤δ<1 is the fractional part. In this case, there are N 
whole sample periods, plus a fraction δ of last sample period, demanding interpolation. For 
each whole sample period, from 0 to N-1, the value of interpolated sample xn+1/2 is calculated, 
corresponding to the instants (n+1/2)Ta, or samples n+1/2, using Eq. (8). For the last, 
fractional sample period, the interpolated sample is given by the following. 
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 Equation (11) calculates the linear interpolation between the points (N,xn) and (N+1,xn+1), 
at N+δ/2, which corresponds to the center of interval from N to N+δ. Thus, the mean from 



summation with linear interpolation for non-integer numbers of samples is given by the 
equation below. 
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 The sum represents the contribution of whole sample periods, with unitary weight, and 
the last term represents the fractional sample period with weight δ. The total weight is P, due 
to Eq. (10). 
 
3.3 Sample adjustments 
 
 The calculation presented in Eq. (12) demands N+1 interpolations. If, however, the 
samples are displaced half sample period Ts, these samples, xn, becomes exactly the 
interpolated values, for the intervals (n-1/2)Ts ≤ t ≤ (N+1/2)Ts. Thus, each sample must be 
displaced by a time Ts/2, resulting the following equations. 
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 This calculation demands only one interpolation, at the last, fractional sample period. The 
sum is made with the existing samples xn, quickly done by a simple processor. 
 Equation (14) shows the needed interpolation to calculate the fractional sample period of 
the end of period. The final expression is the following. 
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3.4 Calculation of the root-mean-square (RMS) value 
 
 To evaluate the root-mean-square value, the procedure is analogous. The last sample is 
obtained by interpolation. The only difference is to substitute the samples xn by its squares xn

2 
in Eq. (13), maintaining linear interpolation to determine the fractional sample xN+(δ+1)/2. The 
following equations give the calculation for RMS value of sampled periodic signals with non-
integer number of samples per period. 
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3.5 Crossed products 
 
 Crossed product between two sampled periodic signals xn and yn with the same period are 
made in a similar way as the RMS evaluation. It is necessary to take into account the 
interpolations for the second signal yn. The fractional sample is given by changes in Eq. (14). 
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 The mean of crossed product is given by modifying Eq. (16) into the following. 
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3.6 Expressions to be used for calculations 
 
 All calculations needed are characterization of two signals individually and crossed, with 
mean, root-mean-square and mean of crossed product. These calculations are performed by 
the expressions listed below. 
 The first step is to determine the values of N and δ, integer and fractional part of P, ratio 
between the period T and the sample period Ts, using Eq. (10). 
 The second step is to calculate the interpolated samples of the last, fractional sample 
period, for each signal, using Eq. (14) and Eq. (18). 
 The third step is to calculate the sums, using Eq. (13), Eq. (16), Eq. (19) and the 
folowing. 
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 The forth and last step is to obtain the final values, from the sums, using the equations 
below. 
 

XX DC =  (22) 
 

YYDC =  (23) 
 

2XX RMS =  (24) 
 

2YYRMS =  (25) 
 



 To obtain the RMS values excluding the DC (mean) values, the equations are presented 
below. In order to distinguish these RMS values from the above, these are called XAC and YAC, 
because the DC values are excluded. 
 

22 XXX AC −=  (26) 
 

22 YYYAC −=  (27) 
 

YXXYXYAC −=  (28) 
 
 The value XYAC may be the active power, for example. 
 
 
4. RESULTS 
 
 Several implementations of the presented expressions were simulated with 64, 100 and 
128 samples per nominal period, for up to 50% of frequency displacement, applied to 
sinusoidal signals of several initial phases and up to 10% of offset (DC value). A sinusoidal 
signal with third and fifth harmonics, DC offset and random noise was used to simulate the 
application in an actual case. The example below shows the results with a 20% third 
harmonic, 4% fifth harmonic, 10% offset and 1% random gaussian noise over the main 
sinusoidal signal, with 128 samples per nominal cycle. The total AC amplitude was adjusted 
to unitary true AC RMS value. This signal is a good example of the highly distorted signals 
acquired in AC power systems, at output of the acquisition circuitry. 
 The frequency of main signal was changed from 50% to 150% of the nominal value, in 
1% steps. The initial phase was changed from 0 (zero) to 360 degrees of the main signal. 
Figure 1 shows an example of signal, with normalized frequency of 1.25, and initial phase 
315 degrees. 
 

 
 

Figure 1 - A sample of the signal used for simulations 
 
 For each frequency, DC, AC RMS and total RMS values were calculated over all initial 
phases by conventional method with 128 samples and the proposed method. Maximum and 
minimum values for each frequency were plotted. Figure 2 shows the results for calculations 



of DC value with 128 samples, according to Eq. (3), regardless the actual frequency of signal, 
and according to Eq. (15), regarding the actual frequency of signal. Figure 3 repeats the 
results according for the proposed method, in an amplified scale. Note that the errors were 
less than 2% of total signal amplitude while for conventional method the errors were more 
than 60% of total signal amplitude. 
 For the nominal frequency, both methods provided similar results, because the 
equivalence between initial and final phases. There are compensations for the fixed samples 
method, and its result is very close to the true value, regardless the initial phase. 
 

 
 

Figure 2 - DC value with 128 and variable samples 
 

 
 

Figure 3 - DC value with variable samples 
 
 Figure 4 shows the results of AC RMS calculations according to Eq. (26), over fixed 128 
samples and variable samples. Figure 5 repeats the results for variable samples, in an 
amplified scale. 
 The errors were more than 50% of the total signal amplitude for fixed 128 samples and 
less than 1% for variable samples. As in Fig. 2, for the nominal frequency, both methods 
provided similar results. 
 Figure 6 and Fig. 7 show the same set of results for calculations of the total RMS value. 
Figure 6 compares conventional method based on Eq. (4) and the proposed method based on 
Eq. (17). Figure 7 displays the results in an amplified scale. The proposed method introduces 
significantly less errors than conventional method with fixed 128 samples. 



 

 
 

Figure 4 - AC RMS value with 128 and variable samples 
 

 
 

Figure 5 - AC RMS value with variable samples 
 

 
 

Figure 6 - Total RMS value with 128 and variable samples 
 



 
 

Figure 7 - Total RMS value with variable samples 
 
 The following tables summarize the maximum errors obtained in several simulations, 
with the save wave of Fig. 1, for various maximum frequency displacements, above and 
below the nominal frequency, and for 128, 100 and 64 samples per nominal cycle. Table 1 
shows the results for 128 samples, Table 2 for 100 samples, and Table 3, for 64 samples per 
nominal cycle. Note the small error in the target calculation (AC RMS) is less than the total 
noise introduced (1%) for simulations. For the DC calculation the errors were greater, because 
the main value is less (10%). 
 
 

Table 1: Maximum errors for 128 samples per nominal cycle 
 

Samples 128 non-integer 128 non-integer 
∆f/f Normalized Freq. DC error AC RMS error 
1% 0,99 1,01 17% 11% 0,89% 0,45% 
2% 0,98 1,02 32% 11% 1,3% 0,47% 
5% 0,95 1,05 73% 11% 2,8% 0,51% 
10% 0,90 1,10 150% 13% 5,9% 0,51% 
20% 0,80 1,20 320% 13% 15% 0,51% 
50% 0,50 1,50 920% 15% 59% 0,64% 

 
 

Table 2: Maximum errors for 100 samples per nominal cycle 
 

Samples 100 non-integer 100 non-integer 
∆f/f Normalized Freq. DC error AC RMS error 
1% 0,99 1,01 18% 19% 0,89% 0,59% 
2% 0,98 1,02 31% 19% 1,4% 0,60% 
5% 0,95 1,05 76% 19% 2,9% 0,64% 
10% 0,90 1,10 150% 19% 6,0% 0,64% 
20% 0,80 1,20 320% 19% 15% 0,64% 
50% 0,50 1,50 920% 19% 60% 0,69% 

 
 
 



Table 3: Maximum errors for 64 samples per nominal cycle 
 

Samples 64 non-integer 64 non-integer 
∆f/f Normalized Freq. DC error AC RMS error 
1% 0,99 1,01 20% 18% 0,99% 0,69% 
2% 0,98 1,02 32% 20% 1,5% 0,71% 
5% 0,95 1,05 74% 20% 3,1% 0,72% 
10% 0,90 1,10 150% 22% 6,0% 0,79% 
20% 0,80 1,20 320% 23% 15% 0,85% 
50% 0,50 1,50 920% 23% 60% 0,85% 

 
 
5. CONCLUSION 
 
 Conventional methods for calculating DC and RMS values with fixed number of samples 
may introduce very large errors when signal frequency deviates from nominal value. By using 
the presented method with variable and non integer number of samples, it is possible to do 
almost errorless calculation of mean and root-mean-square values of sampled periodic signals 
by using non-integer number of samples per period. The error introduced by this method is 
always very small, about 1%, comparable to quantization errors due to A/D converters. 
 The calculations to apply this method are easily implemented in any simple Digital Signal 
Processor, and may be executed in real time letting a decision device to know the values in a 
per cycle basis. 
 This method is also helpful for system design allowing a choice of the sampling 
frequency regardless the exact value of the signal frequency thus making them independent 
from one to another.  
 Sample rates (64, 100 and 128 samples per cycle) showed weak influence on AC RMS 
errors, for both methods. Higher sample rates are better; however, the number of 64 samples 
per cycle with the proposed method provided satisfactory results. 
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